Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maternal Separation (MS)
2.2. LPS Administration
2.3. Behaviour Tests
2.4. Open-Field Test (OFT)
2.5. Object-Place Recognition Test
2.6. Tissue Collection
2.7. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)
2.8. Statistical Analyses
3. Results
3.1. Effect of MS on Mother Rats
3.2. Effect of MS and LPS Body Weight of Offspring
3.3. Effect of MS and LPS on Anxiety-like Behaviour of Offspring
3.4. Effect of MS and LPS on Locomotor Activity of Offspring
3.5. Effect of MS and LPS on Memory of Offspring
3.6. Effect of MS and LPS on Anthropometric Data of Offspring at Endpoint (P51–56)
3.7. Effect of MS and LPS on PFC Gene Expression
3.8. Effect of MS and LPS on Hippocampus Gene Expression
4. Discussion
4.1. Effect of MS on Dam Behaviour
4.2. Effect of MS on Offspring Behaviour
4.3. Effect of MS on PFC and Hippocampal Gene Expression in Male Offspring
4.4. Effect of MS and LPS on Body Weight of Offspring
4.5. Effect of LPS on Behaviour of Offspring
5. Conclusions
6. Limitations of the Study
- Limited number of experiments conducted in the study, which includes only two behavioural tests (OFT and object-place recognition test) and four gene expression analyses in two brain regions (PFC and hippocampus).
- To assess the impact of MS and LPS on memory function, exclusively the spatial memory test (object-place recognition test) was conducted. Other cognitive domains including working or recognition memory were not explored in this study.
- Due to the small sample size of female rats, genes expression analysis was only conducted in the male rats.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anda, R.F.; Felitti, V.J.; Bremner, J.D.; Walker, J.D.; Whitfield, C.; Perry, B.D.; Dube, S.R.; Giles, W.H. The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur. Arch. Psychiatry Clin. Neurosci. 2006, 256, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Lanier, P.; Maguire-Jack, K.; Lombardi, B.; Frey, J.; Rose, R.A. Adverse Childhood Experiences and Child Health Outcomes: Comparing Cumulative Risk and Latent Class Approaches. Matern. Child Health J. 2018, 22, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Pineda, R.G.; Neil, J.; Dierker, D.; Smyser, C.D.; Wallendorf, M.; Kidokoro, H.; Reynolds, L.C.; Walker, S.; Rogers, C.; Mathur, A.M.; et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatr. 2014, 164, 52–60.e52. [Google Scholar] [CrossRef]
- Nelson, C.A., 3rd. Hazards to Early Development: The Biological Embedding of Early Life Adversity. Neuron 2017, 96, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Scott, R.D.; Bhutta, Z.A.; Harris, N.B.; Danese, A.; Samara, M. Adversity in childhood is linked to mental and physical health throughout life. BMJ 2020, 371, m3048. [Google Scholar] [CrossRef] [PubMed]
- Berens, A.E.; Jensen, S.K.G.; Nelson, C.A. Biological embedding of childhood adversity: From physiological mechanisms to clinical implications. BMC Med. 2017, 15, 135. [Google Scholar] [CrossRef]
- Suchdev, P.S.; Boivin, M.J.; Forsyth, B.W.; Georgieff, M.K.; Guerrant, R.L.; Nelson, C.A., 3rd. Assessment of Neurodevelopment, Nutrition, and Inflammation from Fetal Life to Adolescence in Low-Resource Settings. Pediatrics 2017, 139, S23–S37. [Google Scholar] [CrossRef] [PubMed]
- Maitre, N.L.; Key, A.P.; Chorna, O.D.; Slaughter, J.C.; Matusz, P.J.; Wallace, M.T.; Murray, M.M. The Dual Nature of Early-Life Experience on Somatosensory Processing in the Human Infant Brain. Curr. Biol. 2017, 27, 1048–1054. [Google Scholar] [CrossRef]
