Molecular Genetics of Acquired Temporal Lobe Epilepsy
Abstract
:1. Introduction
2. Hallmarks of Epileptogenesis
3. Disease-Associated Cellular Events
3.1. Neuroinflammation and Astrocytes
3.2. Network Connectivity
4. Molecular Regulation of Epileptogenesis
4.1. Major Pathways
4.2. Role of Transcription Factors
5. Genetic Predisposition
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Epilepsy—A Public Health Imperative; WHO: Geneva, Switzerland, 2019.
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The Genetics of Epilepsy. Annu. Rev. Genomics Hum. Genet. 2020, 21, 205–230. [Google Scholar] [CrossRef]
- Feng, B.; Chen, Z. Generation of Febrile Seizures and Subsequent Epileptogenesis. Neurosci. Bull. 2016, 32, 481–492. [Google Scholar] [CrossRef]
- Pandolfo, M. Genetics of epilepsy. Semin. Neurol. 2011, 31, 506–518. [Google Scholar]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; I Furlong, L. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, D845–D855. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.-J.; Liu, L.; Xu, H.-Q.; Shi, Y.-W.; Yi, Y.-H.; He, N.; Liao, W.-P. Epilepsy-associated genes. Seizure 2016, 44, 11–20. [Google Scholar] [CrossRef]
- Thakran, S.; Guin, D.; Singh, P.; Singh, P.; Kukal, S.; Rawat, C.; Yadav, S.; Kushwaha, S.S.; Srivastava, A.K.; Hasija, Y.; et al. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int. J. Mol. Sci. 2020, 21, 7784. [Google Scholar] [CrossRef]
- ILAE Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 2018, 9, 5269. [Google Scholar] [CrossRef]
- Milior, G.; Morin-Brureau, M.; Pallud, J.; Miles, R.; Huberfeld, G. Animal models and human tissue compared to better understand and treat the epilepsies. Epilepsia 2023, 64, 1175–1189. [Google Scholar] [CrossRef]
- Loscher, W.; Stafstrom, C.E. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023, 64, 54–91. [Google Scholar] [CrossRef]
- Blume, W.T. The progression of epilepsy. Epilepsia 2006, 47 (Suppl. S1), 71–78. [Google Scholar] [CrossRef]
- Maguire, J. Epileptogenesis: More than Just the Latent Period. Epilepsy Curr. 2016, 16, 31–33. [Google Scholar] [CrossRef]
- Raspall-Chaure, M.; Chin, R.F.; Neville, B.G.; Scott, R.C. Outcome of paediatric convulsive status epilepticus: A systematic review. Lancet Neurol. 2006, 5, 769–779. [Google Scholar] [CrossRef]
- Hesdorffer, D.C.; Logroscino, G.; Cascino, G.; Annegers, J.F.; Hauser, W.A. Risk of unprovoked seizure after acute symptomatic seizure: Effect of status epilepticus. Ann. Neurol. 1998, 44, 908–912. [Google Scholar] [CrossRef]
- Avoli, M.; Louvel, J.; Pumain, R.; Köhling, R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog. Neurobiol. 2005, 77, 166–200. [Google Scholar] [CrossRef]
- Thom, M. Review: Hippocampal sclerosis in epilepsy: A neuropathology review. Neuropathol. Appl. Neurobiol. 2014, 40, 520–543. [Google Scholar] [CrossRef]
- Dudek, F.E.; Shao, L.-R. Loss of GABAergic Interneurons in Seizure-Induced Epileptogenesis. Epilepsy Curr. 2003, 3, 159–161. [Google Scholar] [CrossRef]
- Botterill, J.J.; Lu, Y.-L.; LaFrancois, J.J.; Bernstein, H.L.; Alcantara-Gonzalez, D.; Jain, S.; Leary, P.; Scharfman, H.E. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep. 2019, 29, 2875–2889.e6. [Google Scholar] [CrossRef]
- Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 2013, 36, 174–184. [Google Scholar] [CrossRef]
- Borges, K.; Gearing, M.; McDermott, D.L.; Smith, A.B.; Almonte, A.G.; Wainer, B.H.; Dingledine, R. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp. Neurol. 2003, 182, 21–34. [Google Scholar] [CrossRef]
- Lybrand, Z.R.; Goswami, S.; Zhu, J.; Jarzabek, V.; Merlock, N.; Aktar, M.; Smith, C.; Zhang, L.; Varma, P.; Cho, K.-O.; et al. A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- McCloskey, D.P.; Hintz, T.M.; Pierce, J.P.; Scharfman, H.E. Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocar-pine-induced status epilepticus in the adult rat. Eur. J. Neurosci. 2006, 24, 2203–2210. [Google Scholar] [CrossRef]
- Buckmaster, P.S. Does mossy fiber sprouting give rise to the epileptic state? Adv. Exp. Med. Biol. 2014, 813, 161–168. [Google Scholar]
- Hendricks, W.D.; Westbrook, G.L.; Schnell, E. Early detonation by sprouted mossy fibers enables aberrant dentate network activity. Proc. Natl. Acad. Sci. USA 2019, 116, 10994–10999. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Lee, S.-H.; Boychuk, J.A.; Butler, C.R.; Juras, J.A.; Cloyd, R.A.; Smith, B.N. Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury. J. Neurosci. 2022, 42, 7077–7093. [Google Scholar] [CrossRef]
- Cavarsan, C.F.; Malheiros, J.; Hamani, C.; Najm, I.; Covolan, L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front. Neurol. 2018, 9, 1023. [Google Scholar] [CrossRef]
- Qian, X.; Ding, J.-Q.; Zhao, X.; Sheng, X.-W.; Wang, Z.-R.; Yang, Q.-X.; Zheng, J.-J.; Zhong, J.-G.; Zhang, T.-Y.; He, S.-Q.; et al. Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plast. 2022, 2022, 8252. [Google Scholar] [CrossRef]
- Hansen, K.F.; Sakamoto, K.; Pelz, C.; Impey, S.; Obrietan, K. Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing. Sci. Rep. 2014, 4, 6930. [Google Scholar] [CrossRef]
