Analysis of Bacterial Metabolites in Breath Gas of Critically Ill Patients for Diagnosis of Ventilator-Associated Pneumonia—A Proof of Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Setup for Bacteria Cultivation and Headspace Sampling
2.3. VOCs Emission from Medical Respiratory Devices
2.4. Selection of Patients and Diagnosis of Pneumonia
2.5. Collection of Breath Samples from Mechanically Ventilated Patients
2.6. TD-GC-MS Analysis
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Bacteria Cultures
3.1.1. Microbial Growth
3.1.2. VOC of Microbial Origin
3.2. Breath Analysis
3.2.1. VOC Emissions from Medical Respiratory Devices
3.2.2. Differentiation of VAP from Uninfected Patients
3.2.3. Exhaled VOCs vs. Blood Biomarkers
3.2.4. VOCs Related to Underlying Pathogen
4. Discussion
5. Challenges and Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Xing, R.; Wang, C. The effect of ventilator-associated pneumonia on the prognosis of intensive care unit patients within 90 days and 180 days. BMC Infect. Dis. 2021, 21, 684. [Google Scholar] [CrossRef] [PubMed]
- Mergulhao, P.; Pereira, J.G.; Fernandes, A.V.; Krystopchuk, A.; Ribeiro, J.M.; Miranda, D.; Castro, H.; Eira, C.; Morais, J.; Lameirao, C.; et al. Epidemiology and Burden of Ventilator-Associated Pneumonia among Adult Intensive Care Unit Patients: A Portuguese, Multicenter, Retrospective Study (eVAP-PT Study). Antibiotics 2024, 13, 290. [Google Scholar] [CrossRef] [PubMed]
- Howroyd, F.; Chacko, C.; MacDuff, A.; Gautam, N.; Pouchet, B.; Tunnicliffe, B.; Weblin, J.; Gao-Smith, F.; Ahmed, Z.; Duggal, N.A.; et al. Ventilator-associated pneumonia: Pathobiological heterogeneity and diagnostic challenges. Nat. Commun. 2024, 15, 6447. [Google Scholar] [CrossRef]
- Browne, E.; Hellyer, T.P.; Baudouin, S.V.; Conway Morris, A.; Linnett, V.; McAuley, D.F.; Perkins, G.D.; Simpson, A.J. A national survey of the diagnosis and management of suspected ventilator-associated pneumonia. BMJ Open Respir. Res. 2014, 1, e000066. [Google Scholar] [CrossRef]
- Ego, A.; Preiser, J.C.; Vincent, J.L. Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest 2015, 147, 347–355. [Google Scholar] [CrossRef]
- Gaudet, A.; Martin-Loeches, I.; Povoa, P.; Rodriguez, A.; Salluh, J.; Duhamel, A.; Nseir, S.; TAVeM Study Group. Accuracy of the clinical pulmonary infection score to differentiate ventilator-associated tracheobronchitis from ventilator-associated pneumonia. Ann. Intensive Care 2020, 10, 101. [Google Scholar] [CrossRef]
- Chou, H.; Godbeer, L.; Allsworth, M.; Boyle, B.; Ball, M.L. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024, 20, 72. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347. [Google Scholar] [CrossRef]
- Oxner, M.; Trang, A.; Mehta, J.; Forsyth, C.; Swanson, B.; Keshavarzian, A.; Bhushan, A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME Front. 2023, 4, 0002. [Google Scholar] [CrossRef]
- Subali, A.D.; Wiyono, L.; Yusuf, M.; Zaky, M.F.A. The potential of volatile organic compounds-based breath analysis for COVID-19 screening: A systematic review & meta-analysis. Diagn. Microbiol. Infect. Dis. 2022, 102, 115589. [Google Scholar] [CrossRef]