- Ellenbroek, B.; Angelucci, F.; Husum, H.; Mathé, A.A. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides 2016, 59, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Maghami, S.; Zardooz, H.; Khodagholi, F.; Binayi, F.; Ranjbar Saber, R.; Hedayati, M.; Sahraei, H.; Ansari, M.A. Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PLoS ONE 2018, 13, e0204731. [Google Scholar] [CrossRef] [PubMed]
- Maniam, J.; Antoniadis, C.; Morris, M.J. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front. Endocrinol. 2014, 5, 73. [Google Scholar] [CrossRef]
- Biagini, G.; Pich, E.M.; Carani, C.; Marrama, P.; Agnati, L.F. Postnatal maternal separation during the stress hyporesponsive period enhances the adrenocortical response to novelty in adult rats by affecting feedback regulation in the CA1 hippocampal field. Int. J. Dev. Neurosci. 1998, 16, 187–197. [Google Scholar] [CrossRef]
- Maniam, J.; Morris, M.J. Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet. Behav. Brain Res 2010, 208, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Vetulani, J. Early maternal separation: A rodent model of depression and a prevailing human condition. Pharmacol. Rep. 2013, 65, 1451–1461. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, Y.; Feng, Y.; Zhang, K.; Zhang, J.; Chen, J.; Li, X.; Chen, G. Resveratrol ameliorates maternal separation-induced anxiety- and depression-like behaviors and reduces Sirt1-NF-kB signaling-mediated neuroinflammation. Front. Behav. Neurosci. 2023, 17, 1172091. [Google Scholar] [CrossRef]
- Strunk, T.; Inder, T.; Wang, X.; Burgner, D.; Mallard, C.; Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect. Dis. 2014, 14, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Dai, X.; Roller, A.; Carter, K.; Paul, I.; Bhatt, A.J.; Lin, R.C.; Fan, L.W. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS ONE 2016, 11, e0164403. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J.; Huang, Y.; Wynne, A.; Hanke, M.; Himler, J.; Bailey, M.T.; Sheridan, J.F.; Godbout, J.P. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflamm. 2008, 5, 15. [Google Scholar] [CrossRef]
- Walker, A.K.; Nakamura, T.; Hodgson, D.M. Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats. Stress 2010, 13, 506–515. [Google Scholar] [CrossRef]
- Saavedra, L.M.; Fenton Navarro, B.; Torner, L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation 2017, 24, 242–255. [Google Scholar] [CrossRef]
- Zajdel, J.; Zager, A.; Blomqvist, A.; Engblom, D.; Shionoya, K. Acute maternal separation potentiates the gene expression and corticosterone response induced by inflammation. Brain Behav. Immun. 2019, 77, 141–149. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Xu, J.; Liu, D.; Wu, H.; Qin, X.; Jiang, H.; Pan, F. Jmjd3 is involved in the susceptibility to depression induced by maternal separation via enhancing the neuroinflammation in the prefrontal cortex and hippocampus of male rats. Exp. Neurol. 2020, 328, 113254. [Google Scholar] [CrossRef]
- Demina, E.P.; Pierre, W.C.; Nguyen, A.L.A.; Londono, I.; Reiz, B.; Zou, C.; Chakraberty, R.; Cairo, C.W.; Pshezhetsky, A.V.; Lodygensky, G.A. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J. Neuroinflamm. 2018, 15, 336. [Google Scholar] [CrossRef] [PubMed]
- Pierre, W.C.; Legault, L.M.; Londono, I.; McGraw, S.; Lodygensky, G.A. Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. FASEB J. 2020, 34, 432–445. [Google Scholar] [CrossRef]