- Kjaer, C.; Barzaghi, G.; Bak, L.K.; Goetze, J.P.; Yde, C.W.; Woldbye, D.; Pinborg, L.H.; Jensen, L.J. Transcriptome analysis in patients with temporal lobe epilepsy. Brain 2019, 142, e55. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Liu, B.; Jiang, M.; Gu, Y.; Yan, S.; Han, X.; Hou, A.Y.; Tang, C.; Jiang, Z.; et al. Differential DNA Methylation Profiles in Patients with Temporal Lobe Epilepsy and Hippocampal Sclerosis ILAE Type I. J. Mol. Neurosci. 2021, 71, 1951–1966. [Google Scholar] [CrossRef]
- Łukasiuk, K.; Lasoń, W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int. J. Mol. Sci. 2023, 24, 2928. [Google Scholar] [CrossRef]
- Villasana-Salazar, B.; Vezzani, A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol. Dis. 2023, 178, 106027. [Google Scholar] [CrossRef]
- Neumann, A.-M.; Abele, J.; Kirschstein, T.; Engelmann, R.; Sellmann, T.; Köhling, R.; Müller-Hilke, B. Mycophenolate mofetil prevents the delayed T cell response after pilocarpine-induced status epilepticus in mice. PLoS ONE 2017, 12, e0187330. [Google Scholar] [CrossRef]
- Zattoni, M.; Mura, M.L.; Deprez, F.; Schwendener, R.A.; Engelhardt, B.; Frei, K.; Fritschy, J.-M. Brain Infiltration of Leukocytes Contributes to the Pathophysiology of Temporal Lobe Epilepsy. J. Neurosci. 2011, 31, 4037–4050. [Google Scholar] [CrossRef]
- Henning, L.; Antony, H.; Breuer, A.; Müller, J.; Seifert, G.; Audinat, E.; Singh, P.; Brosseron, F.; Heneka, M.T.; Steinhäuser, C.; et al. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2022, 71, 168–186. [Google Scholar] [CrossRef]
- Yue, J.; He, J.; Wei, Y.; Shen, K.; Wu, K.; Yang, X.; Liu, S.; Zhang, C.; Yang, H. Decreased expression of Rev-Erbalpha in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbalpha have anti-inflammatory and neuroprotective effects in the pilocarpine model. J. Neuroinflamm. 2020, 17, 43. [Google Scholar] [CrossRef]
- Clement, A.; Hanstein, R.; Schröder, A.; Nagel, H.; Endres, K.; Fahrenholz, F.; Behl, C. Effects of neuron-specific ADAM10 modulation in an in vivo model of acute excitotoxic stress. Neuroscience 2008, 152, 459–468. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Zhu, M.; Xu, K.; Yang, L.; Han, B.; Huang, R.; Zhang, A.; Yao, H. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. J. Neuroinflammation 2018, 15, 221. [Google Scholar] [CrossRef]
- Wilcox, K.S.; Gee, J.M.; Gibbons, M.B.; Tvrdik, P.; White, J.A. Altered structure and function of astrocytes following status epilepticus. Epilepsy Behav. 2015, 49, 17–19. [Google Scholar] [CrossRef]
- Ammothumkandy, A.; Ravina, K.; Wolseley, V.; Tartt, A.N.; Yu, P.-N.; Corona, L.; Zhang, N.; Nune, G.; Kalayjian, L.; Mann, J.J.; et al. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat. Neurosci. 2022, 25, 493–503. [Google Scholar] [CrossRef]
- Patel, D.C.; Tewari, B.P.; Chaunsali, L.; Sontheimer, H. Neuron–glia interactions in the pathophysiology of epilepsy. Nat. Rev. Neurosci. 2019, 20, 282–297. [Google Scholar] [CrossRef]
- Robel, S.; Buckingham, S.C.; Boni, J.L.; Campbell, S.L.; Danbolt, N.C.; Riedemann, T.; Sutor, B.; Sontheimer, H. Reactive Astrogliosis Causes the Development of Spontaneous Seizures. J. Neurosci. 2015, 35, 3330–3345. [Google Scholar] [CrossRef]
- Liu, X.X.; Yang, L.; Shao, L.; He, Y.; Wu, G.; Bao, Y.; Lu, N.; Gong, D.; Lu, Y.; Cui, T.; et al. Endothelial Cdk5 deficit leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated reactive astrogliosis. J. Exp. Med. 2020, 217, e20180992. [Google Scholar] [CrossRef]
- Martinez, L.A.; Lai, Y.C.; Holder, J.L.; Anderson, A.E. Genetics in Epilepsy. Neurol. Clin. 2021, 39, 743–777. [Google Scholar] [CrossRef]
- Navidhamidi, M.; Ghasemi, M.; Mehranfard, N. Epilepsy-associated alterations in hippocampal excitability. Prog. Neurobiol. 2017, 28, 307–334. [Google Scholar] [CrossRef]
- Castro, O.W.; Furtado, M.A.; Tilelli, C.Q.; Fernandes, A.; Pajolla, G.P.; Garcia-Cairasco, N. Comparative neuroanatomical and temporal characterization of FluoroJade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in Wistar rats. Brain Res. 2011, 1374, 43–55. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jordan, W.H.; Reams, R.Y.; Hall, D.G.; Snyder, P.W. Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic Acid–induced Mesial Temporal Lobe Epilepsy. Toxicol. Pathol. 2008, 36, 932–943. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.-H.; Huang, Y.-G.; Chen, L.-W. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Res. 2008, 1241, 157–167. [Google Scholar] [CrossRef]
- Huusko, N.; Römer, C.; Ndode-Ekane, X.E.; Lukasiuk, K.; Pitkänen, A. Loss of hippocampal interneurons and epileptogenesis: A comparison of two animal models of acquired epilepsy. Anat. Embryol. 2013, 220, 153–191. [Google Scholar] [CrossRef]
- Ye, H.; Kaszuba, S. Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. J. Biomed. Sci. 2017, 24, 93. [Google Scholar] [CrossRef]
- Dudek, F.E. Loss of GABAergic Interneurons in Seizure-Induced Epileptogenesis-Two Decades Later and in a More Complex World. Epilepsy Curr. 2020, 20, 70S–72S. [Google Scholar] [CrossRef]
- Spampanato, J.; Dudek, F.E. Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures. eneuro 2017, 4. [Google Scholar] [CrossRef]
- Chun, E.; Bumanglag, A.V.; Burke, S.N.; Sloviter, R.S. Targeted hippocampal GABA neuron ablation by Stable Substance P–saporin causes hippocampal sclerosis and chronic epilepsy in rats. Epilepsia 2019, 60, E52–E57. [Google Scholar] [CrossRef]
