Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential
Abstract
:1. Introduction
2. Receptors and Intracellular Signaling of BMP9
3. BMP9 and Liver Cell Biology
4. BMP9 and Viral Hepatitis
5. BMP9 and Acute Liver Injury
6. BMP9 and NAFLD
6.1. BMP9 in Lipid Metabolism and Obesity
6.2. BMP9 in Glucose Metabolism and T2DM
7. BMP9 and Hepatic Fibrosis
7.1. BMP9–ALK1 Axis in Liver Fibrosis
7.2. BMP9–Endoglin Axis in Liver Fibrosis
7.3. BMP9–Hepcidin Axis in Liver Fibrosis
7.4. BMP9-ID1 Axis in Liver Fibrosis
8. BMP9 and Portopulmonary Hypertension
9. BMP9 and Hepatopulmonary Syndrome
10. BMP9 and HCC
11. Summary and Future Expectations
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-SMA | alpha smooth muscle actin |
APAP | acetaminophen |
ALI | acute liver injury |
ALP | alkaline phosphatase |
AIH | autoimmune hepatitis |
AUC | the area under the curve for glucose |
BAT | brown adipose tissue |
BMI | body mass index |
BMPs | bone morphogenetic proteins |
CBP | CREB-binding protein |
CCl4 | carbon tetrachloride |
C/EBPα | CCAAT/enhancer binding protein (C/EBP) alpha |
CHB | chronic hepatitis B |
CREB | cAMP response-element binding protein |
CTGF | connective tissue growth factor |
DDC | 3,5-diethoxicarbonyl-1,4-dihydrocollidine |
5-diethoxicarbonyl-1 | 4-dihydrocollidine |
ECM | extracellular matrix |
EGF | epidermal growth factor |
EMT | epithelial-to-mesenchymal transition |
ENG | endoglin |
EpCAM | epithelial cell adhesion molecule |
ERK | extracellular signal-regulated kinase |
FBG | fasting blood glucose |
FFA | free fatty acid |
FFC | high fat, fructose, and cholesterol diet |
FGF | fibroblast growth factor |
FINS | fasting insulin |
FTO | fat mass and obesity-associated protein |
GDF | growth differentiation factor |
GSK3 | glycogen synthase kinase 3 |
HAI | histological activity index |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HDL-C | high-density lipoprotein cholesterol |
HGF | hepatocyte growth factor |
HHT | hereditary hemorrhagic telangiectasia |
HIF-1α | hypoxia inducible factor 1 subunit alpha |
HOMA-IR | homoeostasis model assessment of insulin resistance |
HPS | hepatopulmonary syndrome |
HSC | hepatic stellate cell |
HUVEC | human umbilical vein endothelial cell |
ID1/2/3 | inhibitor of differentiation-1/2/3 |
IFN | interferon |
IL-8 | interleukin-8 |
InsR | insulin receptor |
IR | insulin resistance |
IRF | interferon regulatory factors |
JNK | c-Jun N-terminal kinases |
KC | Kupffer cells |
KLF6 | Krüppel-like factor 6 |
LDL-C | low-density lipoprotein cholesterol |
LIMK | LIM Domain Kinase |
LPS | lipopolysaccharide |
LSEC | liver sinusoidal endothelial cell |
LCSC | liver cancer stem cell |
MAPK | mitogen-activated protein kinases |
MB109 | recombinant derivative of human BMP9 |
MLC | myosin light chain |
MMP-7 | matrix metalloproteinase-7 |
NAFLD | nonalcoholic fatty liver disease |
NASH | nonalcoholic steatohepatitis |
OGTT | oral glucose tolerance tests |
PAH | pulmonary arterial hypertension |
PAVM | pulmonary arteriovenous malformations |
PBC/PSC | primary biliary cholangitis/primary sclerosing cholangitis |
PD-L1 | programmed death-ligand 1 |
PEPCK | phosphoenolpyruvate carboxykinase |
PGC1α | proliferator-activated receptor-gamma coactivator 1 alpha |
PI3K | Phosphoinositide 3-kinases |
PoPH | portopulmonary hypertension |
PPARα | peroxisome proliferator-activated receptor α |
ROCK | Rho-Associated Coiled-Coil-Containing Protein Kinase |
TAG | triglyceride |
TGF-β | transforming growth factor β |
T2DM | type 2 diabetes mellitus |
UCP1 | uncoupling protein 1 |
UDCA | Ursodesoxycholic acid |
USP18 | Ubiquitin specific peptidase 18 |
UTMD | ultrasound-targeted microbubble destruction |
VEGF | vascular endothelial growth factor |
WAT | white adipose tissue |
WHR | Waist-hip ratio |
WNT2 | Wnt Family Member 2 |
YTHDF2 | YTH N6-methyladenosine RNA binding protein F2 |
ZEB | zinc finger E-box binding |
References
- Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233–241. [Google Scholar] [CrossRef]
- Elima, K. Osteoinductive proteins. Ann. Med. 1993, 25, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, B.; Wang, X.; Zha, X.; Sheng, C.; Yang, P.; Qu, S. Potential Functions of the BMP Family in Bone, Obesity, and Glucose Metabolism. J. Diabetes Res. 2021, 2021, 6707464. [Google Scholar] [CrossRef] [PubMed]
- Sartori, R.; Sandri, M. BMPs and the muscle-bone connection. Bone 2015, 80, 37–42. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Z.; Zeng, Z.; Fan, J.; Feng, Y.; Wang, X.; Cao, D.; Zhang, B.; Yang, L.; Liu, B.; et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis. 2020, 7, 235–244. [Google Scholar] [CrossRef]
- Chen, W.; Ten Dijke, P. Immunoregulation by members of the TGFbeta superfamily. Nat. Rev. Immunol. 2016, 16, 723–740. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jackson-Weaver, O.; Xu, J. The TGFbeta superfamily in cardiac dysfunction. Acta Biochim. Biophys. Sin. 2018, 50, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Lui, P.P. Histopathological changes in tendinopathy--potential roles of BMPs? Rheumatology 2013, 52, 2116–2126. [Google Scholar] [CrossRef]
- Liu, M.; Goldman, G.; MacDougall, M.; Chen, S. BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022, 11, 2216. [Google Scholar] [CrossRef]