- Wang, R.; Davis, M.D. A Concise Review of Exhaled Breath Testing for Respiratory Clinicians and Researchers. Respir. Care 2024, 69, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Zuchowska, K.; Filipiak, W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J. Pharm. Anal. 2024, 14, 100898. [Google Scholar] [CrossRef]
- Filipiak, W.; Beer, R.; Sponring, A.; Filipiak, A.; Ager, C.; Schiefecker, A.; Lanthaler, S.; Helbok, R.; Nagl, M.; Troppmair, J.; et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: A prospective pilot study. J. Breath Res. 2015, 9, 016004. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.; Boumans, M.L.; Stobberingh, E.; Boots, A.; Roekaerts, P.; Bergmans, D.; van Schooten, F.J. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [PubMed]
- van Oort, P.M.; de Bruin, S.; Weda, H.; Knobel, H.H.; Schultz, M.J.; Bos, L.D.; On Behalf Of The Mars, C. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU)-Patients. Int. J. Mol. Sci. 2017, 18, 449. [Google Scholar] [CrossRef]
- Bajo-Fernandez, M.; Souza-Silva, E.A.; Barbas, C.; Rey-Stolle, M.F.; Garcia, A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: Applications in health and disease. A review. Front. Mol. Biosci. 2023, 10, 1295955. [Google Scholar] [CrossRef]
- Trefz, P.; Schmidt, M.; Oertel, P.; Obermeier, J.; Brock, B.; Kamysek, S.; Dunkl, J.; Zimmermann, R.; Schubert, J.K.; Miekisch, W. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal. Chem. 2013, 85, 10321–10329. [Google Scholar] [CrossRef]
- Sukul, P.; Schubert, J.K.; Zanaty, K.; Trefz, P.; Sinha, A.; Kamysek, S.; Miekisch, W. Exhaled breath compositions under varying respiratory rhythms reflects ventilatory variations: Translating breathomics towards respiratory medicine. Sci. Rep. 2020, 10, 14109. [Google Scholar] [CrossRef]
- Felton, T.W.; Ahmed, W.; White, I.R.; van Oort, P.; Rattray, N.J.W.; Docherty, C.; Bannard-Smith, J.; Morton, B.; Welters, I.; McMullan, R.; et al. Analysis of exhaled breath to identify critically ill patients with ventilator-associated pneumonia. Anaesthesia 2023, 78, 712–721. [Google Scholar] [CrossRef]
- van Oort, P.M.; Nijsen, T.M.; White, I.R.; Knobel, H.H.; Felton, T.; Rattray, N.; Lawal, O.; Bulut, M.; Ahmed, W.; Artigas, A.; et al. Untargeted Molecular Analysis of Exhaled Breath as a Diagnostic Test for Ventilator-Associated Lower Respiratory Tract Infections (BreathDx). Thorax 2022, 77, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P., 3rd. Hospital-acquired pneumonia: Risk factors, microbiology, and treatment. Chest 2001, 119, 373S–384S. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Delle Rose, D.; Pezzotti, P.; Fortunato, E.; Sordillo, P.; Gini, S.; Boros, S.; Meledandri, M.; Gallo, M.T.; Prignano, G.; Caccese, R.; et al. Clinical predictors and microbiology of ventilator-associated pneumonia in the intensive care unit: A retrospective analysis in six Italian hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Hellyer, T.P.; Morris, A.C.; McAuley, D.F.; Walsh, T.S.; Anderson, N.H.; Singh, S.; Dark, P.; Roy, A.I.; Baudouin, S.V.; Wright, S.E.; et al. Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia. Thorax 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Filipiak, W.; Wenzel, M.; Ager, C.; Mayhew, C.A.; Bogiel, T.; Wlodarski, R.; Nagl, M. Molecular Analysis of Volatile Metabolites Synthesized by Candida albicans and Staphylococcus aureus in In Vitro Cultures and Bronchoalveolar Lavage Specimens Reflecting Single- or Duo-Factor Pneumonia. Biomolecules 2024, 14, 788. [Google Scholar] [CrossRef]
- Povoa, P.; Coelho, L.; Cidade, J.P.; Ceccato, A.; Morris, A.C.; Salluh, J.; Nobre, V.; Nseir, S.; Martin-Loeches, I.; Lisboa, T.; et al. Biomarkers in pulmonary infections: A clinical approach. Ann. Intensive Care 2024, 14, 113. [Google Scholar] [CrossRef]
- Miekisch, W.; Sukul, P.; Schubert, J.K. Diagnostic potential of breath analysis—Focus on the dynamics of volatile organic compounds. TrAC Trends Anal. Chem. 2024, 180, 117977. [Google Scholar] [CrossRef]
- Grover, V.; Soni, N.; Kelleher, P.; Singh, S. Biomarkers in the Diagnosis of Ventilator-Associated Pneumonia. Curr. Respir. Med. Rev. 2012, 8, 184–192. [Google Scholar] [CrossRef]
- Kemnitz, N.; Fuchs, P.; Remy, R.; Ruehrmund, L.; Bartels, J.; Klemenz, A.C.; Trefz, P.; Miekisch, W.; Schubert, J.K.; Sukul, P. Effects of Contagious Respiratory Pathogens on Breath Biomarkers. Antioxidants 2024, 13, 172. [Google Scholar] [CrossRef]
VOCs | CAS | tR [min] | Target Ion [m/z] | Reference Ions [m/z] | AB | EC | KP | PA |
---|---|---|---|---|---|---|---|---|
2-Butene | 107-01-7 | 12.766 | 41 | 56, 39, 55 | ↑RTM | ↓UPT | - | ↑RPB |
Isoprene | 78-79-5 | 24.927 | 67 | 68, 53, 39 | ↑RPB | ↑RTM | ↑RTM | - |
3-methyl-1-butene | 563-45-1 | 24.148 | 55 | 70, 41, 42 | - | - | ↑RPB | ↑RPB |
(E)-2-Pentene | 109-68-2 | 25.680 | 55 | 70, 53, 56 | ↑RPB | - | ↑RTM | - |
n-Heptane | 142-82-5 | 51.257 | 71 | 57, 43, 100 | ↑RTM | ↑RTM | - | ↑RPB |
1-Octene | 111-66-0 | 58.528 | 55 | 70, 41, 83 | - | ↑RPB | - | - |
1-Undecene | 821-95-4 | 73.600 | 55 | 70, 83, 97, 111 | ↑RPB | ↑RPB | - | ↑RPB |
Acetaldehyde | 75-07-0 | 9.644 | 43 | 44, 42, 41 | ↑RTM | ↑RPB | ↑RPB | - |
Propanal | 123-38-6 | 18.263 | 57 | 55, 39, 37 | ↑RTM | ↑RPB | - | - |
Methacrolein | 78-85-3 | 28.261 | 70 | 41, 39, 42 | ↑RTM | ↓UPT | ↓UPT | ↓UPT |
2-Methylpropanal | 78-84-2 | 28.588 | 72 | 41, 43, 39 | ↑RTM | ↓UPT | ↓UPT | ↓UPT |
Butanal | 123-72-8 | 31.169 | 44 | 72, 57, 41 | - | - | - | ↓UPT |
2-Butenal | 4170-30-3 | 35.863 | 70 | 41, 39, 69 | - | ↑RTM | - | - |
2-Methyl-2-Butenal | 1115-11-3 | 47.964 | 84 | 55, 39, 41 | - | ↓UPT | ↓UPT | ↓UPT |
2-Ethylacrolein | 922-63-4 | 41.552 | 55 | 84, 56, 39 | - | ↓UPT | - | ↓UPT |
3-Methylbutanal | 590-86-3 | 42.417 | 58 | 71, 41, 86 | - | ↓UPT | ↑RTM | ↓UPT |
Pentanal | 110-62-3 | 45.598 | 44 | 58, 41, 57 | ↓UPT | - | - | - |
Benzaldehyde | 100-52-7 | 65.584 | 106 | 105, 77, 51 | ↓UPT | ↓UPT | ↓UPT | ↓UPT |
Octanal | 124-13-0 | 70.320 | 84 | 69, 56, 100 | ↓UPT | - | - | - |
Decanal | 112-31-2 | 76.452 | 57 | 43, 55, 82 | - | ↑RTM | - | - |
Ethanol | 64-17-5 | 14.000 | 45 | 46, 43 | - | ↑RPB | ↑RPB | ↑RPB |