- Buckmaster, P.S.; Abrams, E.; Wen, X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 2017, 525, 2592–2610. [Google Scholar] [CrossRef]
- Lentini, C.; D’orange, M.; Marichal, N.; Trottmann, M.-M.; Vignoles, R.; Foucault, L.; Verrier, C.; Massera, C.; Raineteau, O.; Conzelmann, K.-K.; et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell 2021, 28, 2104–2121.e10. [Google Scholar] [CrossRef]
- Zheng, J.; Li, T.; Qi, S.; Qin, B.; Yu, J.; Chen, G. Neuroregenerative gene therapy to treat temporal lobe epilepsy in a rat model. Prog. Neurobiol. 2021, 208, 102198. [Google Scholar] [CrossRef]
- Wyeth, M.; Nagendran, M.; Buckmaster, P.S. Ictal onset sites and gamma-aminobutyric acidergic neuron loss in epileptic pi-locarpine-treated rats. Epilepsia 2020, 61, 856–867. [Google Scholar] [CrossRef]
- Drexel, M.; Romanov, R.A.; Wood, J.; Weger, S.; Heilbronn, R.; Wulff, P.; Tasan, R.O.; Harkany, T.; Sperk, G. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Sponta-neous Limbic Seizures in Mice. J. Neurosci. 2017, 37, 8166–8179. [Google Scholar] [CrossRef]
- Drexel, M.; Rahimi, S.; Sperk, G. Silencing of Hippocampal Somatostatin Interneurons Induces Recurrent Spontaneous Limbic Seizures in Mice. Neuroscience 2022, 487, 155–165. [Google Scholar] [CrossRef]
- Tan, G.-H.; Liu, Y.-Y.; Hu, X.-L.; Yin, D.-M.; Mei, L.; Xiong, Z.-Q. Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons. Nat. Neurosci. 2011, 15, 258–266. [Google Scholar] [CrossRef]
- Thind, K.K.; Yamawaki, R.; Phanwar, I.; Zhang, G.; Wen, X.; Buckmaster, P.S. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. J. Comp. Neurol. 2009, 518, 647–667. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Wu, L.; Nadler, J.V.; Zhan, R.-Z. Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy. Front. Cell. Neurosci. 2016, 10, 94. [Google Scholar] [CrossRef]
- Miri, M.L.; Vinck, M.; Pant, R.; Cardinl, J.A. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018, 7, e40750. [Google Scholar] [CrossRef]
- Grasse, D.W.; Karunakaran, S.; Moxon, K.A. Neuronal synchrony and the transition to spontaneous seizures. Exp. Neurol. 2013, 248, 72–84. [Google Scholar] [CrossRef]
- Shuman, T.; Aharoni, D.; Cai, D.J.; Lee, C.R.; Chavlis, S.; Page-Harley, L.; Vetere, L.M.; Feng, Y.; Yang, C.Y.; Mollinedo-Gajate, I.; et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 2020, 23, 229–238. [Google Scholar] [CrossRef]
- Scharfman, H.E. The enigmatic mossy cell of the dentate gyrus. Nat. Rev. Neurosci. 2016, 17, 562–575. [Google Scholar] [CrossRef]
- Jain, S.; LaFrancois, J.J.; Botterill, J.J.; Alcantara-Gonzalez, D.; Scharfman, H.E. Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus 2019, 29, 683–709. [Google Scholar] [CrossRef]
- Iyengar, S.S.; LaFrancois, J.J.; Friedman, D.; Drew, L.J.; Denny, C.A.; Burghardt, N.S.; Wu, M.V.; Hsieh, J.; Hen, R.; Scharfman, H.E. Suppression of Adult Neurogenesis Increases the Acute Effects of Kainic Acid. Exp. Neurol. 2015, 264, 135–149. [Google Scholar] [CrossRef]
- Cho, K.-O.; Lybrand, Z.R.; Ito, N.; Brulet, R.; Tafacory, F.; Zhang, L.; Good, L.; Ure, K.; Kernie, S.G.; Birnbaum, S.G.; et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 2015, 6, 6606. [Google Scholar] [CrossRef]
- Danzer, S.C. Adult Neurogenesis in the Development of Epilepsy. Epilepsy Curr. 2019, 19, 316–320. [Google Scholar] [CrossRef]
- Althaus, A.L.; Moore, S.J.; Zhang, H.; Du, X.; Murphy, G.G.; Parent, J.M. Altered Synaptic Drive onto Birthdated Dentate Granule Cells in Experimental Temporal Lobe Epilepsy. J. Neurosci. 2019, 39, 7604–7614. [Google Scholar] [CrossRef]
- Althaus, A.L.; Sagher, O.; Parent, J.M.; Murphy, G.G. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model. J. Neurophysiol. 2015, 113, 1184–1194. [Google Scholar] [CrossRef]
- Kron, M.M.; Zhang, H.; Parent, J.M. The developmental stage of dentate granule cells dictates their contribution to sei-zure-induced plasticity. J. Neurosci. 2010, 30, 2051–2059. [Google Scholar] [CrossRef]
- Lösing, P.; Niturad, C.E.; Harrer, M.; zu Reckendorf, C.M.; Schatz, T.; Sinske, D.; Lerche, H.; Maljevic, S.; Knöll, B. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol. Brain 2017, 10, 1–22. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Mahadeo, T.; Bordey, A. mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuro-pathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia. J. Neurosci. 2019, 39, 2762–2773. [Google Scholar] [CrossRef]
- Meng, X.-F.; Yu, J.-T.; Song, J.-H.; Chi, S.; Tan, L. Role of the mTOR signaling pathway in epilepsy. J. Neurol. Sci. 2013, 332, 4–15. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; Constanti, A.; Russo, E.; De Sarro, G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol. Res. 2016, 107, 333–343. [Google Scholar] [CrossRef]
- Zhao, X.-F.; Liao, Y.; Alam, M.M.; Mathur, R.; Feustel, P.; Mazurkiewicz, J.E.; Adamo, M.A.; Zhu, X.C.; Huang, Y. Microglial mTOR is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J. Neurosci. 2020, 40, 7593–7608. [Google Scholar] [CrossRef]
- Becker, A.J. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathol. Appl. Neurobiol. 2018, 44, 112–129. [Google Scholar] [CrossRef]
