Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Application of Mechanical Damage
2.3. Ethylene Production Measurement
2.4. Quantification of Ethylene Production Capacity of ACC
2.5. CO2 Release Measurement
2.6. Color Change
2.7. Fruit Firmness Measurements
2.8. Brix Measurement
2.9. Vitamin C
2.10. Electrolyte Leakage Measurement
2.11. Metabolomic Analysis
2.12. Statistical Analysis
3. Results
3.1. Fruit Ethylene and CO2 Production
3.2. Fruit Color (a Value)
3.3. Fruit Hardness
3.4. Fruit Electrolyte Leakage
3.5. Fruit Brix
3.6. Fruit Vitamin C
3.7. PCA of Fruit Metabolome
4. Discussion
4.1. Ethylene and CO2 Production
4.2. Fruit Color
4.3. Fruit Firmness
4.4. Electrolyte Leakage
4.5. Brix
4.6. Vitamin C
4.7. Metabolomic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altuntas, O.; Ozkurt, H. The Assessment of Tomato Fruit Quality Parameters under Different Sound Waves. J. Food Sci. Technol. 2019, 56, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Aryan, S.; Amin, M.W.; Sanada, A.; Terada, N.; Koshio, K. Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants. Plants 2023, 12, 2187. [Google Scholar] [CrossRef] [PubMed]
- Ciupak, A.; Gładyszewska, B. Dariusz Dziki Change in Strength of Tomato Fruit Skin during Ripening Process. Teka. Comm. Mot. Energy Agric. 2012, 12, 13–18. [Google Scholar]
- Cui, J.; Yang, M.; Son, D.; Park, S.; Cho, S.I. Estimation of Tomato Bruising by Mechanical Impact Force Using Multivariate Analysis. HortScience 2018, 53, 1352–1359. [Google Scholar] [CrossRef]
- Kefas Bwade, E.; Aliyu, B.; Tashiwa, Y.I. Postharvest Losses, Causes and Mitigation in Tomato Transportation: A Systematic Review. J. Hortic. Postharvest Res. 2024, 7, 223–236. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Mahdouri, A. Impact of Vibration on the Quality of Tomato Produced by Stimulated Transport. IOP Conf. Ser. Earth Environ. Sci. 2021, 653, 012101. [Google Scholar] [CrossRef]
- Soleimani, B.; Ahmadi, E. Measurement and Analysis of Truck Vibration Levels as a Function of Packages Locations in Truck Bed and Suspension. Comput. Electron. Agric. 2014, 109, 141–147. [Google Scholar] [CrossRef]
- Soleimani, B.; Ahmadi, E. Evaluation and Analysis of Vibration during Fruit Transport as a Function of Road Conditions, Suspension System and Travel Speeds. Eng. Agric. Environ. Food 2015, 8, 26–32. [Google Scholar] [CrossRef]
- Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest Handling Practices and Treatment Methods for Tomato Handlers in Developing Countries: A Mini Review. Adv. Agric. 2016, 2016, 6436945. [Google Scholar] [CrossRef]
- Cherono, K.; Workneh, T.S. A Review of the Role of Transportation on the Quality Changes of Fresh Tomatoes and Their Management in South Africa and Other Emerging Markets. Int. Food Res. J. 2018, 25, 2211–2228. [Google Scholar]
- Jung, H.-M.; Park, J.-G. Effects of Vibration Stress on the Quality of Packaged Apples during Simulated Transport. J. Biosyst. Eng. 2012, 37, 44–50. [Google Scholar] [CrossRef]
- Zhou, R.; Su, S.; Yan, L.; Li, Y. Effect of Transport Vibration Levels on Mechanical Damage and Physiological Responses of Huanghua Pears (Pyrus pyrifolia Nakai, Cv. Huanghua). Postharvest Biol. Technol. 2007, 46, 20–28. [Google Scholar] [CrossRef]
- Kader, A.K.; Rolle, R.S. The Role of Post-Harvest Management in Assuring the Quality and Safety of Horticultural Produce; Food & Agriculture Org.: Rome, Italy, 2004; ISBN 9251051372. [Google Scholar]
- Moretti, C.L.; Sargent, S.A.; Huber, D.J.; Calbo, A.G.; Puschmann, R. Chemical Composition and Physical Properties of Pericarp, Locule, and Placental Tissues of Tomatoes with Internal Bruising. J. Am. Soc. Hortic. Sci. 1998, 123, 656–660. [Google Scholar] [CrossRef]
- Bleecker, A.B.; Kende, H. Ethylene: A Gaseous Signal Molecule in Plant. Annu. Rev. Cell Dev. Biol. 2000, 16, 1–18. [Google Scholar] [CrossRef]
