Design, Synthesis, Characterization, and Cytotoxicity of New Pyrazolylmethylene-2-thioxoimidazolidin-4-one Derivatives towards Androgen-Sensitive LNCaP Prostate Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Synthesis of the Compounds under Investigation
2.3.1. General Method for Synthesis of 1,3-Diaryl-1H-pyrazole-4-carbaldehyde 2a–p
2.3.2. General Method for Synthesis of 5-((1,3-Diaryl-1H-pyrazol-4-yl)methylene)-2-Thioxoimidazolidin-4-one 3a–p
2.4. Biological Assays
2.4.1. In Vitro Cytotoxicity Assay (CPE Assay)
2.4.2. Detection of Caspase-3 in AR+LNCaP
2.4.3. Evaluation of DNA Content in AR+LNCaP Cells
2.4.4. Cell Apoptosis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemistry
Entry | Substrates (2a–p) | Products (3a–p) | m.p. a (°C) | Yield b % |
1 | 2a | 3a | 186–188 | 79 |
2 | 2b | 3b | 183–184 | 62 |
3 | 2c | 3c | 193–195 | 81 |
4 | 2d | 3d | 183–185 | 75 |
5 | 2e | 3e | 168–179 | 77 |
6 | 2f | 3f | 189–191 | 73 |
7 | 2g | 3g | 195–197 | 65 |
8 | 2h | 3h | 178–179 | 82 |
9 | 2i | 3i | 168–170 | 61 |
10 | 2j | 3j | 199–201 | 85 |
11 | 2k | 3k | 210–212 | 78 |
12 | 2l | 3l | 189–191 | 68 |
13 | 2m | 3m | 167–169 | 71 |
14 | 2n | 3n | 179–181 | 77 |
15 | 2o | 3o | 205–207 | 84 |
16 | 2p | 3p | 223–225 | 80 |
a Melting point of products 3a–p; b isolated yield of products 3a–p. |
3.2. Biological Assays
3.2.1. In Vitro CYTOTOXICITY ASSAY
3.2.2. Evaluation of Active Caspase 3 Content from Lysate of AR+LNCaP Cells Treated with the Synthesized Compounds 3i–k, 3m, and 3o–p
3.2.3. DNA Evaluation at Different Stages of Cell Cycle in AR+LNCaP Treated with Compounds 3i and 3k in Presence of DHT
3.2.4. AR+LNCaP Cell Apoptosis Analysis after Treatment with Compounds 3i and 3k in Presence of DHT
3.3. Structure Activity Relationship (SAR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ettridge, K.; Bowden, J.; Chambers, S.; Smith, D.; Murphy, M.; Evans, S.; Roder, D.; Miller, C. “Prostate cancer is far more hidden…”: Perceptions of stigma, social isolation and help-seeking among men with prostate cancer. Eur. J. Cancer Care 2018, 27, e12790. [Google Scholar] [CrossRef] [PubMed]
- Msaouel, P.; Pissimissis, N.; Halapas, A.; Koutsilieris, M. Mechanisms of bone metastasis in prostate cancer: Clinical implications. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.S.; Tan, H.-J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017, 317, 2532–2542. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, P.-A. Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature. Eur. Urol. 2010, 57, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Kunath, F.; Grobe, H.R.; Ruecker, G.; Motschall, E.; Antes, G.; Dahm, P.; Wullich, B.; Meerpohl, J.J. Non-steroidal antiandrogen monotherapy compared with luteinising hormone–releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst. Rev. 2014, CD009266. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M. Flare associated with LHRH-agonist therapy. Rev. Urol. 2001, 3 (Suppl. S3), S10. [Google Scholar]
- Hoda, M.R.; Kramer, M.W.; Merseburger, A.S.; Cronauer, M.V. Androgen deprivation therapy with Leuprolide acetate for treatment of advanced prostate cancer. Expert Opin. Pharmacother. 2017, 18, 105–113. [Google Scholar] [CrossRef]