- LaSarge, C.L.; Pun, R.Y.K.; Gu, Z.; Riccetti, M.R.; Namboodiri, D.V.; Tiwari, D.; Gross, C.; Danzer, S.C. mTOR-driven neural circuit changes initiate an epileptogenic cascade. Prog. Neurobiol. 2021, 200, 101974. [Google Scholar] [CrossRef]
- Pun, R.Y.; Rolle, I.J.; LaSarge, C.L.; Hosford, B.E.; Rosen, J.M.; Uhl, J.D.; Schmeltzer, S.N.; Faulkner, C.; Bronson, S.L.; Murphy, B.L.; et al. Excessive Activation of mTOR in Postnatally Generated Granule Cells Is Sufficient to Cause Epilepsy. Neuron 2012, 75, 1022–1034. [Google Scholar] [CrossRef]
- Murray, K.D.; Isackson, P.J.; Eskin, T.A.; King, M.A.; Montesinos, S.P.; Abraham, L.A.; Roper, S.N. Altered mRNA expression for brain-derived neurotrophic factor and type II calcium/Calmodulin-dependent protein kinase in the hippocampus of patients with intractable temporal lobe epilepsy. J. Comp. Neurol. 2000, 418, 411–422. [Google Scholar] [CrossRef]
- Lin, T.W.; Harward, S.C.; Huang, Y.Z.; McNamara, J.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology 2020, 167, 107734. [Google Scholar] [CrossRef]
- McNamara, J.O.; Scharfman, H.E. Temporal Lobe Epilepsy and the BDNF Receptor, TrkB. In Jasper’s Basic Mechanisms of the Epilepsies; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Gu, B.; Huang, Y.Z.; He, X.P.; Joshi, R.B.; Jang, W.; McNamara, J.O. A Peptide Uncoupling BDNF Receptor TrkB from Phospholipase Cgamma1 Prevents Epilepsy Induced by Status Epilepticus. Neuron 2015, 88, 484–491. [Google Scholar] [CrossRef]
- Fernández-García, S.; Sancho-Balsells, A.; Longueville, S.; Hervé, D.; Gruart, A.; Delgado-García, J.M.; Alberch, J.; Giralt, A. Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Zheng, P.; Bin, H.; Chen, W. Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int. 2019, 19, 109. [Google Scholar] [CrossRef]
- Hill, J.L.; Jimenez, D.V.; Mai, Y.; Ren, M.; Hallock, H.L.; Maynard, K.R.; Chen, H.-Y.; Hardy, N.F.; Schloesser, R.J.; Maher, B.J.; et al. Cortistatin-expressing interneurons require TrkB signaling to suppress neural hyper-excitability. Anat. Embryol. 2018, 224, 471–483. [Google Scholar] [CrossRef]
- Huang, C.; Fu, X.H.; Zhou, D.; Li, J.M. The Role of Wnt/beta-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem. Res. 2015, 40, 1319–1332. [Google Scholar] [CrossRef]
- Alqurashi, R.S.; Yee, A.S.; Malone, T.; Alrubiaan, S.; Tam, M.W.; Wang, K.; Nandedwalla, R.R.; Field, W.; Alkhelb, D.; Given, K.S.; et al. A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS ONE 2021, 16, e0252282. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Shu, Y.; Xiao, B.; Feng, L. Ephrin-b3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpine-induced model of epilepsy. Int. J. Mol. Med. 2018, 41, 3457–3467. [Google Scholar] [CrossRef]
- Gong, C.; Wang, T.-W.; Huang, H.S.; Parent, J.M. Reelin Regulates Neuronal Progenitor Migration in Intact and Epileptic Hippocampus. J. Neurosci. 2007, 27, 1803–1811. [Google Scholar] [CrossRef]
- Dazzo, E.; Fanciulli, M.; Serioli, E.; Minervini, G.; Pulitano, P.; Binelli, S.; Di Bonaventura, C.; Luisi, C.; Pasini, E.; Striano, S.; et al. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy. Am. J. Hum. Genet. 2015, 96, 992–1000. [Google Scholar] [CrossRef]
- Yang, H.; Yin, F.; Gan, S.; Pan, Z.; Xiao, T.; Kessi, M.; Yang, Z.; Zhang, V.W.; Wu, L. The Study of Genetic Susceptibility and Mitochondrial Dysfunction in Mesial Temporal Lobe Epilepsy. Mol. Neurobiol. 2020, 57, 3920–3930. [Google Scholar] [CrossRef]
- Jain, S.; Zipursky, S. Temporal control of neuronal wiring. Semin. Cell Dev. Biol. 2023, 142, 81–90. [Google Scholar] [CrossRef]
- Simon, R.; Wiegreffe, C.; Britsch, S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front. Mol. Neurosci. 2020, 13, 51. [Google Scholar] [CrossRef]
- Wen, S.; Li, H.; Liu, J. Dynamic signaling for neural stem cell fate determination. Cell Adhes. Migr. 2009, 3, 107–117. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Sun, R.-P.; Lei, G.-F.; Yang, L.; Liu, C.-X. Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats. J. Zhejiang Univ. B 2008, 9, 903–915. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, X.Y.; Yang, J.; Weng, C.C.; Jiang, L.L.; Zhang, J.W.; Shu, X.Q.; Ji, Y.H. Anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, in rat models of epilepsy. Br. J. Phar-macol. 2008, 154, 1116–1124. [Google Scholar] [CrossRef]
- Morris, T.A.; Jafari, N.; Rice, A.C.; Vasconcelos, O.; DeLorenzo, R.J. Persistent Increased DNA-Binding and Expression of Serum Response Factor Occur with Epilepsy-Associated Long-Term Plasticity Changes. J. Neurosci. 1999, 19, 8234–8243. [Google Scholar] [CrossRef]
- Zhu, X.; Han, X.; Blendy, J.A.; Porter, B.E. Decreased CREB levels suppress epilepsy. Neurobiol. Dis. 2012, 45, 253–263. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, Z.; Xu, D.; Sun, L. Advances in Understanding CREB Signaling-Mediated Regulation of the Pathogenesis and Progression of Epilepsy. Clin. Neurol. Neurosurg. 2020, 196, 106018. [Google Scholar] [CrossRef]
- Zhu, X.; Dubey, D.; Bermudez, C.; Porter, B.E. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 2015, 56, 1870–1878. [Google Scholar] [CrossRef]
- Jancic, D.; de Armentia, M.L.; Valor, L.M.; Olivares, R.; Barco, A. Inhibition of cAMP Response Element-Binding Protein Reduces Neuronal Excitability and Plasticity, and Triggers Neurodegeneration. Cereb. Cortex 2009, 19, 2535–2547. [Google Scholar] [CrossRef]