- Katagiri, T.; Watabe, T. Bone Morphogenetic Proteins. Cold Spring Harb. Perspect. Biol. 2016, 8. [Google Scholar] [CrossRef]
- Lin, S.; Svoboda, K.K.; Feng, J.Q.; Jiang, X. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res. 2016, 4, 16005. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Duffhues, G.; Williams, E.; Goumans, M.J.; Heldin, C.H.; Ten Dijke, P. Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone 2020, 138, 115472. [Google Scholar] [CrossRef] [PubMed]
- Song, J.J.; Celeste, A.J.; Kong, F.M.; Jirtle, R.L.; Rosen, V.; Thies, R.S. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 1995, 136, 4293–4297. [Google Scholar] [CrossRef] [PubMed]
- Ploemacher, R.E.; Engels, L.J.; Mayer, A.E.; Thies, S.; Neben, S. Bone morphogenetic protein 9 is a potent synergistic factor for murine hemopoietic progenitor cell generation and colony formation in serum-free cultures. Leukemia 1999, 13, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Lamplot, J.D.; Qin, J.; Nan, G.; Wang, J.; Liu, X.; Yin, L.; Tomal, J.; Li, R.; Shui, W.; Zhang, H.; et al. BMP9 signaling in stem cell differentiation and osteogenesis. Am. J. Stem Cells 2013, 2, 1–21. [Google Scholar]
- Ruschke, K.; Hiepen, C.; Becker, J.; Knaus, P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res. 2012, 347, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Tsumaki, N.; Yoshikawa, H. The role of bone morphogenetic proteins in endochondral bone formation. Cytokine Growth Factor. Rev. 2005, 16, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Thielen, N.G.M.; van der Kraan, P.M.; van Caam, A.P.M. TGFbeta/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019, 8, 969. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liang, Z.; Yang, M.; Jia, Y.; Yang, G.; He, Y.; Li, X.; Gu, H.F.; Zheng, H.; Zhu, Z.; et al. Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 10077–10088. [Google Scholar] [CrossRef]
- Truksa, J.; Peng, H.; Lee, P.; Beutler, E. Different regulatory elements are required for response of hepcidin to interleukin-6 and bone morphogenetic proteins 4 and 9. Br. J. Haematol. 2007, 139, 138–147. [Google Scholar] [CrossRef]
- Schnitzler, A.C.; Mellott, T.J.; Lopez-Coviella, I.; Tallini, Y.N.; Kotlikoff, M.I.; Follettie, M.T.; Blusztajn, J.K. BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 8221–8228. [Google Scholar] [CrossRef]
- Lopez-Coviella, I.; Follettie, M.T.; Mellott, T.J.; Kovacheva, V.P.; Slack, B.E.; Diesl, V.; Berse, B.; Thies, R.S.; Blusztajn, J.K. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA 2005, 102, 6984–6989. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Ramonett, A.; Kwak, E.A.; Kumar, S.; Flores, P.C.; Ortiz, H.R.; Langlais, P.R.; Hund, T.J.; Mythreye, K.; Lee, N.Y. Endothelial tip/stalk cell selection requires BMP9-induced beta(IV)-spectrin expression during sprouting angiogenesis. Mol. Biol. Cell 2023, 34, ar72. [Google Scholar] [CrossRef] [PubMed]
- Ayuso-Inigo, B.; Mendez-Garcia, L.; Pericacho, M.; Munoz-Felix, J.M. The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers 2021, 13, 5412. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Wang, C.; Dai, G.; Zhu, Z.; Gao, S.; He, B.; Liao, J.; Huang, W. BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of mesenchymal stem cells. Biosci. Rep. 2020, 40, BSR20201262. [Google Scholar] [CrossRef]
- Ricard, N.; Ciais, D.; Levet, S.; Subileau, M.; Mallet, C.; Zimmers, T.A.; Lee, S.J.; Bidart, M.; Feige, J.J.; Bailly, S. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 2012, 119, 6162–6171. [Google Scholar] [CrossRef] [PubMed]
- Levet, S.; Ciais, D.; Merdzhanova, G.; Mallet, C.; Zimmers, T.A.; Lee, S.J.; Navarro, F.P.; Texier, I.; Feige, J.J.; Bailly, S.; et al. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 2013, 122, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Breitkopf-Heinlein, K.; Meyer, C.; Konig, C.; Gaitantzi, H.; Addante, A.; Thomas, M.; Wiercinska, E.; Cai, C.; Li, Q.; Wan, F.; et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 2017, 66, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Sosa, I.; Cvijanovic, O.; Celic, T.; Cuculic, D.; Crncevic-Orlic, Z.; Vukelic, L.; Zoricic Cvek, S.; Dudaric, L.; Bosnar, A.; Bobinac, D. Hepatoregenerative role of bone morphogenetic protein-9. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, HY33–HY35. [Google Scholar] [CrossRef]
- Tillet, E.; Bailly, S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front. Genet. 2014, 5, 456. [Google Scholar] [CrossRef]
- Desroches-Castan, A.; Tillet, E.; Bouvard, C.; Bailly, S. BMP9 and BMP10: Two close vascular quiescence partners that stand out. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2022, 251, 178–197. [Google Scholar] [CrossRef]
- Medina-Jover, F.; Riera-Mestre, A.; Vinals, F. Rethinking growth factors: The case of BMP9 during vessel maturation. Vasc. Biol. 2022, 4, R1–R14. [Google Scholar] [CrossRef]
- Li, W.; Salmon, R.M.; Jiang, H.; Morrell, N.W. Regulation of the ALK1 ligands, BMP9 and BMP10. Biochem. Soc. Trans. 2016, 44, 1135–1141. [Google Scholar] [CrossRef]
- Robert, F.; Berrebeh, N.; Guignabert, C.; Humbert, M.; Bailly, S.; Tu, L.; Savale, L. Dysfunction of endothelial BMP-9 signaling in pulmonary vascular disease. Rev. Mal. Respir. 2023, 40, 234–238. [Google Scholar] [CrossRef]