- Fontana, D.; Mari, M.; Martinelli, A.; Boccafoschi, C.; Magno, C.; Turriziani, M.; Maymone, S.; Cunico, S.C.; Zanollo, A.; Montagna, G. 3-month formulation of goserelin acetate (‘Zoladex’10.8-mg depot) in advanced prostate cancer: Results from an Italian, open, multicenter trial. Urol. Int. 2003, 70, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.L. Triptorelin Approved for Prostate Cancer Treatment; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Djavan, B.; Schlegel, P.; Salomon, G.; Eckersberger, E.; Sadri, H.; Graefen, M. Analysis of testosterone suppression in men receiving histrelin, a novel GnRH agonist for the treatment of prostate cancer. Can. J. Urol. 2010, 17, 5265–5271. [Google Scholar]
- Carter, N.J.; Keam, S.J. Degarelix: A review of its use in patients with prostate cancer. Drugs 2014, 74, 699–712. [Google Scholar] [CrossRef]
- Cherneva, E.; Atanasova, M.; Buyukliev, R.; Tomovic, K.; Smelcerovic, Z.; Bakalova, A.; Smelcerovic, A. 3′-Methyl-4-thio-1H-tetrahydropyranspiro-5′-hydantoin platinum complex as a novel potent anticancer agent and xanthine oxidase inhibitor. Arch. Pharm. 2020, 353, 2000039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liang, Y.-R.; Li, H.; Liu, M.-M.; Wang, Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorganic Med. Chem. 2017, 25, 6623–6634. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-H.; Hsieh, T.-C.; Song, J.-S.; Lee, J.-C. Design, synthesis and anticancer evaluation of β-carboline-1-one hydantoins. Future Med. Chem. 2020, 12, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Patle, M.; Bhagat, G. Studies of Quantitative Structure-Activity Relationship (QSAR) of Hydantoin Based Active Anti-Cancer Drugs. Asian J. Res. Chem. 2011, 4, 1643–1648. [Google Scholar]
- Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2, 4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem. 2013, 59, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, V.; Carmi, C.; Rivara, M.; Fantini, M.; Lodola, A.; Vacondio, F.; Bordi, F.; Plazzi, P.V.; Cavazzoni, A.; Galetti, M. 5-Benzylidene-hydantoins: Synthesis and antiproliferative activity on A549 lung cancer cell line. Eur. J. Med. Chem. 2009, 44, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Rogers, J.; Yeo, J.; Anderson-Steele, B.; Ashby, J.; David, S.S. 2′-Fluorinated Hydantoins as Chemical Biology Tools for Base Excision Repair Glycosylases. ACS Chem. Biol. 2020, 15, 915–924. [Google Scholar] [CrossRef]
- Kumar, C.A.; Swamy, S.N.; Sugahara, K.; Rangappa, K.S. Anti-tumor and anti-angiogenic activity of novel hydantoin derivatives: Inhibition of VEGF secretion in liver metastatic osteosarcoma cells. Bioorganic Med. Chem. 2009, 17, 4928–4934. [Google Scholar]
- Spengler, G.; Handzlik, J.; Ocsovszki, I.; Viveiros, M.; Kieć-Kononowicz, K.; Molnar, J.; Amaral, L. Modulation of multidrug efflux pump activity by new hydantoin derivatives on colon adenocarcinoma cells without inducing apoptosis. Anticancer. Res. 2011, 31, 3285–3288. [Google Scholar]
- El-Atawy, M.A.; Alshaye, N.A.; Elrubi, N.; Hamed, E.A.; Omar, A.Z. Pyrimidines-Based Heterocyclic Compounds: Synthesis, Cytoxicity Evaluation and Molecular Docking. Molecules 2022, 27, 4912. [Google Scholar] [CrossRef]
- Taher, A.T.; Mostafa Sarg, M.T.; El-Sayed Ali, N.R.; Hilmy Elnagdi, N. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorganic Chem. 2019, 89, 103023. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahed, R.E.; Radhi, A.H.; Awad, H.M.; El Gokha, A.A.; Goda, A.E.S.; El Sayed, I.E.-T. Synthesis and Anti-Proliferative Activity of New α-Amino Phosphonate Derivatives Bearing Heterocyclic Moiety. Pharm. Chem. J. 2021, 55, 231–239. [Google Scholar] [CrossRef]