- Engel, T.; Sanz-Rodgriguez, A.; Jimenez-Mateos, E.M.; Concannon, C.G.; Jimenez-Pacheco, A.; Moran, C.; Mesuret, G.; Petit, E.; Delanty, N.; Farrell, M.A.; et al. CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures. Brain 2013, 136, 577–592. [Google Scholar] [CrossRef]
- Engel, T.; Murphy, B.M.; Schindler, C.K.; Henshall, D.C. Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epi-lepsy. Epilepsy Res. 2007, 77, 151–156. [Google Scholar] [CrossRef]
- Cai, M.; Lin, W. The Function of NF-Kappa B During Epilepsy, a Potential Therapeutic Target. Front. Neurosci. 2022, 16, 851394. [Google Scholar] [CrossRef]
- Lubin, F.D.; Ren, Y.; Xu, X. Nuclear factor-kappa B regulates seizure threshold and gene transcription following convulsant stimulation. J. Neurochem. 2007, 103, 1381–1395. [Google Scholar] [CrossRef]
- Mazzuferi, M.; Kumar, G.; van Eyll, J.; Danis, B.; Foerch, P.; Kaminski, R.M. Nrf2 defense pathway: Experimental evidence for its protective role in epilepsy. Ann. Neurol. 2013, 74, 560–568. [Google Scholar] [CrossRef]
- Sandouka, S.; Saadi, A.; Singh, P.K.; Olowe, R.; Shekh-Ahmad, T. Nrf2 is predominantly expressed in hippocampal neurons in a rat model of temporal lobe epilepsy. Cell Biosci. 2023, 13, 1–16. [Google Scholar] [CrossRef]
- Shekh-Ahmad, T.; Eckel, R.; Naidu, S.D.; Higgins, M.; Yamamoto, M.; Dinkova-Kostova, A.T.; Kovac, S.; Abramov, A.Y.; Walker, M.C. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 2018, 141, 1390–1403. [Google Scholar] [CrossRef]
- Kishore, M.; Pradeep, M.; Narne, P.; Jayalakshmi, S.; Panigrahi, M.; Patil, A.; Babu, P.P. Regulation of Keap1-Nrf2 axis in temporal lobe epilepsy—Hippocampal sclerosis patients may limit the seizure outcomes. Neurol. Sci. 2023, 44, 4441–4450. [Google Scholar] [CrossRef]
- Sandouka, S.; Shekh-Ahmad, T. Induction of the Nrf2 Pathway by Sulforaphane Is Neuroprotective in a Rat Temporal Lobe Epilepsy Model. Antioxidants 2021, 10, 1702. [Google Scholar] [CrossRef]
- Hu, Q.P.; Yan, H.; Peng, F.; Feng, W.; Chen, F.; Huang, X.; Zhang, X.; Zhou, Y.; Chen, Y.S. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats. Eur. J. Pharmacol. 2021, 912, 174620. [Google Scholar] [CrossRef]
- Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants 2018, 7, 63. [Google Scholar] [CrossRef]
- Huang, H.; Cui, G.; Tang, H.; Kong, L.; Wang, X.; Cui, C.; Xiao, Q.; Ji, H. Silencing of microRNA-146a alleviates the neural damage in temporal lobe epilepsy by down-regulating Notch-1. Mol. Brain 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Paul, D.; Dixit, A.B.; Srivastava, A.; Banerjee, J.; Tripathi, M.; Suman, P.; Doddamani, R.; Lalwani, S.; Siraj, F.; Sharma, M.C.; et al. Altered expression of activating transcription factor 3 in the hippocampus of patients with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS). Int. J. Neurosci. 2022, 134, 267–273. [Google Scholar] [CrossRef]
- van Loo, K.M.; Schaub, C.; Pitsch, J.; Kulbida, R.; Opitz, T.; Ekstein, D.; Dalal, A.; Urbach, H.; Beck, H.; Yaari, Y.; et al. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1. Nat. Commun. 2015, 6, 8688. [Google Scholar] [CrossRef]
- Navarrete-Modesto, V.; Orozco-Suárez, S.; Alonso-Vanegas, M.; Feria-Romero, I.A.; Rocha, L. REST/NRSF transcription factor is overexpressed in hippocampus of patients with drug-resistant mesial temporal lobe epilepsy. Epilepsy Behav. 2019, 94, 118–123. [Google Scholar] [CrossRef]
- McClelland, S.; Flynn, C.; Dubé, C.; Richichi, C.; Zha, Q.; Ghestem, A.; Esclapez, M.; Bernard, C.; Baram, T.Z. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated chan-nelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 2011, 70, 454–464. [Google Scholar] [CrossRef]
- Chmielewska, N.; Wawer, A.; Maciejak, P.; Turzyńska, D.; Sobolewska, A.; Skórzewska, A.; Osuch, B.; Płaźnik, A.; Szyndler, J. The role of REST/NRSF, TrkB and BDNF in neurobiological mechanisms of different susceptibility to seizure in a PTZ model of epilepsy. Brain Res. Bull. 2020, 158, 108–115. [Google Scholar] [CrossRef]
- Butler-Ryan, R.; Wood, I.C. The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metab. Brain Dis. 2021, 36, 1135–1150. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Liu, L.; Meng, Q.; Du, C.; Li, K.; Dong, S.; Zhang, Y.; Li, H.; Zhang, H. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol. Brain 2021, 14, 113. [Google Scholar] [CrossRef]
- Elliott, R.; Khademi, S.; Pleasure, S.; Parent, J.; Lowenstein, D. Differential regulation of basic helix–loop–helix mRNAs in the dentate gyrus following status epilepticus. Neuroscience 2001, 106, 79–88. [Google Scholar] [CrossRef]
- Elliott, R.C.; Miles, M.F.; Lowenstein, D.H. Overlapping microarray profiles of dentate gyrus gene expression during devel-opment- and epilepsy-associated neurogenesis and axon outgrowth. J. Neurosci. 2003, 23, 2218–2227. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, X.; Guo, J.; Yuan, J. Myocyte-specific enhancer binding factor 2A expression is downregulated during temporal lobe epilepsy. Int. J. Neurosci. 2015, 126, 786–796. [Google Scholar] [CrossRef]