- Herrera, B.; Dooley, S.; Breitkopf-Heinlein, K. Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases. Int. J. Mol. Sci. 2014, 15, 5199. [Google Scholar] [CrossRef] [PubMed]
- Herrera, B.; Sanchez, A.; Fabregat, I. BMPS and liver: More questions than answers. Curr. Pharm. Des. 2012, 18, 4114–4125. [Google Scholar] [CrossRef]
- Mi, L.Z.; Brown, C.T.; Gao, Y.; Tian, Y.; Le, V.Q.; Walz, T.; Springer, T.A. Structure of bone morphogenetic protein 9 procomplex. Proc. Natl. Acad. Sci. USA 2015, 112, 3710–3715. [Google Scholar] [CrossRef]
- Brown, M.A.; Zhao, Q.; Baker, K.A.; Naik, C.; Chen, C.; Pukac, L.; Singh, M.; Tsareva, T.; Parice, Y.; Mahoney, A.; et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J. Biol. Chem. 2005, 280, 25111–25118. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Salmon, R.M.; Upton, P.D.; Morrell, N.W.; Li, W. Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J. Biol. Chem. 2014, 289, 31150–31159. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Sun, T.; Ren, L. Potential roles of bone morphogenetic protein-9 in glucose and lipid homeostasis. J. Physiol. Biochem. 2020, 76, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Bidart, M.; Ricard, N.; Levet, S.; Samson, M.; Mallet, C.; David, L.; Subileau, M.; Tillet, E.; Feige, J.J.; Bailly, S. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell. Mol. Life Sci. CMLS 2012, 69, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Tillet, E.; Ouarne, M.; Desroches-Castan, A.; Mallet, C.; Subileau, M.; Didier, R.; Lioutsko, A.; Belthier, G.; Feige, J.J.; Bailly, S. A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J. Biol. Chem. 2018, 293, 10963–10974. [Google Scholar] [CrossRef]
- Kienast, Y.; Jucknischke, U.; Scheiblich, S.; Thier, M.; de Wouters, M.; Haas, A.; Lehmann, C.; Brand, V.; Bernicke, D.; Honold, K.; et al. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains. J. Biol. Chem. 2016, 291, 3395–3410. [Google Scholar] [CrossRef]
- Yadin, D.; Knaus, P.; Mueller, T.D. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor. Rev. 2016, 27, 13–34. [Google Scholar] [CrossRef]
- Salmon, R.M.; Guo, J.; Wood, J.H.; Tong, Z.; Beech, J.S.; Lawera, A.; Yu, M.; Grainger, D.J.; Reckless, J.; Morrell, N.W.; et al. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nat. Commun. 2020, 11, 1621. [Google Scholar] [CrossRef]
- Scharpfenecker, M.; van Dinther, M.; Liu, Z.; van Bezooijen, R.L.; Zhao, Q.; Pukac, L.; Lowik, C.W.; ten Dijke, P. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 2007, 120, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Herrera, B.; van Dinther, M.; Ten Dijke, P.; Inman, G.J. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res. 2009, 69, 9254–9262. [Google Scholar] [CrossRef]
- Xia, Y.; Babitt, J.L.; Sidis, Y.; Chung, R.T.; Lin, H.Y. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 2008, 111, 5195–5204. [Google Scholar] [CrossRef]
- Li, Q.; Gu, X.; Weng, H.; Ghafoory, S.; Liu, Y.; Feng, T.; Dzieran, J.; Li, L.; Ilkavets, I.; Kruithof-de Julio, M.; et al. Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci. 2013, 104, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Bokhove, M.; Croci, R.; Zamora-Caballero, S.; Han, L.; Letarte, M.; de Sanctis, D.; Jovine, L. Structural Basis of the Human Endoglin-BMP9 Interaction: Insights into BMP Signaling and HHT1. Cell Rep. 2017, 19, 1917–1928. [Google Scholar] [CrossRef]
- Castonguay, R.; Werner, E.D.; Matthews, R.G.; Presman, E.; Mulivor, A.W.; Solban, N.; Sako, D.; Pearsall, R.S.; Underwood, K.W.; Seehra, J.; et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J. Biol. Chem. 2011, 286, 30034–30046. [Google Scholar] [CrossRef]
- Lawera, A.; Tong, Z.; Thorikay, M.; Redgrave, R.E.; Cai, J.; van Dinther, M.; Morrell, N.W.; Afink, G.B.; Charnock-Jones, D.S.; Arthur, H.M.; et al. Role of soluble endoglin in BMP9 signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 17800–17808. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Mallet, C.; Mazerbourg, S.; Feige, J.J.; Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 2007, 109, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Mallet, C.; Lamribet, K.; Giraud, S.; Dupuis-Girod, S.; Feige, J.J.; Bailly, S.; Tillet, E. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum. Mol. Genet. 2015, 24, 1142–1154. [Google Scholar] [CrossRef] [PubMed]
- Nolan-Stevaux, O.; Zhong, W.; Culp, S.; Shaffer, K.; Hoover, J.; Wickramasinghe, D.; Ruefli-Brasse, A. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS ONE 2012, 7, e50920. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-beta signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Yuan, W.; Mori, Y.; Levenson, A.; Trojanowska, M.; Varga, J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: Involvement of Smad 3. J. Invest. Dermatol. 1999, 112, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Dennler, S.; Itoh, S.; Vivien, D.; ten Dijke, P.; Huet, S.; Gauthier, J.M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998, 17, 3091–3100. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Varga, J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J. Biol. Chem. 2001, 276, 38502–38510. [Google Scholar] [CrossRef]
- Piek, E.; Ju, W.J.; Heyer, J.; Escalante-Alcalde, D.; Stewart, C.L.; Weinstein, M.; Deng, C.; Kucherlapati, R.; Bottinger, E.P.; Roberts, A.B. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J. Biol. Chem. 2001, 276, 19945–19953. [Google Scholar] [CrossRef]