- Fragopoulou, A.F.; Qian, Y.; Heijtz, R.D.; Forssberg, H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Mol. Neurobiol. 2019, 56, 6883–6900. [Google Scholar] [CrossRef]
- Wang, X.; Stridh, L.; Li, W.; Dean, J.; Elmgren, A.; Gan, L.; Eriksson, K.; Hagberg, H.; Mallard, C. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J. Immunol. 2009, 183, 7471–7477. [Google Scholar] [CrossRef] [PubMed]
- Hickey, E.; Shi, H.; Van Arsdell, G.; Askalan, R. Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain. Pediatr. Res. 2011, 70, 10–14. [Google Scholar] [CrossRef]
- Kendig, M.D.; Westbrook, R.F.; Morris, M.J. Pattern of access to cafeteria-style diet determines fat mass and degree of spatial memory impairments in rats. Sci. Rep. 2019, 9, 13516. [Google Scholar] [CrossRef]
- Beilharz, J.E.; Kaakoush, N.O.; Maniam, J.; Morris, M.J. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav. Immun. 2016, 57, 304–313. [Google Scholar] [CrossRef]
- Maniam, J.; Antoniadis, C.P.; Le, V.; Morris, M.J. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers. Psychoneuroendocrinology 2016, 68, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Aguggia, J.P.; Suarez, M.M.; Rivarola, M.A. Early maternal separation: Neurobehavioral consequences in mother rats. Behav. Brain Res. 2013, 248, 25–31. [Google Scholar] [CrossRef]
- Boccia, M.L.; Razzoli, M.; Vadlamudi, S.P.; Trumbull, W.; Caleffie, C.; Pedersen, C.A. Repeated long separations from pups produce depression-like behavior in rat mothers. Psychoneuroendocrinology 2007, 32, 65–71. [Google Scholar] [CrossRef]
- Aisa, B.; Tordera, R.; Lasheras, B.; Del Rio, J.; Ramirez, M.J. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 2007, 32, 256–266. [Google Scholar] [CrossRef]
- Huot, R.L.; Thrivikraman, K.V.; Meaney, M.J.; Plotsky, P.M. Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 2001, 158, 366–373. [Google Scholar] [CrossRef]
- Jaimes-Hoy, L.; Gutierrez-Mariscal, M.; Vargas, Y.; Perez-Maldonado, A.; Romero, F.; Sanchez-Jaramillo, E.; Charli, J.L.; Joseph-Bravo, P. Neonatal Maternal Separation Alters, in a Sex- Specific Manner, the Expression of TRH, of TRH-Degrading Ectoenzyme in the Rat Hypothalamus, and the Response of the Thyroid Axis to Starvation. Endocrinology 2016, 157, 3253–3265. [Google Scholar] [CrossRef]
- Jin, S.; Zhao, Y.; Jiang, Y.; Wang, Y.; Li, C.; Zhang, D.; Lian, B.; Du, Z.; Sun, H.; Sun, L. Anxiety-like behaviour assessments of adolescent rats after repeated maternal separation during early life. Neuroreport 2018, 29, 643–649. [Google Scholar] [CrossRef]
- Ladd, C.O.; Thrivikraman, K.V.; Huot, R.L.; Plotsky, P.M. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology 2005, 30, 520–533. [Google Scholar] [CrossRef]
- Maniam, J.; Morris, M.J. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: Role of hippocampus. Psychoneuroendocrinology 2010, 35, 1553–1564. [Google Scholar] [CrossRef]
- Wigger, A.; Neumann, I.D. Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol. Behav. 1999, 66, 293–302. [Google Scholar] [CrossRef]
- Aspesi, D.; Farinetti, A.; Marraudino, M.; Morgan, G.S.K.; Marzolab, E.; Abbate-Dagab, G.; Gotti, S. Maternal separation alters the reward system of activity-based anorexia rats. Psychoneuroendocrinology 2021, 133, 105393. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, M.; Bress, A.; Nemeroff, C.B.; Plotsky, P.M.; Monteggia, L.M. Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur. J. Neurosci. 2007, 25, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, L.; Wang, Q.; Zhang, D.; Zhao, Q.; Zhang, J.; Xie, L.; Liu, G.; You, Z. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology 2019, 107, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.R.; Lee, J.W.; Kwon, K.J.; Kang, C.D.; Cheong, I.Y.; Chun, W.; Kim, S.S.; Lee, H.J. Maternal social separation of adolescent rats induces hyperactivity and anxiolytic behavior. Korean J. Physiol. Pharmacol. 2009, 13, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Banqueri, M.; Mendez, M.; Gomez-Lazaro, E.; Arias, J.L. Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress 2019, 22, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Catale, C.; Gironda, S.; Lo Iacono, L.; Carola, V. Microglial Function in the Effects of Early-Life Stress on Brain and Behavioral Development. J. Clin. Med. 2020, 9, 468. [Google Scholar] [CrossRef]
- Hanamsagar, R.; Bilbo, S.D. Environment matters: Microglia function and dysfunction in a changing world. Curr. Opin. Neurobiol. 2017, 47, 146–155. [Google Scholar] [CrossRef]
- Roque, A.; Ochoa-Zarzosa, A.; Torner, L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav. Immun. 2016, 55, 39–48. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Huo, Y.L.; Fang, Z.Q.; Wang, X.F.; Li, J.D.; Wang, H.P.; Peng, W.; Johnson, A.K.; Xue, B. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H1061–H1069. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Schnydrig, S.; Korner, L.; Landweer, S.; Ernst, B.; Walker, G.; Otten, U.; Kunz, D. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain. Neurosci. Lett. 2007, 429, 69–73. [Google Scholar] [CrossRef]
- Fumagalli, F.; Bedogni, F.; Perez, J.; Racagni, G.; Riva, M.A. Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur. J. Neurosci. 2004, 20, 1348–1354. [Google Scholar] [CrossRef]
- Ognibene, E.; Adriani, W.; Caprioli, A.; Ghirardi, O.; Ali, S.F.; Aloe, L.; Laviola, G. The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous reeler mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Roceri, M.; Hendriks, W.; Racagni, G.; Ellenbroek, B.A.; Riva, M.A. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol. Psychiatry 2002, 7, 609–616. [Google Scholar] [CrossRef]
- Greisen, M.H.; Altar, C.A.; Bolwig, T.G.; Whitehead, R.; Wortwein, G. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats. J. Neurosci. Res. 2005, 79, 772–778. [Google Scholar] [CrossRef]
- Suri, D.; Veenit, V.; Sarkar, A.; Thiagarajan, D.; Kumar, A.; Nestler, E.J.; Galande, S.; Vaidya, V.A. Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol. Psychiatry 2013, 73, 658–666. [Google Scholar] [CrossRef]
- Doosti, M.H.; Bakhtiari, A.; Zare, P.; Amani, M.; Majidi-Zolbanin, N.; Babri, S.; Salari, A.A. Impacts of early intervention with fluoxetine following early neonatal immune activation on depression-like behaviors and body weight in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 43, 55–65. [Google Scholar] [CrossRef]
- Fan, L.W.; Tien, L.T.; Lin, R.C.; Simpson, K.L.; Rhodes, P.G.; Cai, Z. Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Neurobiol. Dis. 2011, 44, 304–316. [Google Scholar] [CrossRef]
- Fan, L.W.; Tien, L.T.; Zheng, B.; Pang, Y.; Lin, R.C.; Simpson, K.L.; Ma, T.; Rhodes, P.G.; Cai, Z. Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity. Brain Behav. Immun. 2011, 25, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Fan, L.W.; Kaizaki, A.; Pang, Y.; Cai, Z.; Tien, L.T. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats. Neuroscience 2013, 234, 146–157. [Google Scholar] [CrossRef]