- Haenisch, S.; Zhao, Y.; Chhibber, A.; Kaiboriboon, K.; Do, L.V.; Vogelgesang, S.; Barbaro, N.M.; Alldredge, B.K.; Lowenstein, D.H.; Cascorbi, I.; et al. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients. Neurobiol. Dis. 2015, 77, 127–140. [Google Scholar] [CrossRef]
- Wilson, M.-M.; Henshall, D.C.; Byrne, S.M.; Brennan, G.P. CHD2-Related CNS Pathologies. Int. J. Mol. Sci. 2021, 22, 588. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tohyama, J.; Kato, M.; Akasaka, N.; Magara, S.; Kawashima, H.; Ohashi, T.; Shiraishi, H.; Nakashima, M.; Saitsu, H.; et al. High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain Dev. 2015, 38, 285–292. [Google Scholar] [CrossRef]
- Manokaran, R.K.; Ochi, A.; Kerr, E.; Costain, G.; Moran, O.; Otsubo, H.; Whitney, R.; Jain, P. Drug-resistant focal epilepsy in a girl with SETD5-related intellectual disability. Seizure 2023, 112, 109–111. [Google Scholar] [CrossRef]
- Pasquetti, D.; L’Erario, F.F.; Marangi, G.; Panfili, A.; Chiurazzi, P.; Sonnini, E.; Orteschi, D.; Alfieri, P.; Morleo, M.; Nigro, V.; et al. Pathogenic variants in SOX11 mimicking Pitt-Hopkins syndrome phenotype. Clin. Genet. 2023, 105, 81–86. [Google Scholar] [CrossRef]
- Bell, S.; Rousseau, J.; Peng, H.; Aouabed, Z.; Priam, P.; Theroux, J.-F.; Jefri, M.; Tanti, A.; Wu, H.; Kolobova, I.; et al. Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am. J. Hum. Genet. 2019, 104, 815–834. [Google Scholar] [CrossRef]
- Ciliberto, M.; Skjei, K.; Vasko, A.; Vergano, S.S. Epilepsy in Coffin–Siris syndrome: A report from the international CSS registry and review of the literature. Am. J. Med Genet. Part A 2022, 191, 22–28. [Google Scholar] [CrossRef]
- Lessel, D.; Gehbauer, C.; Bramswig, N.C.; Schluth-Bolard, C.; Venkataramanappa, S.; I van Gassen, K.L.; Hempel, M.; Haack, T.B.; Baresic, A.; A Genetti, C.; et al. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 2018, 141, 2299–2311. [Google Scholar] [CrossRef]
- Simon, R.; Baumann, L.; Fischer, J.; Seigfried, F.A.; De Bruyckere, E.; Liu, P.; Jenkins, N.A.; Copeland, N.G.; Schwegler, H.; Britsch, S. Structure-function integrity of the adult hippocampus depends on the transcription factor Bcl11b/Ctip2. Genes, Brain Behav. 2016, 15, 405–419. [Google Scholar] [CrossRef]
- Simon, R.; Brylka, H.; Schwegler, H.; Venkataramanappa, S.; Andratschke, J.; Wiegreffe, C.; Liu, P.; Fuchs, E.; Jenkins, N.A.; Copeland, N.G.; et al. A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J. 2012, 31, 2922–2936. [Google Scholar] [CrossRef]
- De Bruyckere, E.; Simon, R.; Nestel, S.; Heimrich, B.; Kätzel, D.; Egorov, A.V.; Liu, P.; Jenkins, N.A.; Copeland, N.G.; Schwegler, H.; et al. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Front. Mol. Neurosci. 2018, 11, 103. [Google Scholar] [CrossRef]
- Koumoundourou, A.; Rannap, M.; De Bruyckere, E.; Nestel, S.; Reissner, C.; Egorov, A.V.; Liu, P.; Missler, M.; Heimrich, B.; Draguhn, A.; et al. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway. eLife 2024, 12, RP89854. [Google Scholar] [CrossRef]
- Enomoto, T.; Ohmoto, M.; Iwata, T.; Uno, A.; Saitou, M.; Yamaguchi, T.; Kominami, R.; Matsumoto, I.; Hirota, J. Bcl11b/Ctip2 Controls the Differentiation of Vomeronasal Sensory Neurons in Mice. J. Neurosci. 2011, 31, 10159–10173. [Google Scholar] [CrossRef]
- Nikouei, K.; Muñoz-Manchado, A.B.; Hjerling-Leffler, J. BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. J. Chem. Neuroanat. 2016, 71, 1–5. [Google Scholar] [CrossRef]
- Yoshida, M.; Nakashima, M.; Okanishi, T.; Kanai, S.; Fujimoto, A.; Itomi, K.; Morimoto, M.; Saitsu, H.; Kato, M.; Matsumoto, N.; et al. Identification of novel BCL11A variants in patients with epileptic encephalopathy: Expanding the phenotypic spectrum. Clin. Genet. 2018, 93, 368–373. [Google Scholar] [CrossRef]
- Wang, S.; Cai, X.; Liu, S.; Zhou, Q.; Wang, T.; Du, S.; Wang, D.; Yang, F.; Wu, Q.; Han, Y. A novel BCL11A polymorphism influences gene expression, therapeutic response and epilepsy risk: A multi-center study. Front. Mol. Neurosci. 2022, 15, 1010101. [Google Scholar] [CrossRef]
- Korenke, G.C.; Schulte, B.; Biskup, S.; Neidhardt, J.; Owczarek-Lipska, M. A Novel de novo Frameshift Mutation in the BCL11A Gene in a Patient with Intellectual Disability Syn-drome and Epilepsy. Mol. Syndromol. 2020, 11, 135–140. [Google Scholar] [CrossRef]
- Christensen, J.; Pedersen, M.G.; Pedersen, C.B.; Sidenius, P.; Olsen, J.; Vestergaard, M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: A population-based cohort study. Lancet 2009, 373, 1105–1110. [Google Scholar] [CrossRef]
- Peljto, A.L.; Barker-Cummings, C.; Vasoli, V.M.; Leibson, C.L.; Hauser, W.A.; Buchhalter, J.R.; Ottman, R. Familial risk of epilepsy: A population-based study. Brain 2014, 137, 795–805. [Google Scholar] [CrossRef]
- Lolk, K.; Dreier, J.W.; Christensen, J. Repeated traumatic brain injury and risk of epilepsy: A Danish nationwide cohort study. Brain 2021, 144, 875–884. [Google Scholar] [CrossRef]
- Dreier, J.W.; Ellis, C.A.; Berkovic, S.F.; Cotsapas, C.; Ottman, R.; Christensen, J. Epilepsy risk in offspring of affected parents; a cohort study of the “maternal effect” in epilepsy. Ann. Clin. Transl. Neurol. 2020, 8, 153–162. [Google Scholar] [CrossRef]