- Harikrishna, N.; Isloor, A.M.; Ananda, K.; Obaid, A.; Fun, H.-K. 1,3,4-Trisubstituted pyrazole bearing a 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Adv. 2015, 5, 43648–43659. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Shi, T.-Q.; Fu, J.; Zhu, H.-L. Discovery of novel bacterial FabH inhibitors (Pyrazol-Benzimidazole amide derivatives): Design, synthesis, bioassay, molecular docking and crystal structure determination. Eur. J. Med. Chem. 2019, 171, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, N.; Khan, S.A.; Alam, M.M.; Akhtar, M.; Srivastava, A.; Husain, A. Anticancer heterocyclic hybrids: Design, synthesis, molecular docking and evaluation of new thiazolidinone-pyrazoles. Z. Für Naturforschung B 2023, 78, 1–16. [Google Scholar] [CrossRef]
- Nandurkar, Y.; Bhoye, M.R.; Maliwal, D.; Pissurlenkar, R.R.S.; Chavan, A.; Katade, S.; Mhaske, P.C. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine derivatives as potential antifungal and antitubercular agents. Eur. J. Med. Chem. 2023, 258, 115548. [Google Scholar] [CrossRef] [PubMed]
- Khonde, L.P.; Müller, R.; Boyle, G.A.; Reddy, V.; Nchinda, A.T.; Eyermann, C.J.; Fienberg, S.; Singh, V.; Myrick, A.; Abay, E.; et al. 1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in Mycobacterium tuberculosis. J. Med. Chem. 2021, 64, 12790–12807. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.-H.; Xiao, J.-J.; Ren, Z.-L.; Chu, M.-J.; Wang, P.; Meng, X.-F.; Li, D.-D.; Cao, H.-Q. Design, synthesis and insecticidal activities of N-(4-cyano-1-phenyl-1H-pyrazol-5-yl)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives. RSC Adv. 2015, 5, 55179–55185. [Google Scholar] [CrossRef]
- Yu, D.D.; Lin, W.; Forman, B.M.; Chen, T. Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorganic Med. Chem. 2014, 22, 2919–2938. [Google Scholar] [CrossRef]
- Alshabani, L.A.; Kumar, A.; Willcocks, S.J.; Srithiran, G.; Bhakta, S.; Estrada, D.F.; Simons, C. Synthesis, biological evaluation and computational studies of pyrazole derivatives as Mycobacterium tuberculosis CYP121A1 inhibitors. RSC Med. Chem. 2022, 13, 1350–1360. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, H.-Y.; Park, D.-S.; Choi, J.; Baek, S.M.; Kim, K.; Kim, S.; Seong, S.; Choi, I.; Lee, H.-g.; et al. Identification of a series of 1,3,4-trisubstituted pyrazoles as novel hepatitis C virus entry inhibitors. Bioorganic Med. Chem. Lett. 2013, 23, 6467–6473. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Van de Loosdrecht, A.; Beelen, R.; Ossenkoppele, g.; Broekhoven, M.; Langenhuijsen, M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 1994, 174, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Elancheran, R.; Saravanan, K.; Divakar, S.; Kumari, S.; Maruthanila, V.L.; Kabilan, S.; Ramanathan, M.; Devi, R.; Kotoky, J. Design, synthesis and biological evaluation of novel 1, 3-thiazolidine-2, 4-diones as anti-prostate cancer agents. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2017, 17, 1756–1768. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-T.; Wong, P.-F.; Cheah, S.-C.; Mustafa, M.R. Alpha-tomatine induces apoptosis and inhibits nuclear factor-kappa B activation on human prostatic adenocarcinoma PC-3 cells. PLoS ONE 2011, 6, e18915. [Google Scholar] [CrossRef] [PubMed]