- Zeisberg, M.; Hanai, J.; Sugimoto, H.; Mammoto, T.; Charytan, D.; Strutz, F.; Kalluri, R. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003, 9, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hirschberg, R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J. Biol. Chem. 2004, 279, 23200–23206. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-beta: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Munoz-Felix, J.M.; Gonzalez-Nunez, M.; Lopez-Novoa, J.M. ALK1-Smad1/5 signaling pathway in fibrosis development: Friend or foe? Cytokine Growth Factor. Rev. 2013, 24, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, I.; Verstraeten, A.; Goumans, M.J.; Loeys, B. SMAD6-deficiency in human genetic disorders. NPJ Genom. Med. 2022, 7, 68. [Google Scholar] [CrossRef]
- de Ceuninck van Capelle, C.; Spit, M.; Ten Dijke, P. Current perspectives on inhibitory SMAD7 in health and disease. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 691–715. [Google Scholar] [CrossRef]
- Theilmann, A.L.; Hawke, L.G.; Hilton, L.R.; Whitford, M.K.M.; Cole, D.V.; Mackeil, J.L.; Dunham-Snary, K.J.; Mewburn, J.; James, P.D.; Maurice, D.H.; et al. Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2605–2618. [Google Scholar] [CrossRef]
- Tao, B.; Kraehling, J.R.; Ghaffari, S.; Ramirez, C.M.; Lee, S.; Fowler, J.W.; Lee, W.L.; Fernandez-Hernando, C.; Eichmann, A.; Sessa, W.C. BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. J. Biol. Chem. 2020, 295, 18179–18188. [Google Scholar] [CrossRef]
- Upton, P.D.; Davies, R.J.; Trembath, R.C.; Morrell, N.W. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J. Biol. Chem. 2009, 284, 15794–15804. [Google Scholar] [CrossRef] [PubMed]
- van Caam, A.; Blaney Davidson, E.; Garcia de Vinuesa, A.; van Geffen, E.; van den Berg, W.; Goumans, M.J.; ten Dijke, P.; van der Kraan, P. The high affinity ALK1-ligand BMP9 induces a hypertrophy-like state in chondrocytes that is antagonized by TGFbeta1. Osteoarthr. Cartil. 2015, 23, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, G.; Li, Y.P. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Deng, C.; Li, Y.P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zou, H. BMP signaling in axon regeneration. Curr. Opin. Neurobiol. 2014, 27, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kaluza, D.; Jakobsson, L. VEGF, Notch and TGFbeta/BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem. Soc. Trans. 2014, 42, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X. BMP9 promotes tibial fracture healing of rats through regulating notch signaling pathway. Minerva Medica 2021, 112, 828–829. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Tweedie, E.; Conley, B.; Ames, J.; FitzSimons, M.; Brooks, P.; Liaw, L.; Vary, C.P. BMP9 Crosstalk with the Hippo Pathway Regulates Endothelial Cell Matricellular and Chemokine Responses. PLoS ONE 2015, 10, e0122892. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qin, J.; Luo, Q.; Bi, Y.; Zhu, G.; Jiang, W.; Kim, S.H.; Li, M.; Su, Y.; Nan, G.; et al. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J. Cell. Mol. Med. 2013, 17, 1160–1172. [Google Scholar] [CrossRef]
- Peng, Y.; Kang, Q.; Luo, Q.; Jiang, W.; Si, W.; Liu, B.A.; Luu, H.H.; Park, J.K.; Li, X.; Luo, J.; et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 2004, 279, 32941–32949. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, X.; Li, Y.; Southwood, M.; Ye, L.; Long, L.; Al-Lamki, R.S.; Morrell, N.W. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L312–L321. [Google Scholar] [CrossRef]
- Truksa, J.; Peng, H.; Lee, P.; Beutler, E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc. Natl. Acad. Sci. USA 2006, 103, 10289–10293. [Google Scholar] [CrossRef]
- Bi, J.; Ge, S. Potential roles of BMP9 in liver fibrosis. Int. J. Mol. Sci. 2014, 15, 20656. [Google Scholar] [CrossRef]
- Ma, J.; van der Zon, G.; Goncalves, M.; van Dinther, M.; Thorikay, M.; Sanchez-Duffhues, G.; Ten Dijke, P. TGF-beta-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front. Cell Dev. Biol. 2021, 9, 616610. [Google Scholar] [CrossRef]
- Liu, R.; Xu, W.; Zhu, H.; Dong, Z.; Dong, H.; Yin, S. Aging aggravates acetaminophen-induced acute liver injury and inflammation through inordinate C/EBPalpha-BMP9 crosstalk. Cell Biosci. 2023, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Jiang, H.B.; Tian, G.R.; Lu, G.J. The proliferation and migration of atherosclerosis-related HVSMCs were inhibited by downregulation of lncRNA XIST via regulation of the miR-761/BMP9 axis. Kaohsiung J. Med. Sci. 2022, 38, 18–29. [Google Scholar] [CrossRef]
- Yao, Y.; Jumabay, M.; Ly, A.; Radparvar, M.; Wang, A.H.; Abdmaulen, R.; Bostrom, K.I. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium. Blood 2012, 119, 5037–5047. [Google Scholar] [CrossRef]
- Gaitantzi, H.; Karch, J.; Germann, L.; Cai, C.; Rausch, V.; Birgin, E.; Rahbari, N.; Seitz, T.; Hellerbrand, C.; Konig, C.; et al. BMP-9 Modulates the Hepatic Responses to LPS. Cells 2020, 9, 617. [Google Scholar] [CrossRef]
- Miller, A.F.; Harvey, S.A.; Thies, R.S.; Olson, M.S. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J. Biol. Chem. 2000, 275, 17937–17945. [Google Scholar] [CrossRef]