- Oliver, K.L.; Ellis, C.A.; Scheffer, I.E.; Ganesan, S.; Leu, C.; Sadleir, L.G.; Heinzen, E.L.; Mefford, H.C.; Bass, A.J.; Curtis, S.W.; et al. Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery. EBioMedicine 2022, 81, 104079. [Google Scholar] [CrossRef]
- Ottman, R. Analysis of Genetically Complex Epilepsies. Epilepsia 2005, 46, 7–14. [Google Scholar] [CrossRef]
- Cvetkovska, E.; Kuzmanovski, I.; Babunovska, M.; Boshkovski, B.; Cangovska, T.C.; Trencevska, G.K. Phenotypic spectrum in families with mesial temporal lobe epilepsy probands. Seizure 2018, 58, 13–16. [Google Scholar] [CrossRef]
- Khoshkhoo, S.; Wang, Y.; Chahine, Y.; Erson-Omay, E.Z.; Robert, S.M.; Kiziltug, E.; Damisah, E.C.; Nelson-Williams, C.; Zhu, G.; Kong, W.; et al. Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy. JAMA Neurol. 2023, 80, 578–587. [Google Scholar] [CrossRef]
- Lévesque, M.; Biagini, G.; de Curtis, M.; Gnatkovsky, V.; Pitsch, J.; Wang, S.; Avoli, M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci. Biobehav. Rev. 2021, 130, 274–291. [Google Scholar] [CrossRef]
- Schauwecker, P.E. Strain differences in seizure-induced cell death following pilocarpine-induced status epilepticus. Neurobiol. Dis. 2012, 45, 297–304. [Google Scholar] [CrossRef]
- Perucca, P.; Scheffer, I.E. Genetic Contributions to Acquired Epilepsies. Epilepsy Curr. 2021, 21, 5–13. [Google Scholar] [CrossRef]
- Tang, L.; Lu, X.; Tao, Y.; Zheng, J.; Zhao, P.; Li, K.; Li, L. SCN1A rs3812718 polymorphism and susceptibility to epilepsy with febrile seizures: A meta-analysis. Gene 2014, 533, 26–31. [Google Scholar] [CrossRef]
- Silvennoinen, K.; Gawel, K.; Tsortouktzidis, D.; Pitsch, J.; Alhusaini, S.; van Loo, K.M.J.; Picardo, R.; Michalak, Z.; Pagni, S.; Custodio, H.M.; et al. SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epi-lepsy, raises seizure susceptibility. Acta Neuropathol. 2022, 144, 107–127. [Google Scholar] [CrossRef]
- Ishii, K.; Kubo, K.-I.; Nakajima, K. Reelin and Neuropsychiatric Disorders. Front. Cell. Neurosci. 2016, 10, 229. [Google Scholar] [CrossRef]
- Catterall, W.A.; Kalume, F.; Oakley, J.C. NaV1.1 channels and epilepsy. J. Physiol. 2010, 588 Pt 11, 1849–1859. [Google Scholar] [CrossRef]
- Kauffman, M.A.; Consalvo, D.; Gonzalez, M.D.; Kochen, S. Transcriptionally Less Active Prodynorphin Promoter Alleles are Associated with Temporal Lobe Epilepsy: A Case-Control Study and Meta-Analysis. Dis. Markers 2008, 24, 135–140. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Li, X.-X.; Zhuang, S.-J.; Guo, S.-F.; Xiang, J.-P.; Wang, L.; Zhou, L.; Wu, B. Significant association of BDNF rs6265 G>A polymorphism with susceptibility to epilepsy: A meta-analysis. Neuropsychiatr. Dis. Treat. 2018, ume 14, 1035–1046. [Google Scholar] [CrossRef]
- Zhang, N.; Ouyang, T.-H.; Zhou, Q.; Kang, H.-C.; Zhu, S.-Q. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy: A meta-analysis. Curr. Med. Sci. 2015, 35, 635–639. [Google Scholar] [CrossRef]
- Zhu, W.-Y.; Jiang, P.; He, X.; Cao, L.-J.; Zhang, L.-H.; Dang, R.-L.; Tang, M.-M.; Xue, Y.; Li, H.-D. Contribution of NRG1 Gene Polymorphisms in Temporal Lobe Epilepsy. J. Child Neurol. 2015, 31, 271–276. [Google Scholar] [CrossRef]
- Tao, H.; Zhou, X.; Chen, J.; Zhou, H.; Huang, L.; Cai, Y.; Fu, J.; Liu, Z.; Chen, Y.; Sun, C.; et al. Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Front. Genet. 2021, 12. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, Z.; Wang, H.; Cheng, X.; Zhong, S.; Zhao, C. Association of apolipoprotein E genotypes with epilepsy risk: A systematic review and meta-analysis. Epilepsy Behav. 2019, 98, 27–35. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, H.; Qiu, X.; Meng, Y. Genetic influence of Apolipoprotein E gene epsilon2/epsilon3/epsilon4 isoforms on odds of mesial temporal lobe epilepsy. Afr. Health Sci. 2021, 21, 866–874. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, X.; Liu, L.; Tao, H.; Zhou, H.; Ma, G.; Cui, L.; Li, Y.; Zhang, S.; Xu, Z.; et al. Association of KEAP1 and NFE2L2 polymorphisms with temporal lobe epilepsy and drug resistant epilepsy. Gene 2015, 571, 231–236. [Google Scholar] [CrossRef]
- De Maria, B.; Balestrini, S.; Mei, D.; Melani, F.; Pellacani, S.; Pisano, T.; Rosati, A.; Scaturro, G.M.; Giordano, L.; Cantalupo, G.; et al. Expanding the genetic and phenotypic spectrum of CHD2-related disease: From early neurodevelopmental disorders to adult-onset epilepsy. Am. J. Med. Genet. A 2022, 188, 522–533. [Google Scholar] [CrossRef]
- Menke, L.A.; The DDD study; Gardeitchik, T.; Hammond, P.; Heimdal, K.R.; Houge, G.; Hufnagel, S.B.; Ji, J.; Johansson, S.; Kant, S.G.; et al. Further delineation of an entity caused by CREBBP and EP300 mutations but not resembling Rubin-stein-Taybi syndrome. Am. J. Med. Genet. A 2018, 176, 862–876. [Google Scholar] [CrossRef]
- Petrij, F.; The DDD study; Gardeitchik, T.; Hammond, P.; Heimdal, K.R.; Houge, G.; Hufnagel, S.B.; Ji, J.; Johansson, S.; Kant, S.G.; et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995, 376, 348–351. [Google Scholar] [CrossRef]
- Ahn, L.Y.; Coatti, G.C.; Liu, J.; Gumus, E.; Schaffer, A.E.; Miranda, H.C. An epilepsy-associated ACTL6B variant captures neuronal hyperexcitability in a human induced pluripotent stem cell model. J. Neurosci. Res. 2021, 99, 110–123. [Google Scholar] [CrossRef]