- Durigan, M.F.B.; Mattiuz, B.-H.; Durigan, J.F. Injúrias Mecânicas Na Qualidade Pós-Colheita de Lima Ácida “Tahiti” Armazenada Sob Condição Ambiente. Rev. Bras. Frutic. 2005, 27, 369–372. [Google Scholar] [CrossRef]
- Aba, I.P.; Gana, Y.M.; Ogbonnaya, C.; Morenikeji, O.O. Simulated Transport Damage Study on Fresh Tomato (Lycopersicon esculentum) Fruits. Agric. Eng. Int. CIGR J. 2012, 14, 119–126. [Google Scholar]
- Wu, G.; Wang, C. Investigating the Effects of Simulated Transport Vibration on Tomato Tissue Damage Based on Vis/NIR Spectroscopy. Postharvest. Biol. Technol. 2014, 98, 41–47. [Google Scholar] [CrossRef]
- Babarinsa, F.A.; Ige, M.T. Young’s Modulus for Packaged Roma Tomatoes under Compressive Loading. Int. J. Sci. Eng. Res. 2012, 3, 314–320. [Google Scholar]
- Wei, X.; Xie, D.; Mao, L.; Xu, C.; Luo, Z.; Xia, M.; Zhao, X.; Han, X.; Lu, W. Excess Water Loss Induced by Simulated Transport Vibration in Postharvest Kiwifruit. Sci. Hortic. 2019, 250, 113–120. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, D.; Wang, L.; Xue, K.; Liao, J.; Zhang, S. Effects of Compression Damage on Mechanical Behavior and Quality Attributes of Apple Fruit. Food Sci. Technol. Res. 2022, 28, 53–65. [Google Scholar] [CrossRef]
- Xu, D.; Zuo, J.; Li, P.; Yan, Z.; Gao, L.; Wang, Q.; Jiang, A. Effect of Methyl Jasmonate on the Quality of Harvested Broccoli after Simulated Transport. Food Chem. 2020, 319, 126561. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, P.; Yang, H.; Liu, J. Internal Mechanical Damage Prediction in Tomato Compression Using Multiscale Finite Element Models. J. Food Eng. 2013, 116, 639–647. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Shariff, A.R.M.; Abdullah, M.Z.; Marhaban, M.H.B.; Saaed, O.M.B. The Application of Internal Grading System Technologies for Agricultural Products—Review. J. Food Eng. 2013, 116, 703–725. [Google Scholar] [CrossRef]
- Çakmak, B.; Alayunt, F.N.; AkdenïZ, R.C.; Aksoy, U.; Can, H.Z. Assessment of the Quality Losses of Fresh Fig Fruits during Transportation. Tarim Bilim. Derg. 2010, 16, 180–193. [Google Scholar] [CrossRef]
- Lee, E.; Sargent, S.A.; Huber, D.J. Physiological Changes in Roma-Type Tomato Induced by Mechanical Stress at Several Ripeness Stages. HortScience 2007, 42, 1237–1242. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors Affecting the Postharvest Soluble Solids and Sugar Content of Tomato (Solanum lycopersicum L.) Fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Bailén, G.; Serrano, M.; Guillén, F.; Valverde, J.M.; Zapata, P.; Castillo, S.; Valero, D. Tools to Maintain Postharvest Fruit and Vegetable Quality through the Inhibition of Ethylene Action: A Review. Crit. Rev. Food Sci. Nutr. 2007, 47, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Thammawong, M.; Usuda, H.; Nei, D.; Umehara, H.; Satake, T.; Nakamura, N.; Roy, P.; Shiina, T. Ethylene Production Rate: A Sensitive Indicator for Determining the Occurrence of Mechanical Stress in Tomato Fruits. Food Preserv. Sci. 2012, 38, 159–167. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwasaki, Y. Differences between Ethylene Emission Characteristics of Tomato Cultivars in Tomato Production at Plant Factory. J. Agric. Food Res. 2021, 5, 100181. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Lama, K.; Yadav, S.; Rosianski, Y.; Shaya, F.; Lichter, A.; Chai, L.; Dahan, Y.; Freiman, Z.; Peer, R.; Flaishman, M.A. The Distinct Ripening Processes in the Reproductive and Non-Reproductive Parts of the Fig Syconium Are Driven by ABA. J. Exp. Bot. 2019, 70, 115–131. [Google Scholar] [CrossRef]
- Iijima, Y.; Aoki, K. Application of Metabolomics to Improve Tomato Fruit Productivity and Quality. J. Jpn. Soc. Hortic. Sci. 2009, 78, 14–22. [Google Scholar] [CrossRef]
- Habibi, N.; Sediqui, N.; Terada, N.; Sanada, A.; Koshio, K. Effects of Salinity on Growth, Physiological and Biochemical Responses of Tomato. J. ISSAAS 2021, 27, 14–28. [Google Scholar]