- Iwasaki, S.; Inoue, K.; Kiriike, N.; Hikiji, K. Effect of maternal separation on feeding behavior of rats in later life. Physiol. Behav. 2000, 70, 551–556. [Google Scholar] [CrossRef]
- McIntosh, J.; Anisman, H.; Merali, Z. Short- and long-periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: Gender-dependent effects. Brain Res. Dev. Brain Res. 1999, 113, 97–106. [Google Scholar] [CrossRef]
- Zimmerberg, B.; Shartrand, A.M. Temperature-dependent effects of maternal separation on growth, activity, and amphetamine sensitivity in the rat. Dev. Psychobiol. 1992, 25, 213–222. [Google Scholar] [CrossRef]
- Vallee, M.; Mayo, W.; Maccari, S.; Le Moal, M.; Simon, H. Long-term effects of prenatal stress and handling on metabolic parameters: Relationship to corticosterone secretion response. Brain Res. 1996, 712, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Juarez, L.M.; Meserve, L.A. Modification of hypothalamic content of growth hormone regulatory peptides in maternally deprived neonatal rats. Growth Dev. Aging 1988, 52, 139–143. [Google Scholar] [PubMed]
- Kuhn, C.M.; Pauk, J.; Schanberg, S.M. Endocrine responses to mother-infant separation in developing rats. Dev. Psychobiol. 1990, 23, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Meaney, M.J.; Bhatnagar, S.; Larocque, S.; McCormick, C.; Shanks, N.; Sharma, S.; Smythe, J.; Viau, V.; Plotsky, P.M. Individual differences in the hypothalamic-pituitary-adrenal stress response and the hypothalamic CRF system. Ann. N. Y. Acad. Sci. 1993, 697, 70–85. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Biedenkapp, J.C.; Der-Avakian, A.; Watkins, L.R.; Rudy, J.W.; Maier, S.F. Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J. Neurosci. 2005, 25, 8000–8009. [Google Scholar] [CrossRef]
- Xin, Y.R.; Jiang, J.X.; Hu, Y.; Pan, J.P.; Mi, X.N.; Gao, Q.; Xiao, F.; Zhang, W.; Luo, H.M. The Immune System Drives Synapse Loss During Lipopolysaccharide-Induced Learning and Memory Impairment in Mice. Front. Aging Neurosci. 2019, 11, 279. [Google Scholar] [CrossRef]
- Finney, C.A.; Morris, M.J.; Westbrook, R.F.; Jones, N.M. Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behav. Brain Res. 2020, 5, 401–489. [Google Scholar] [CrossRef] [PubMed]
- Jekel, K.; Damian, M.; Wattmo, C.; Hausner, L.; Bullock, R.; Connelly, P.J.; Dubois, B.; Eriksdotter, M.; Ewers, M.; Graessel, E.; et al. Mild cognitive impairment and deficits in instrumental activities of daily living: A systematic review. Alzheimer’s Res. Ther. 2015, 7, 17. [Google Scholar] [CrossRef]
- Sahakyan, L.; Wahlheim, C.N.; Kwapil, T.R. Mnemonic discrimination deficits in multidimensional schizotypy. Hippocampus 2023, 33, 1139–1153. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Levkoff, L.H.; Mahoney, J.H.; Watkins, L.R.; Rudy, J.W.; Maier, S.F. Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav. Neurosci. 2005, 119, 293–301. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Schwarz, J.M. The Immune System and Developmental Programming of Brain and Behavior. Front. Neuroendocrinol. 2012, 33, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Bilbo, S.D. Sex, glia, and development: Interactions in health and disease. Horm. Behav. 2012, 62, 243–253. [Google Scholar] [CrossRef]
- Bachiller, S.; Paulus, A.; Vazquez-Reyes, S.; García-Domínguez, I.; Deierborg, T. Maternal separation leads to regional hippocampal microglial activation and alters the behavior in the adolescence in a sex-specific manner. Brain Behav. Immun. 2020, 9, 100142. [Google Scholar] [CrossRef] [PubMed]