1-Propanol | 71-23-8 | 26.439 | 59 | 42, 60, 41 | - | ↑RPB | ↑RPB | - |
2-Propanol | 67-63-0 | 22.209 | 45 | 43, 41, 59 | - | - | - | ↑RPB |
2-Methyl-1-Propanol | 78-83-1 | 36.500 | 43 | 41, 56, 74 | - | ↑RPB | ↑RPB | - |
1-Butanol | 71-36-3 | 39.800 | 56 | 45, 41, 43 | ↑RTM | - | ↑RTM | - |
3-Methyl-1-Butanol | 123-51-3 | 50.395 | 55 | 70, 42, 41 | ↑RPB | ↑RPB | ↑RPB | - |
Ethyl Acetate | 141-78-6 | 33.382 | 43 | 70, 61, 45, 88 | ↑RTM | ↑RPB | ↑RPB | ↑RPB |
Ethyl Octanoate | 106-32-1 | 75.589 | 88 | 57, 101, 127 | - | ↑RTM | ↑RTM | - |
2-Butanone | 78-93-3 | 31.539 | 72 | 43, 57, 42 | - | - | ↑RPB | - |
2,3-Butanedione | 431-03-8 | 31.663 | 86 | 43, 42, 41 | - | - | ↑RTM | - |
3-Penten-2-on | 625-33-2 | 48.521 | 69 | 84, 55, 41 | - | ↑RTM | - | - |
2-Pentanone | 107-87-9 | 44.911 | 43 | 86, 71, 58 | - | - | ↑RPB | ↑RPB |
2-Heptanone | 110-43-0 | 63.400 | 58 | 43, 71, 114 | - | - | ↑RPB | ↑RTM |
2-Nonanone | 821-55-6 | 73.080 | 58 | 43, 71, 142 | ↑RPB | - | ↑RPB | ↑RPB |
Methanethiol | 74-93-1 | 10.900 | 47 | 48, 45, 46 | ↑RTM | - | ↑RPB | ↑RTM |
Dimethyl Sulfide | 75-18-3 | 20.432 | 62 | 47, 45, 61 | ↑RPB | ↑RTM | ↑RTM | ↑RPB |
Ethyl Methyl Sulfide | 624-89-5 | 32.634 | 61 | 76, 48, 47 | - | ↑RTM | ↑RTM | ↑RPB |
Dimethyl Disulfide | 624-92-0 | 47.136 | 94 | 43, 79, 61 | - | ↑RPB | ↑RPB | ↑RPB |
2-Methylfuran | 534-22-5 | 30.814 | 82 | 53, 81, 39 | - | - | - | ↓UPT |
Control (n = 6) | VAP (n = 32) | ||
---|---|---|---|
Age, years | median (IQR) | 80 (64–86) | 68 (56–75) |
Male | n (%) | 5 (83) | 19 (57) |
Admission Type | cardiac | 2 | 10 |
neurological | 2 | 5 | |
organ failure | 0 | 4 | |
post-surgical | 0 | 4 | |
injury | 1 | 2 | |
other | 1 | 7 | |
APACHE II | median (IQR) | 37 (27–40) | 30 (27–33) |
Days from intubation to VAP diagnosis | median (IQR) | not concerns | 7 (4–18) |
Ventilation days at the 1st breath sampling | median (IQR) | 6 (3–14) | 9 (6–19) |
ICU days | median (IQR) | 15 (8–32) | 25 (14–33) |
ICU mortality | n (%) | 5 (83%) | 16 (48%) |
* BAL culture results | n (single) | ||
Acinetobacter baumannii | - | 16 (11) | |
Pseudomonas aeruginosa | - | 11 (6) | |
Escherichia coli | - | 5 (1) | |
Klebsiella pneumoniae | - | 4 (2) | |
Staphylococcus aureus | - | 6 (3) | |
Enterococcus aerogenes | - | 5 (1) | |
Proteus mirabilis | - | 3 (0) | |
Other | - | 8 (0) |
VOCs | VAP n > 0 | VAP | Control n > 0 | Control | Wilcoxon Rank-Sum | LASSO Freq. [%] | AUC |
---|---|---|---|---|---|---|---|
Ethyl Acetate | 77 | 100% | 14 | 82% | 0.00001 | 100 | 0.824 |
3-Methyl-1-Butanol | 51 | 66% | 3 | 18% | 0.00010 | 100 | 0.762 |
n-Heptane | 75 | 97% | 13 | 76% | 0.00014 | 100 | 0.753 |
Dimethyl Disulfide | 25 | 32% | 0 | 0% | 0.00740 | 100 | 0.573 |
1-Octene | 75 | 97% | 13 | 76% | 0.00093 | 10 | 0.568 |
Decanal | 49 | 64% | 3 | 18% | 0.00638 | 100 | 0.56 |
Pentanal | 54 | 70% | 6 | 35% | 0.01730 | 30 | 0.533 |
1-Butanol | 19 | 25% | 0 | 0% | 0.02416 | 30 | 0.492 |
2-Nonanone | 3 | 4% | 3 | 18% | 0.04134 | 20 | 0.488 |
2-Butene | 77 | 100% | 17 | 100% | 0.02641 | 20 | 0.486 |
Ethyl Methyl Sulfide | 0 | 0% | 4 | 24% | 0.00002 | 80 | 0.467 |