- Tao, L.; Fang, S.Y.; Zhao, L.; He, T.C.; He, Y.; Bi, Y. Indocyanine Green Uptake and Periodic Acid-Schiff Staining Method for Function Detection of Liver Cells are Affected by Different Cell Confluence. Cytotechnology 2021, 73, 159–167. [Google Scholar] [CrossRef]
- Addante, A.; Gonzalez-Corralejo, C.; Roncero, C.; Lazcanoiturburu, N.; Garcia-Saez, J.; Herrera, B.; Sanchez, A. BMP9 Promotes an Epithelial Phenotype and a Hepatocyte-like Gene Expression Profile in Adult Hepatic Progenitor Cells. Cells 2022, 11, 365. [Google Scholar] [CrossRef]
- Addante, A.; Roncero, C.; Almale, L.; Lazcanoiturburu, N.; Garcia-Alvaro, M.; Fernandez, M.; Sanz, J.; Hammad, S.; Nwosu, Z.C.; Lee, S.J.; et al. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int. Off. J. Int. Assoc. Study Liver 2018, 38, 1664–1675. [Google Scholar] [CrossRef]
- Guilliams, M.; Bonnardel, J.; Haest, B.; Vanderborght, B.; Wagner, C.; Remmerie, A.; Bujko, A.; Martens, L.; Thone, T.; Browaeys, R.; et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022, 185, 379–396.e338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, F.; Wang, Y.; Li, S.; Li, Y.; Hou, F.; Yang, W.; Liu, D.; Tao, Y.; Li, Q.; et al. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Investig. 2022, 132, e150489. [Google Scholar] [CrossRef]
- Desroches-Castan, A.; Tillet, E.; Ricard, N.; Ouarne, M.; Mallet, C.; Belmudes, L.; Coute, Y.; Boillot, O.; Scoazec, J.Y.; Bailly, S.; et al. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019, 70, 1392–1408. [Google Scholar] [CrossRef]
- Desroches-Castan, A.; Tillet, E.; Ricard, N.; Ouarne, M.; Mallet, C.; Feige, J.J.; Bailly, S. Differential Consequences of Bmp9 Deletion on Sinusoidal Endothelial Cell Differentiation and Liver Fibrosis in 129/Ola and C57BL/6 Mice. Cells 2019, 8, 1079. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.D.; Olsavszky, V.; Reinhart, M.; Weyer, V.; Trogisch, F.A.; Sticht, C.; Winkler, M.; Kurschner, S.W.; Hoffmann, J.; Ola, R.; et al. ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver. Hepatology 2023, 77, 1211–1227. [Google Scholar] [CrossRef]
- Bocci, G.; Orlandi, P.; Manca, M.L.; Rossi, C.; Salvati, A.; Brunetto, M.R.; Solini, A. Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases. J. Clin. Med. 2022, 11, 5985. [Google Scholar] [CrossRef]
- Eddowes, L.A.; Al-Hourani, K.; Ramamurthy, N.; Frankish, J.; Baddock, H.T.; Sandor, C.; Ryan, J.D.; Fusco, D.N.; Arezes, J.; Giannoulatou, E.; et al. Antiviral activity of bone morphogenetic proteins and activins. Nat. Microbiol. 2019, 4, 339–351. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Huo, L.; Sun, T.; Zhen, Y.; Gao, Z.; Chen, S.; Ren, L. Circulating Bone Morphogenetic Protein-9 is Decreased in Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Int. J. Gen. Med. 2022, 15, 8539–8546. [Google Scholar] [CrossRef]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Drexler, S.; Cai, C.; Hartmann, A.L.; Moch, D.; Gaitantzi, H.; Ney, T.; Kraemer, M.; Chu, Y.; Zheng, Y.; Rahbari, M.; et al. Intestinal BMP-9 locally upregulates FGF19 and is down-regulated in obese patients with diabetes. Mol. Cell. Endocrinol. 2023, 570, 111934. [Google Scholar] [CrossRef]
- Yano, K.; Yamaguchi, K.; Seko, Y.; Okishio, S.; Ishiba, H.; Tochiki, N.; Takahashi, A.; Kataoka, S.; Okuda, K.; Liu, Y.; et al. Hepatocyte-specific fibroblast growth factor 21 overexpression ameliorates high-fat diet-induced obesity and liver steatosis in mice. Lab. Investig. 2022, 102, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.D.; Li, C.Y.; Bina, H.A.; Lynes, S.E.; Michael, M.D.; Shanafelt, A.B.; Kharitonenkov, A.; Wasserman, D.H. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 2009, 150, 4084–4093. [Google Scholar] [CrossRef]
- Kim, S.; Choe, S.; Lee, D.K. BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochim. Biophys. Acta 2016, 1862, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.J.; Cai, L.Y.; Jian, J.; Cui, Y.L.; Huang, C.K.; Liu, S.Q.; Lu, J.L.; Wang, W.; Zeng, X.; Zhong, L. The Role of Bone Morphogenetic Protein 9 in Nonalcoholic Fatty Liver Disease in Mice. Front. Pharmacol. 2020, 11, 605967. [Google Scholar] [CrossRef]
- Yang, Z.; Li, P.; Shang, Q.; Wang, Y.; He, J.; Ge, S.; Jia, R.; Fan, X. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARalpha expression. Sci. Adv. 2020, 6, 48. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q.; et al. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021, 10, 48–65. [Google Scholar] [CrossRef]
- Lee, E.; Korf, H.; Vidal-Puig, A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J. Hepatol. 2023, 78, 1048–1062. [Google Scholar] [CrossRef] [PubMed]
- Kurylowicz, A.; Puzianowska-Kuznicka, M. Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. Int. J. Mol. Sci. 2020, 21, 6241. [Google Scholar] [CrossRef] [PubMed]
- Poher, A.L.; Altirriba, J.; Veyrat-Durebex, C.; Rohner-Jeanrenaud, F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front. Physiol. 2015, 6, 4. [Google Scholar] [CrossRef]
- Kuo, M.M.; Kim, S.; Tseng, C.Y.; Jeon, Y.H.; Choe, S.; Lee, D.K. BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 2014, 35, 3172–3179. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q.; Liu, B.; Li, G.; Riedemann, G.; Gaitantzi, H.; Breitkopf-Heinlein, K.; Zeng, A.; Ding, H.; Xu, K. BMP9 promotes methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis in non-obese mice by enhancing NF-kappaB dependent macrophage polarization. Int. Immunopharmacol. 2021, 96, 107591. [Google Scholar] [CrossRef]