- Rincel, M.; Aubert, P.; Chevalier, J.; Grohard, P.A.; Basso, L.; Monchaux de Oliveira, C.; Helbling, J.C.; Levy, E.; Chevalier, G.; Leboyer, M.; et al. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav. Immun. 2019, 80, 179–192. [Google Scholar] [CrossRef]
- Turan, N.; Katari, S.; Coutifaris, C.; Sapienza, C. Explaining inter-individual variability in phenotype. Epigenetics. 2010, 5, 16–19. [Google Scholar] [CrossRef]
- Haatveit, B.; Westlye, L.T.; Vaskinn, A.; Flaaten, C.B.; Mohn, C.; Bjella, T.; Sundet, K.; Melle, I.; Andreassen, O.A.; Alnæs, D.; et al. Intra- and inter-individual cognitive variability in schizophrenia and bipolar spectrum disorder: An investigation across multiple cognitive domains. Schizophrenia 2023, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Faure, P.; Fayad, S.L.; Solié, C.; Reynolds, L.M. Social Determinants of Inter-Individual Variability and Vulnerability: The Role of Dopamine. Front. Behav. Neurosci. 2022, 16, 836343. [Google Scholar] [CrossRef] [PubMed]
- Paternain, L.; de la Garza, A.L.; Batlle, M.A.; Milagro, F.I.; Martinez, J.A.; Campion, J. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner. Stress 2013, 16, 220–232. [Google Scholar] [CrossRef]
- Tamashiro, K.L.; Terrillion, C.E.; Hyun, J.; Koenig, J.I.; Moran, T.H. Prenatal stress or high- fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 2009, 58, 1116–1125. [Google Scholar] [CrossRef]
Male Offspring | ||||||
---|---|---|---|---|---|---|
Control | MS | MS Effect | LPS Effect | |||
n = 14–22 | Saline (CS) | LPS (CLPS) | Saline (MSS) | LPS (MSLPS) | ||
Terminal weight (g) | 359.2 ± 7.9 | 326.5 ± 6.9 a | 357.9 ± 4.7 | 344.5 ± 7.3 | F(1,70) = 11.44, p = 0.001 | |
Naso-anal length (cm) | 23.2 ± 0.2 | 22.5 ± 0.17 a | 23.3 ± 0.09 | 22.8 ± 0.2 | F(1,70) = 12.72, p = 0.001 | |
Rpwat (g) | 1.1 ± 0.09 | 1.0 ± 0.09 | 1.1 ± 0.08 | 1.0 ± 0.09 | ||
Brain wt (g) | 2.1 ± 0.03 | 1.98 ± 0.02 | 2.01 ± 0.02 | 1.97 ± 0.01 | F(1,70) = 7.27, p = 0.009 | |
% Brain wt/body wt | 0.57 ± 0.008 | 0.61 ± 0.01 | 0.56 ± 0.007 | 0.58 ± 0.01 | F(1,70) = 5.57, p = 0.021 | F(1,35) = 4.99, p = 0.032 |
Glucose (mmol·L−1) | 7.9 ± 0.1 | 7.7 ± 0.1 | 7.8 ± 0.09 | 7.9 ± 0.2 | ||
Female Offspring | ||||||
Control | MS | MS Effect | LPS Effect | |||
n = 5–18 | Saline (CS) | LPS (CLPS) | Saline (MSS) | LPS (MSLPS) | ||
Terminal weight (g) | 212.7 ± 3.6 | 203.7 ± 4.1 | 208.8 ± 5.7 | 210.1 ± 5.2 | ||
Naso-anal length (cm) | 18.8 ± 0.1 | 18.6 ± 0.3 | 18.8 ± 0.2 | 18.8 ± 0.2 | ||
Rpwat (g) | 0.4 ± 0.02 | 0.4 ± 0.02 | 0.5 ± 0.04 | 0.4 ± 0.01 | ||
Brain wt (g) | 1.84 ± 0.01 | 1.82 ± 0.02 | 1.78 ± 0.02 | 1.8 ± 0.02 | ||
% Brain wt/body wt | 0.9 ± 0.01 | 0.9 ± 0.02 | 0.9 ± 0.05 | 0.9 ± 0.02 | ||
Glucose (mmol·L−1) | 7.3 ± 0.1 | 7.2 ± 0.2 | 7.4 ± 0.1 | 6.9 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, B.; Eapen, V.; Morris, M.J.; Jones, N.M. Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring. Biomolecules 2024, 14, 197. https://doi.org/10.3390/biom14020197
Biswas B, Eapen V, Morris MJ, Jones NM. Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring. Biomolecules. 2024; 14(2):197. https://doi.org/10.3390/biom14020197
Chicago/Turabian StyleBiswas, Bharti, Valsamma Eapen, Margaret J. Morris, and Nicole M. Jones. 2024. "Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring" Biomolecules 14, no. 2: 197. https://doi.org/10.3390/biom14020197
APA StyleBiswas, B., Eapen, V., Morris, M. J., & Jones, N. M. (2024). Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring. Biomolecules, 14(2), 197. https://doi.org/10.3390/biom14020197