- Kumi-Diaka, J.; Sanderson, N.A.; Hall, A. The mediating role of caspase-3 protease in the intracellular mechanism of genistein-induced apoptosis in human prostatic carcinoma cell lines, DU145 and LNCaP. Biol. Cell 2000, 92, 595–604. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Khairy, M.H.; Osama, E.; Metwally, M.M.; Galal, A.A. Nanotechnology improves the therapeutic efficacy of gemcitabine against a human hepatocellular carcinoma cell line and minimizes its in vivo side effects. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 631–643. [Google Scholar] [CrossRef]
- Ozgur, O.; Karti, S.; Sonmez, M.; Yilmaz, M.; Karti, D.; Ozdemir, F.; Ovali, E. Effects of interferon-alfa-2a on human hepatoma HepG2 cells. Exp. Oncol. 2003, 25, 105–107. [Google Scholar]
- Khanfar, M.A.; El Sayed, K.A. Phenylmethylene hydantoins as prostate cancer invasion and migration inhibitors. CoMFA approach and QSAR analysis. Eur. J. Med. Chem. 2010, 45, 5397–5405. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Alsubaie, M.S.; Alazmi, M.L.; Hamed, E.A.; Hanna, D.H.; Ahmed, H.A.; Omar, A.Z. Synthesis, characterization, and anticancer activity of new N, N′-Diarylthiourea derivative against breast cancer cells. Molecules 2023, 28, 6420. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Omar, A.Z.; Alazmi, M.L.; Alsubaie, M.S.; Hamed, E.A.; Ahmed, H.A. Synthesis and characterization of new imine liquid crystals based on terminal perfluoroalkyl group. Heliyon 2023, 9, e14871. [Google Scholar] [CrossRef]
- Anand, S.A.A.; Loganathan, C.; Thomas, N.S.; Saravanan, K.; Alphonsa, A.T.; Kabilan, S. Synthesis, structure prediction, pharmacokinetic properties, molecular docking and antitumor activities of some novel thiazinone derivatives. New J. Chem. 2015, 39, 7120–7129. [Google Scholar] [CrossRef]
- Elancheran, R.; Saravanan, K.; Choudhury, B.; Divakar, S.; Kabilan, S.; Ramanathan, M.; Das, B.; Devi, R.; Kotoky, J. Design and development of oxobenzimidazoles as novel androgen receptor antagonists. Med. Chem. Res. 2016, 25, 539–552. [Google Scholar] [CrossRef]
- Mabjeesh, N.J.; Willard, M.T.; Frederickson, C.E.; Zhong, H.; Simons, J.W. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3′-kinase/protein kinase B in prostate cancer cells. Clin. Cancer Res. 2003, 9, 2416–2425. [Google Scholar]
- Beer, T.; Armstrong, A.; Rathkopf, D. September is Prostate Cancer Awareness Month! N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef]
- Luan, H.; Xu, P.; Meng, Y.; Li, Z.; Bian, J. A critical update on the strategies towards modulators targeting androgen receptors. Bioorganic Med. Chem. 2020, 28, 115554. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, Y.; Zhou, S.-F. Role of apoptosis in cancer resistance to chemotherapy. In Current Understanding of Apoptosis-Programmed Cell Death; IntechOpen: London, UK, 2018. [Google Scholar]
- Han, J.-H.; Tweedell, R.E.; Kanneganti, T.-D. Evaluation of caspase activation to assess innate immune cell death. JoVE (J. Vis. Exp.) 2023, 191, e64308. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. The apoptotic cysteine protease CPP32. Int. J. Biochem. Cell Biol. 1997, 29, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000, 256, 42–49. [Google Scholar] [CrossRef]
- Johnson, V.; Ko, S.; Holmstrom, T.; Eriksson, J.; Chow, S. Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J. Cell Sci. 2000, 113, 2941–2953. [Google Scholar] [CrossRef]
Compound | IC50 (µM) | Selective Index | |||
---|---|---|---|---|---|
AR+Lncap | AR-PC-3 | Wi38 | Wi38/Lncap | Wi38/PC-3 | |
3a | 26.57 ± 0.04 | 16.76 ± 0.34 | 63.27 ± 0.18 | 2.4 | 3.8 |
3b | 20.79 ± 0.06 | 21.92 ± 0.12 | 24.26 ± 0.06 | 1.0 | 0.9 |