- Igreja Sa, I.C.; Tripska, K.; Hroch, M.; Hyspler, R.; Ticha, A.; Lastuvkova, H.; Schreiberova, J.; Dolezelova, E.; Eissazadeh, S.; Vitverova, B.; et al. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int. J. Mol. Sci. 2020, 21, 9021. [Google Scholar] [CrossRef]
- Caussy, C.; Aubin, A.; Loomba, R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr. Diabetes Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 484–495. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Yang, G.; Li, L.; Hu, W.; Zhang, L.; Liu, H.; Zheng, H.; Tan, M.; Zhu, D. Circulating bone morphogenetic protein-9 in relation to metabolic syndrome and insulin resistance. Sci. Rep. 2017, 7, 17529. [Google Scholar] [CrossRef]
- Luo, Y.; Li, L.; Xu, X.; Wu, T.; Yang, M.; Zhang, C.; Mou, H.; Zhou, T.; Jia, Y.; Cai, C.; et al. Decreased circulating BMP-9 levels in patients with Type 2 diabetes is a signature of insulin resistance. Clin. Sci. 2017, 131, 239–246. [Google Scholar] [CrossRef]
- Luan, H.; Yang, L.; Liu, L.; Liu, S.; Zhao, X.; Sui, H.; Wang, J.; Wang, S. Effects of platycodins on liver complications of type 2 diabetes. Mol. Med. Rep. 2014, 10, 1597–1603. [Google Scholar] [CrossRef]
- Jia, Y.; Niu, D.; Li, Q.; Huang, H.; Li, X.; Li, K.; Li, L.; Zhang, C.; Zheng, H.; Zhu, Z.; et al. Effective gene delivery of shBMP-9 using polyethyleneimine-based core-shell nanoparticles in an animal model of insulin resistance. Nanoscale 2019, 11, 2008–2016. [Google Scholar] [CrossRef]
- Caperuto, L.C.; Anhe, G.F.; Cambiaghi, T.D.; Akamine, E.H.; do Carmo Buonfiglio, D.; Cipolla-Neto, J.; Curi, R.; Bordin, S. Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: Possible candidate for hepatic insulin-sensitizing substance. Endocrinology 2008, 149, 6326–6335. [Google Scholar] [CrossRef]
- Chen, C.; Grzegorzewski, K.J.; Barash, S.; Zhao, Q.; Schneider, H.; Wang, Q.; Singh, M.; Pukac, L.; Bell, A.C.; Duan, R.; et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat. Biotechnol. 2003, 21, 294–301. [Google Scholar] [CrossRef]
- Anhe, F.F.; Lellis-Santos, C.; Leite, A.R.; Hirabara, S.M.; Boschero, A.C.; Curi, R.; Anhe, G.F.; Bordin, S. Smad5 regulates Akt2 expression and insulin-induced glucose uptake in L6 myotubes. Mol. Cell. Endocrinol. 2010, 319, 30–38. [Google Scholar] [CrossRef]
- Capasso, T.L.; Trucco, S.M.; Hindes, M.; Schwartze, T.; Bloch, J.L.; Kreutzer, J.; Cook, S.C.; Hinck, C.S.; Treggiari, D.; Feingold, B.; et al. In Search of "Hepatic Factor": Lack of Evidence for ALK1 Ligands BMP9 and BMP10. Am. J. Respir. Crit. Care Med. 2021, 203, 249–251. [Google Scholar] [CrossRef]
- Hong, O.K.; Kim, E.S.; Son, J.W.; Kim, S.R.; Yoo, S.J.; Kwon, H.S.; Lee, S.S. Alcohol-induced increase in BMP levels promotes fatty liver disease in male prediabetic stage Otsuka Long-Evans Tokushima Fatty rats. J. Cell. Biochem. 2023, 124, 459–472. [Google Scholar] [CrossRef]
- Friedman, S.L.; Pinzani, M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022, 75, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef]
- Zhang, M.; Serna-Salas, S.; Damba, T.; Borghesan, M.; Demaria, M.; Moshage, H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech. Ageing Dev. 2021, 199, 111572. [Google Scholar] [CrossRef]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef]
- Gines, P.; Krag, A.; Abraldes, J.G.; Sola, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Zhu, L.; Yang, Z.; He, J.; Wang, L.; Shang, Q.; Pan, H.; Wang, H.; Ma, X.; et al. Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 709–720. [Google Scholar] [CrossRef]
- Shen, H.; Fan, J.; Burczynski, F.; Minuk, G.Y.; Cattini, P.; Gong, Y. Increased Smad1 expression and transcriptional activity enhances trans-differentiation of hepatic stellate cells. J. Cell. Physiol. 2007, 212, 764–770. [Google Scholar] [CrossRef]
- Chi, C.; Liu, X.Y.; Hou, F.; Yu, X.Z.; Li, C.Y.; Cui, L.J.; Liu, R.X.; Yin, C.H. Herbal compound 861 prevents hepatic fibrosis by inhibiting the TGF-beta1/Smad/SnoN pathway in bile duct-ligated rats. BMC Complement. Altern. Med. 2018, 18, 52. [Google Scholar] [CrossRef]
- Leung, D.H.; Devaraj, S.; Goodrich, N.P.; Chen, X.; Rajapakshe, D.; Ye, W.; Andreev, V.; Minard, C.G.; Guffey, D.; Molleston, J.P.; et al. Serum biomarkers correlated with liver stiffness assessed in a multicenter study of pediatric cholestatic liver disease. Hepatology 2023, 77, 530–545. [Google Scholar] [CrossRef]
- Clemente, M.; Nunez, O.; Lorente, R.; Rincon, D.; Matilla, A.; Salcedo, M.; Catalina, M.V.; Ripoll, C.; Iacono, O.L.; Banares, R.; et al. Increased intrahepatic and circulating levels of endoglin, a TGF-beta1 co-receptor, in patients with chronic hepatitis C virus infection: Relationship to histological and serum markers of hepatic fibrosis. J. Viral Hepat. 2006, 13, 625–632. [Google Scholar] [CrossRef]
- Yagmur, E.; Rizk, M.; Stanzel, S.; Hellerbrand, C.; Lammert, F.; Trautwein, C.; Wasmuth, H.E.; Gressner, A.M. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur. J. Gastroenterol. Hepatol. 2007, 19, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Rath, T.; Hage, L.; Kugler, M.; Menendez Menendez, K.; Zachoval, R.; Naehrlich, L.; Schulz, R.; Roderfeld, M.; Roeb, E. Serum proteome profiling identifies novel and powerful markers of cystic fibrosis liver disease. PLoS ONE 2013, 8, e58955. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Sasaki, R.; Meyer, K.; Ray, R. Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis. J. Virol. 2017, 91, 10–128. [Google Scholar] [CrossRef] [PubMed]