- Oho, K.; Habibi, N.; Marie, T.; Silva, B.; Terada, N.; Sanada, A.; Shinohara, T.; Gemma, H.; Koshio, K. Elucidation of physicochemical changes in fruit development of “sabara” jaboticaba (Plinia cauliflora (Mart.) Kausel). J. ISSAAS 2022, 28, 34–50. [Google Scholar]
- Takahashi, N.; Maki, H.; Nishina, H.; Takayama, K. Evaluation of Tomato Fruit Color Change with Different Maturity Stages and Storage Temperatures Using Image Analysis; IFAC: Prague, Czech Republic, 2013; Volume 1, ISBN 9783902823304. [Google Scholar]
- Andrés, F.L.C.; Perla, A.G. Comparison of Color Indexes for Tomato Ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar]
- Viera, W.; Samaniego, I.; Camacho, D.; Habibi, N.; Ron, L.; Sediqui, N.; Álvarez, J.; Viteri, P.; Sotomayor, A.; Merino, J.; et al. Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants 2022, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Fakoor, M.Y.; Faqiri, S.M.; Sharaf, Z.; Hotak, M.S.; Danishyar, N.; Haris, M.M.; Osmani, K.S.; Shinohara, T.; Terada, N.; et al. Enhancing Salinity Tolerance in Tomatoes at the Reproductive Stage by Increasing Pollen Viability. Bionatura 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Habibi, N.; Terada, N.; Sanada, A.; Koshio, K. Alleviating Salt Stress in Tomatoes through Seed Priming with Polyethylene Glycol and Sodium Chloride Combination. Stresses 2024, 4, 210–224. [Google Scholar] [CrossRef]
- Jeong, M.J.; Ko, B.J.; Kim, J.Y. Mass Spectrometry-Based Metabolomics Study for Delay Tomato Fruit Ripening by Sound Waves. J. Anal. Sci. Technol. 2023, 14, 27. [Google Scholar] [CrossRef]
- John, P. Ethylene Biosynthesis: The Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Oxidase, and Its Possible Evolutionary Origin. Physiol. Plant. 1997, 100, 583–592. [Google Scholar] [CrossRef]
- Bouquin, T.; Lasserre, E.; Pradier, J.; Pech, J.C.; Balagué, C. Wound and Ethylene Induction of the ACC Oxidase Melon Gene CM-ACO1 Occurs via Two Direct and Independent Transduction Pathways. Plant Mol. Biol. 1997, 35, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Houben, M.; Van de Poel, B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. Front. Plant Sci. 2019, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Macleod, R.F.; Kader, A.; Morris, L.L. Damage to Fresn Tomatoes Can Be Reduced. Calif. Agric. 1976, 30, 10–12. [Google Scholar]
- Spricigo, P.C.; Freitas, T.P.; Purgatto, E.; Ferreira, M.D.; Correa, D.S.; Bai, J.; Brecht, J.K. Visually Imperceptible Mechanical Damage of Harvested Tomatoes Changes Ethylene Production, Color, Enzyme Activity, and Volatile Compounds Profile. Postharvest Biol. Technol. 2021, 176, 111503. [Google Scholar] [CrossRef]
- Poyesh, D.S.; Terada, N.; Sanada, A.; Gemma, H.; Koshio, K. Effect of 1-MCP on Ethylene Regulation and Quality of Tomato Cv. Red Ore. Int. Food Res. J. 2018, 25, 1001–1006. [Google Scholar]
- Pathare, P.B.; Al-Dairi, M. Effect of Simulated Vibration and Storage on Quality of Tomato. Horticulturae 2021, 7, 417. [Google Scholar] [CrossRef]
- Dagdelen, C.; Aday, M.S. The Effect of Simulated Vibration Frequency on the Physico-Mechanical and Physicochemical Properties of Peach during Transportation. Lebensm.-Wiss. Technol. 2021, 137, 110497. [Google Scholar] [CrossRef]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of Variety on the Quality of Tomato Stored under Ambient Conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Gulab, G.; Haris, M.M.; Terada, N.; Sanada, A.; Gemma, H.; Koshio, K. Physiological Study on Tomato Fruit to Keep Freshness under High-Temperature Conditions. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26, 17–28. [Google Scholar]
- Kabir, M.S.N.; Rasool, K.; Lee, W.H.; Cho, S.I.; Chung, S.O. Influence of Delayed Cooling on the Quality of Tomatoes (Solanum lycopersicum L.) Stored in a Controlled Chamber. AIMS Agric. Food 2020, 5, 272–285. [Google Scholar] [CrossRef]
- De Paiva, A.S.; Pessoa, J.D.C.; Calbo, A.G.; Carneiro, M.C.M.; Albino, A.L.S. Effect of the Dimension of Mechanical Injury on the Respiration of Tomatoes. Acta Hortic. 2012, 934, 1255–1260. [Google Scholar] [CrossRef]