3-methyl-1-butene | 76 | 99% | 17 | 100% | 0.01744 | 0 | 0.467 |
Ethyl Octanoate | 0 | 0% | 3 | 18% | 0.00021 | 10 | 0.459 |
Dimethyl Sulfide | 75 | 97% | 14 | 82% | 0.05927 | 30 | 0.452 |
Methacrolein | 77 | 100% | 16 | 94% | 0.07703 | 90 | 0.432 |
2,3-Butanedione | 75 | 97% | 12 | 71% | 0.12534 | 50 | 0.434 |
3-Methylbutanal | 24 | 31% | 7 | 41% | 0.13259 | 60 | 0.466 |
2-Butenal | 20 | 26% | 7 | 41% | 0.14670 | 90 | 0.448 |
2-Heptanone | 10 | 13% | 4 | 24% | 0.16042 | 60 | 0.466 |
Benzaldehyde | 77 | 100% | 13 | 76% | 0.17835 | 40 | 0.432 |
2-Methylpropanal | 50 | 65% | 5 | 29% | 0.21740 | 100 | 0.475 |
2-Propanol | 71 | 92% | 17 | 100% | 0.23453 | 100 | 0.437 |
2-Butanone | 77 | 100% | 16 | 94% | 0.32112 | 10 | 0.447 |
3-Penten-2-on | 45 | 58% | 6 | 35% | 0.32642 | 0 | 0.55 |
2-Methyl-2-Butenal | 8 | 10% | 3 | 18% | 0.34197 | 10 | 0.480 |
2-Ethylacrolein | 12 | 16% | 1 | 6% | 0.34245 | 100 | 0.498 |
Methanethiol | 70 | 91% | 14 | 82% | 0.34789 | 60 | 0.493 |
Isoprene | 77 | 100% | 17 | 100% | 0.38197 | 100 | 0.485 |
1-Undecene | 40 | 52% | 9 | 53% | 0.41677 | 20 | 0.481 |
2-Methyl-1-Propanol | 9 | 12% | 1 | 6% | 0.44076 | 40 | 0.492 |
2-Methylfuran | 77 | 100% | 17 | 100% | 0.46127 | 0 | 0.476 |
Ethanol | 73 | 95% | 17 | 100% | 0.53599 | 40 | 0.511 |
Acetaldehyde | 77 | 100% | 17 | 100% | 0.70894 | 0 | 0.514 |
2-Pentanone | 74 | 96% | 17 | 100% | 0.71625 | 70 | 0.518 |
Octanal | 55 | 71% | 9 | 53% | 0.76448 | 100 | 0.531 |
1-Propanol | 56 | 73% | 17 | 100% | 0.95274 | 80 | 0.507 |
Propanal | 75 | 97% | 16 | 94% | 0.96866 | 90 | 0.522 |
Butanal | 77 | 100% | 16 | 94% | 1.00000 | 10 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipiak, W.; Włodarski, R.; Żuchowska, K.; Tracewska, A.; Winiarek, M.; Daszkiewicz, D.; Marszałek, M.; Depka, D.; Bogiel, T. Analysis of Bacterial Metabolites in Breath Gas of Critically Ill Patients for Diagnosis of Ventilator-Associated Pneumonia—A Proof of Concept Study. Biomolecules 2024, 14, 1480. https://doi.org/10.3390/biom14121480
Filipiak W, Włodarski R, Żuchowska K, Tracewska A, Winiarek M, Daszkiewicz D, Marszałek M, Depka D, Bogiel T. Analysis of Bacterial Metabolites in Breath Gas of Critically Ill Patients for Diagnosis of Ventilator-Associated Pneumonia—A Proof of Concept Study. Biomolecules. 2024; 14(12):1480. https://doi.org/10.3390/biom14121480
Chicago/Turabian StyleFilipiak, Wojciech, Robert Włodarski, Karolina Żuchowska, Alicja Tracewska, Magdalena Winiarek, Dawid Daszkiewicz, Marta Marszałek, Dagmara Depka, and Tomasz Bogiel. 2024. "Analysis of Bacterial Metabolites in Breath Gas of Critically Ill Patients for Diagnosis of Ventilator-Associated Pneumonia—A Proof of Concept Study" Biomolecules 14, no. 12: 1480. https://doi.org/10.3390/biom14121480
APA StyleFilipiak, W., Włodarski, R., Żuchowska, K., Tracewska, A., Winiarek, M., Daszkiewicz, D., Marszałek, M., Depka, D., & Bogiel, T. (2024). Analysis of Bacterial Metabolites in Breath Gas of Critically Ill Patients for Diagnosis of Ventilator-Associated Pneumonia—A Proof of Concept Study. Biomolecules, 14(12), 1480. https://doi.org/10.3390/biom14121480