- About, F.; Bibert, S.; Jouanguy, E.; Nalpas, B.; Lorenzo, L.; Rattina, V.; Zarhrate, M.; Hanein, S.; Munteanu, M.; Mullhaupt, B.; et al. Identification of an Endoglin Variant Associated With HCV-Related Liver Fibrosis Progression by Next-Generation Sequencing. Front. Genet. 2019, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Meurer, S.K.; Tihaa, L.; Borkham-Kamphorst, E.; Weiskirchen, R. Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell. Signal. 2011, 23, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Finnson, K.W.; Philip, A. Endoglin in liver fibrosis. J. Cell Commun. Signal. 2012, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Alsamman, M.; Sterzer, V.; Meurer, S.K.; Sahin, H.; Schaeper, U.; Kuscuoglu, D.; Strnad, P.; Weiskirchen, R.; Trautwein, C.; Scholten, D. Endoglin in human liver disease and murine models of liver fibrosis-A protective factor against liver fibrosis. Liver Int. Off. J. Int. Assoc. Study Liver 2018, 38, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Kouroumalis, E.; Tsomidis, I.; Voumvouraki, A. Iron as a therapeutic target in chronic liver disease. World J. Gastroenterol. 2023, 29, 616–655. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Huang, F.W.; Wrighting, D.M.; Xia, Y.; Sidis, Y.; Samad, T.A.; Campagna, J.A.; Chung, R.T.; Schneyer, A.L.; Woolf, C.J.; et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006, 38, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Xiao, X.; Bayer, A.; Xu, Y.; Dev, S.; Canali, S.; Nair, A.V.; Masia, R.; Babitt, J.L. Ablation of Hepatocyte Smad1, Smad5, and Smad8 Causes Severe Tissue Iron Loading and Liver Fibrosis in Mice. Hepatology 2019, 70, 1986–2002. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Zhao, W.; Zafar, Y.; Murali, A.R.; Brown, K.E. Serum hepcidin levels in chronic liver disease: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2023, 62, 373–384. [Google Scholar] [CrossRef]
- Fujita, N.; Sugimoto, R.; Takeo, M.; Urawa, N.; Mifuji, R.; Tanaka, H.; Kobayashi, Y.; Iwasa, M.; Watanabe, S.; Adachi, Y.; et al. Hepcidin expression in the liver: Relatively low level in patients with chronic hepatitis C. Mol. Med. 2007, 13, 97–104. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Papatheodoridis, G.V.; Koliaraki, V.; Hadziyannis, E.; Kafiri, G.; Manesis, E.K.; Mamalaki, A.; Archimandritis, A.J. Serum hepcidin levels are related to the severity of liver histological lesions in chronic hepatitis C. J. Viral Hepat. 2010, 17, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Csermely, A.; Castagna, A.; Antinori, E.; Danese, E.; Zusi, C.; Sani, E.; Ravaioli, F.; Colecchia, A.; Maffeis, C.; et al. Associations between higher plasma ferritin and hepcidin levels with liver stiffness in patients with type 2 diabetes: An exploratory study. Liver Int. Off. J. Int. Assoc. Study Liver 2023, 43, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Lyberopoulou, A.; Chachami, G.; Gatselis, N.K.; Kyratzopoulou, E.; Saitis, A.; Gabeta, S.; Eliades, P.; Paraskeva, E.; Zachou, K.; Koukoulis, G.K.; et al. Low Serum Hepcidin in Patients with Autoimmune Liver Diseases. PLoS ONE 2015, 10, e0135486. [Google Scholar] [CrossRef]
- Lu, S.; Bennett, R.G.; Kharbanda, K.K.; Harrison-Findik, D.D. Lack of hepcidin expression attenuates steatosis and causes fibrosis in the liver. World J. Hepatol. 2016, 8, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, W.; Yan, X.; Huang, T.; Yang, A. Overexpression of Hepcidin Alleviates Steatohepatitis and Fibrosis in a Diet-induced Nonalcoholic Steatohepatitis. J. Clin. Transl. Hepatol. 2022, 10, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Miyazono, K.; Miyazawa, K. Id: A target of BMP signaling. Sci. STKE Signal Transduct. Knowl. Environ. 2002, 2002, pe40. [Google Scholar] [CrossRef]
- Wiercinska, E.; Wickert, L.; Denecke, B.; Said, H.M.; Hamzavi, J.; Gressner, A.M.; Thorikay, M.; ten Dijke, P.; Mertens, P.R.; Breitkopf, K.; et al. Id1 is a critical mediator in TGF-beta-induced transdifferentiation of rat hepatic stellate cells. Hepatology 2006, 43, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yan, X.; Xin, X.; Chen, H.; Hou, L.; Zhang, J. Hepatocyte-Specific Smad4 Deficiency Alleviates Liver Fibrosis via the p38/p65 Pathway. Int. J. Mol. Sci. 2022, 23, 1696. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yamagiwa, S.; Takamura, M.; Honda, Y.; Ishimoto, Y.; Ichida, T.; Aoyagi, Y. Overexpressed Id-1 is associated with a high risk of hepatocellular carcinoma development in patients with cirrhosis without transcriptional repression of p16. Cancer 2005, 104, 1037–1044. [Google Scholar] [CrossRef]
- Dong, X.C.; Chowdhury, K.; Huang, M.; Kim, H.G. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid. Redox Signal 2021, 35, 689–717. [Google Scholar] [CrossRef]