3c | 109.72 ± 2.06 | 20.87 ± 1.12 | 87.88 ± 2.96 | 0.8 | 4.2 |
3d | 23.53 ± 0.74 | 177.25 ± 0.61 | 48.19 ± 0.21 | 2.0 | 0.3 |
3e | 33.90 ± 0.12 | 20.06 ± 0.21 | 63.24 ± 0.26 | 1.9 | 3.2 |
3f | 54.19 ± 0.11 | 20.19 ± 0.04 | 56.56 ± 0.14 | 1.0 | 2.8 |
3g | 47.31 ± 0.18 | 26.79 ± 0.39 | 56.62 ± 0.16 | 1.2 | 2.1 |
3h | 19.48 ± 0.05 | 18.80 ± 0.14 | 20.96 ± 0.13 | 1.0 | 1.0 |
3i | 12.07 ± 0.09 | 19.51 ± 0.21 | 29.93 ± 0.12 | 2.5 | 1.5 |
3j | 13.89 ± 0.14 | 24.44 ± 0.12 | 31.18 ± 0.16 | 2.2 | 1.5 |
3k | 10.27 ± 0.14 | 22.47 ± 0.29 | 32.81 ± 0.08 | 3.2 | 1.5 |
3l | 20.80 ± 0.04 | 15.30 ± 0.04 | 26.81 ± 0.06 | 1.3 | 1.8 |
3m | 12.97 ± 0.06 | 22.48 ± 0.46 | 30.54 ± 0.08 | 2.4 | 1.3 |
3n | 15.02 ± 0.15 | 23.25 ± 0.08 | 26.93 ± 0.09 | 1.8 | 1.2 |
3o | 12.66 ± 0.11 | 21.08 ± 0.10 | 25.08 ± 0.08 | 2.0 | 1.2 |
3p | 12.11 ± 0.08 | 23.20 ± 0.12 | 25.35 ± 0.12 | 2.1 | 1.0 |
Doxorubicin | 11.39 ± 0.16 | 10.02 ± 0.18 | 15.14 ± 0.12 | 1.3 | 1.5 |
Enzalutamide | 7.32 2 ± 0.05 | 15.291± 0.19 | 27.52 ± 0.36 | 3.7 | 1.8 |
Compound | IC50 (µM) | Selectivity | Safety Index | ||
---|---|---|---|---|---|
AR+LNCaP | AR-PC-3 | Wi38 | AR-/AR+ | Wi38/LNCaP | |
3i | 06.08 ± 0.04 | 15.52 ± 0.12 | 21.93 ± 0.14 | 2.6 | 3.6 |
3j | 07.72 ± 0.15 | 14.22 ± 0.15 | 21.08 ± 0.06 | 1.8 | 2.7 |
3k | 05.22 ± 0.12 | 13.87 ± 0.18 | 19.81 ± 0.07 | 2.7 | 3.8 |
3m | 10.46 ± 0.11 | 13.11 ± 0.14 | 23.33 ± 0.19 | 1.3 | 2.2 |
3o | 11.75 ± 0.07 | 16.42 ± 0.17 | 22.35 ± 0.13 | 1.4 | 1.9 |
3p | 05.91 ± 0.13 | 15.16 ± 0.25 | 20.18 ± 0.14 | 2.7 | 3.4 |
Enzalutamide | 06.52 ± 0.16 | 13.58 ± 0.27 | 21.53 ± 0.32 | 2.1 | 3.3 |
Sample | DNA Content (%) | Cell Growth Arrest Stage | ||
---|---|---|---|---|
G0–G1 | S | G2/M | ||
Untreated AR+LNCaP | 54.99 | 18.66 | 26.35 | nd |
3i | 58.33 | 19.19 | 22.48 | G1/S |
3k | 65.21 | 15.61 | 19.18 | G1 |
Enzalutamide | 61.02 | 13.61 | 25.37 | G1 |
Compound | Total Apoptosis (%) | Early Apoptosis (%) | Late Apoptosis (%) | Necrotic Cells (%) |
---|---|---|---|---|
Untreated control | 2.39 | 0.61 | 0.22 | 1.56 |
3i | 21.79 | 11.47 | 7.55 | 2.77 |
3k | 35.02 | 12.11 | 16.89 | 6.02 |
Enzalutamide | 33.86 | 9.46 | 21.27 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Atawy, M.A.; Kebeish, R.; Almotairy, A.R.Z.; Omar, A.Z. Design, Synthesis, Characterization, and Cytotoxicity of New Pyrazolylmethylene-2-thioxoimidazolidin-4-one Derivatives towards Androgen-Sensitive LNCaP Prostate Cancer Cells. Biomolecules 2024, 14, 811. https://doi.org/10.3390/biom14070811
El-Atawy MA, Kebeish R, Almotairy ARZ, Omar AZ. Design, Synthesis, Characterization, and Cytotoxicity of New Pyrazolylmethylene-2-thioxoimidazolidin-4-one Derivatives towards Androgen-Sensitive LNCaP Prostate Cancer Cells. Biomolecules. 2024; 14(7):811. https://doi.org/10.3390/biom14070811
Chicago/Turabian StyleEl-Atawy, Mohamed A., Rashad Kebeish, Awatif Rashed Z. Almotairy, and Alaa Z. Omar. 2024. "Design, Synthesis, Characterization, and Cytotoxicity of New Pyrazolylmethylene-2-thioxoimidazolidin-4-one Derivatives towards Androgen-Sensitive LNCaP Prostate Cancer Cells" Biomolecules 14, no. 7: 811. https://doi.org/10.3390/biom14070811
APA StyleEl-Atawy, M. A., Kebeish, R., Almotairy, A. R. Z., & Omar, A. Z. (2024). Design, Synthesis, Characterization, and Cytotoxicity of New Pyrazolylmethylene-2-thioxoimidazolidin-4-one Derivatives towards Androgen-Sensitive LNCaP Prostate Cancer Cells. Biomolecules, 14(7), 811. https://doi.org/10.3390/biom14070811