- Peron, A.; D’Arco, F.; Aldinger, K.A.; Smith-Hicks, C.; Zweier, C.; Gradek, G.A.; Bradbury, K.; Accogli, A.; Andersen, E.F.; Au, P.Y.B. BCL11A intellectual developmental disorder: Defining the clinical spectrum and genotype-phenotype correlations. medRxiv 2021. medRxiv:2021.09.06.21262776. [Google Scholar]
- Seigfried, F.A.; Britsch, S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. Biology 2024, 13, 126. [Google Scholar] [CrossRef]
- Ya, D.; Zhang, Y.; Cui, Q.; Jiang, Y.; Yang, J.; Tian, N.; Xiang, W.; Lin, X.; Li, Q.; Liao, R. Application of spatial transcriptome technologies to neurological diseases. Front. Cell Dev. Biol. 2023, 11, 1142923. [Google Scholar] [CrossRef]
- Manna, I.; Fortunato, F.; De Benedittis, S.; Sammarra, I.; Bertoli, G.; Labate, A.; Gambardella, A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int. J. Mol. Sci. 2022, 23, 3063. [Google Scholar] [CrossRef]
Mechanism | Target | Type | Specific Manipulation | Effect | Reference |
---|---|---|---|---|---|
Neuroinflammation | TNF-α | Cytokine | Knockout microglial TNFa | No Effect | Henning et al., 2023 [35] |
Cdk5 | Endocrine factor | Endothelial Cdk5 ablation | Astrocytosis, seizure induction | Liu et al., 2020 [43] | |
mTOR | Protein kinase | mTOR-deficient microglia | Increased neuronal loss, more severe seizures | Zhao. et al., 2020 [78] | |
BDNF | Neurotrophic factor | Astrocytic overexpression | Increased seizure duration | Fernándes-García et al., 2020 [86] | |
TrkB | Neurotrophic receptor | Astrocytic deletion | Decreased neuronal loss | Fernándes-García et al., 2020 [86] | |
Interneurons | Ascl1, Dlx2 | Transcription factors | Retrovirus-driven expression in reactive glia | Reprogramming to interneurons, seizure reduction | Lentini et al., 2021 [55] |
NeuroD1 | Transcription factor | Overexpression in reactive glia | Reprogramming to interneurons, seizure reduction | Zheng et al., 2022 [56] | |
PV | Calcium-binding protein | Silencing of interneuronal subset | Seizure induction | Drexel et al., 2017 [58] | |
STT | Inhibitory growth factor | Silencing of interneuronal subset | Seizure induction | Drexel et al., 2022 [59] | |
ErbB4 | Receptor tyrosine kinase | Depletion of ErbB4 in PV-interneurons | Increased seizure frequency and mossy fiber sprouting | Tan et al., 2011 [60] | |
CST | Neuropeptide | Ablation of interneuronal subset | Seizure induction | Hill et al., 2019 [88] | |
TrkB | Neurotrophic receptor | Deletion in cortistatin-expressing neurons | Seizure induction | Hill et al., 2019 [88] | |
Principle neurons | Nestin | Intermediate filament | Ablation of nestin-expressing cells (=cells in development) | Ablation of neurogenesis, reduced seizure frequency | Cho et al., 2015 [69] |
Retrovirus-driven silencing of newborn neurons | Reduced seizure frequency and ectopic neurons | Lybrand et al., 2022 [21] | |||
PTEN | Tumor suppressor | Tamoxifen-Gli1-driven deletion of PTEN | Hyperactive mTOR in adult-born granule cells, seizure induction | Pun et al., 2012 [81] | |
PTEN | Tumor suppressor | Tamoxifen-Gli1-driven deletion of PTEN to variable degrees | Hyperactive mTOR in adult-born granule cells, seizure induction | LaSarge et al., 2021 [80] | |
EphB3 * | Receptor tyrosine kinase | Exogenous stimulation | Fewer neuronal progenitors, reelin increased, clinical manifestation attenuated | Liu et al., 2018 [91] | |
SRF | Transcription factor | Adult neuronal ablation in forebrain | Increased seizure frequency | Losing et al., 2017 [74] | |
Bmal1 | Circadian transcription factor | Syn1-adeno-associated virus-driven knockout in granule cells | Increased susceptibility to seizure induction | Wu et al., 2021 [123] | |
Unspecific | CREB | Transcription factor | Constitutive knockdown | Clinical manifestation attenuated | Zhu et al., 2012 [101] |
CREB | Transcription factor | Inducible repression | Clinical manifestation attenuated | Zhu et al., 2015 [103] | |
RevErb-a * | Circadian transcription factor | Agonist SR9009 | Reduction in neuronal damage and neuroinflammation | Yue et al., 2020 [36] | |
p53 | Tumor suppressor | Ablation of negative regulator | Increased neuronal loss, increased seizure frequency | Engel et al., 2013 [105] | |
Nrf2 | Transcription factor | Adeno-associated virus-driven overexpression | Reduced seizure frequency, less neuroinflammation | Mazzuferi et al., 2013 [109] | |
Nrf2 * | Transcription factor | Activation by RTA 408 via KEAP1 | Reduced seizure frequency, less neuronal damage | Shekh-Ahmad et al., 2018 [111] | |
Notch-1 | Transmembrane receptor | Downregulation by silencing of miRNA-146a | Decreased neuronal loss | Huang et al., 2019 [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, A.-M.; Britsch, S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024, 14, 669. https://doi.org/10.3390/biom14060669
Neumann A-M, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules. 2024; 14(6):669. https://doi.org/10.3390/biom14060669
Chicago/Turabian StyleNeumann, Anne-Marie, and Stefan Britsch. 2024. "Molecular Genetics of Acquired Temporal Lobe Epilepsy" Biomolecules 14, no. 6: 669. https://doi.org/10.3390/biom14060669
APA StyleNeumann, A. -M., & Britsch, S. (2024). Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules, 14(6), 669. https://doi.org/10.3390/biom14060669