- Demidchik, V.; Straltsova, D.; Medvedev, S.S.; Pozhvanov, G.A.; Sokolik, A.; Yurin, V. Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef]
- Pennazio, S.; Sapetti, C. Electrolyte Leakage in Relation to Viral and Abiotic Stresses Inducing Necrosis in Cowpea Leaves. Biol. Plant. 1982, 24, 218–225. [Google Scholar] [CrossRef]
- Prudent, M.; Causse, M.; Génard, M.; Tripodi, P.; Grandillo, S.; Bertin, N. Genetic and Physiological Analysis of Tomato Fruit Weight and Composition: Influence of Carbon Availability on QTL Detection. J. Exp. Bot. 2009, 60, 923–937. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Liu, J. Effect of Tomato Internal Structure on Its Mechanical Properties and Degree of Mechanical Damage. Afr. J. Biotechnol. 2010, 9, 1816–1826. [Google Scholar] [CrossRef]
- Geyer, M.; Herold, B.; Oberbarnscheidt, B.; Borsa, B.; Kovács, L.; Jakovác, F. Detection of Mechanical Load and Damage of Industrial Tomatoes during Transport. Acta Hortic. 2003, 599, 273–280. [Google Scholar] [CrossRef]
- Montero, C.; Schwarz, L.; Santos, L.L.; Andreazza, C.; Kechinski, C.; Bender, R. Postharvest Mechanical Damage Affects Fruit Quality of ‘Montenegrina’ and ‘Rainha’ tangerines. Pesqui. Agropecu. Bras. 2009, 44, 1636–1640. [Google Scholar] [CrossRef]
- Tian, H.; Chen, H.; Li, X. Mechanical Damage Caused by Compression and Its Effects on Storage Quality of Mandarin. Foods 2024, 13, 892. [Google Scholar] [CrossRef]
- Miranda, M.; Spricigo, P.C.; Ferreira, M.D. Mechanical Damage during Harvest and Loading Affect Orange Postharvest Quality. Eng. Agric. 2015, 35, 154–162. [Google Scholar] [CrossRef]
- Mellidou, I.; Koukounaras, A.; Kostas, S.; Patelou, E.; Kanellis, A.K. Regulation of Vitamin c Accumulation for Improved Tomato Fruit Quality and Alleviation of Abiotic Stress. Genes 2021, 12, 694. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Ntagkas, N.; Woltering, E.; Bouras, S.; De Vos, R.C.; Dieleman, J.A.; Nicole, C.C.; Labrie, C.; Marcelis, L.F. Light-Induced Vitamin c Accumulation in Tomato Fruits Is Independent of Carbohydrate Availability. Plants 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Sablani, S.S.; Opara, L.U.; Al-Balushi, K. Influence of Bruising and Storage Temperature on Vitamin C Content of Tomato Fruit. J. Food Agric. Environ. 2006, 4, 54–56. [Google Scholar]
- Žlabur, J.Š.; Radman, S.; Uher, S.F.; Opačić, N.; Benko, B.; Galić, A.; Samirić, P.; Voća, S. Plant Response to Mechanically-Induced Stress: A Case Study on Specialized Metabolites of Leafy Vegetables. Plants 2021, 10, 2650. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Peng, M.; Gao, Z.; Han, Q.; Fu, F.; Li, G.; Su, D.; Huang, L.; Guo, J.; Shan, Y. Untargeted Metabolomic Analyses and Antilipidemic Effects of Citrus Physiological Premature Fruit Drop. Int. J. Mol. Sci. 2024, 25, 1876. [Google Scholar] [CrossRef]
- Yin, Y.G.; Tominaga, T.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Nishimura, S.; Ezura, H.; Matsukura, C. Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant Cell Physiol. 2010, 51, 1300–1314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sophea, C.; Habibi, N.; Terada, N.; Sanada, A.; Koshio, K. Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages. Biomolecules 2024, 14, 1012. https://doi.org/10.3390/biom14081012
Sophea C, Habibi N, Terada N, Sanada A, Koshio K. Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages. Biomolecules. 2024; 14(8):1012. https://doi.org/10.3390/biom14081012
Chicago/Turabian StyleSophea, Chy, Nasratullah Habibi, Naoki Terada, Atsushi Sanada, and Kaihei Koshio. 2024. "Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages" Biomolecules 14, no. 8: 1012. https://doi.org/10.3390/biom14081012
APA StyleSophea, C., Habibi, N., Terada, N., Sanada, A., & Koshio, K. (2024). Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages. Biomolecules, 14(8), 1012. https://doi.org/10.3390/biom14081012