- Certain, M.C.; Robert, F.; Baron, A.; Sitbon, O.; Humbert, M.; Guignabert, C.; Tu, L.; Savale, L. Hepatopulmonary syndrome: Prevalence, pathophysiology and clinical implications. Rev. Mal. Respir. 2022, 39, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Raevens, S.; Boret, M.; Fallon, M.B. Hepatopulmonary syndrome. JHEP Rep. Innov. Hepatol. 2022, 4, 100527. [Google Scholar] [CrossRef] [PubMed]
- Toshner, M. BMP9 Morphs into a Potential Player in Portopulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2019, 199, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.E.; Alexander, G.J.; Sen, S.; Bunclark, K.; Polwarth, G.; Pepke-Zaba, J.; Davenport, A.P.; Morrell, N.W.; Upton, P.D. Reduced circulating BMP10 and BMP9 and elevated endoglin are associated with disease severity, decompensation and pulmonary vascular syndromes in patients with cirrhosis. EBioMedicine 2020, 56, 102794. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, I.; Yung, L.M.; Yang, P.; Malhotra, R.; Paskin-Flerlage, S.D.; Dinter, T.; Bocobo, G.A.; Tumelty, K.E.; Faugno, A.J.; Troncone, L.; et al. Bone Morphogenetic Protein 9 Is a Mechanistic Biomarker of Portopulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2019, 199, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Rochon, E.R.; Krowka, M.J.; Bartolome, S.; Heresi, G.A.; Bull, T.; Roberts, K.; Hemnes, A.; Forde, K.A.; Krok, K.L.; Patel, M.; et al. BMP9/10 in Pulmonary Vascular Complications of Liver Disease. Am. J. Respir. Crit. Care Med. 2020, 201, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.L.; Hinck, A.P. ALK1 signaling in development and disease: New paradigms. Cell. Mol. Life Sci. CMLS 2017, 74, 4539–4560. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Yang, C.; Zhang, Y.; Ai, X.; Wang, X.; Lu, K.; Yi, B. Kruppel-like factor 6 mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and is aggravated by bone morphogenetic protein 9. Biol. Open 2019, 8, bio040121. [Google Scholar] [CrossRef]
- Yang, C.; Sun, M.; Yang, Y.; Han, Y.; Wu, X.; Wu, X.; Cao, H.; Chen, L.; Lei, Y.; Hu, X.; et al. Elevated circulating BMP9 aggravates pulmonary angiogenesis in hepatopulmonary syndrome rats through ALK1-Endoglin-Smad1/5/9 signalling. Eur. J. Clin. Invest. 2024, 54, e14212. [Google Scholar] [CrossRef]
- Robert, F.; Certain, M.C.; Baron, A.; Thuillet, R.; Duhaut, L.; Ottaviani, M.; Kamel Chelgham, M.; Normand, C.; Berrebeh, N.; Ricard, N.; et al. Disrupted BMP-9 Signaling Impairs Pulmonary Vascular Integrity in Hepatopulmonary Syndrome. Am. J. Respir. Crit. Care Med. 2024. [Google Scholar] [CrossRef]
- Sangam, S.; Yu, P.B. Hepatopulmonary Syndrome, Another Face of Dysregulated BMP9 Signaling. Am. J. Respir. Crit. Care Med. 2024. [Google Scholar] [CrossRef]
- Alkhathami, A.G.; Abdullah, M.R.; Ahmed, M.; Hassan Ahmed, H.; Alwash, S.W.; Muhammed Mahdi, Z.; Alsaikhan, F.; Dera, A.A. Bone morphogenetic protein (BMP)9 in cancer development: Mechanistic, diagnostic, and therapeutic approaches? J. Drug Target. 2023, 31, 714–724. [Google Scholar] [CrossRef]
- Garcia-Alvaro, M.; Addante, A.; Roncero, C.; Fernandez, M.; Fabregat, I.; Sanchez, A.; Herrera, B. BMP9-Induced Survival Effect in Liver Tumor Cells Requires p38MAPK Activation. Int. J. Mol. Sci. 2015, 16, 20431. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Nio, K.; Yamashita, T.; Okada, H.; Li, R.; Suda, T.; Li, Y.; Doan, P.T.B.; Seki, A.; Nakagawa, H.; et al. BMP9-ID1 signaling promotes EpCAM-positive cancer stem cell properties in hepatocellular carcinoma. Mol. Oncol. 2021, 15, 2203–2218. [Google Scholar] [CrossRef]
- Giannelli, G.; Koudelkova, P.; Dituri, F.; Mikulits, W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J. Hepatol. 2016, 65, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, O.; Pyo, S.; Choi, S.U.; Park, C.H. Identification of novel ALK2 inhibitors and their effect on cancer cells. Biochem. Biophys. Res. Commun. 2017, 492, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef]
- Garcia-Hernandez, L.; Garcia-Ortega, M.B.; Ruiz-Alcala, G.; Carrillo, E.; Marchal, J.A.; Garcia, M.A. The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int. J. Mol. Sci. 2021, 23, 370. [Google Scholar] [CrossRef]
- He, H.; Qiao, K.; Wang, C.; Yang, W.; Xu, Z.; Zhang, Z.; Jia, Y.; Zhang, C.; Peng, L. Hydrazinocurcumin Induces Apoptosis of Hepatocellular Carcinoma Cells Through the p38 MAPK Pathway. Clin. Transl. Sci. 2021, 14, 2075–2084. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, X.; Zhang, E.; Ma, J.; Zhang, H.; Li, J.; Xie, W.; Li, X. Resistomycin Induced Apoptosis and Cycle Arrest in Human Hepatocellular Carcinoma Cells by Activating p38 MAPK Pathway In Vitro and In Vivo. Pharmaceuticals 2021, 14, 958. [Google Scholar] [CrossRef]
- Gomez-Puerto, M.C.; Iyengar, P.V.; Garcia de Vinuesa, A.; Ten Dijke, P.; Sanchez-Duffhues, G. Bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 2019, 247, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Yu, C.; Li, F.; Zuo, Y.; Wang, Y.; Yao, L.; Wu, C.; Wang, C.; Ye, L. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 2021, 6, 307. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Katoh, M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/beta-catenin signaling activation (Review). Int. J. Mol. Med. 2018, 42, 713–725. [Google Scholar] [CrossRef]
- Deldar Abad Paskeh, M.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Sethi, G. Wnt/beta-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J. Hepatocell. Carcinoma 2021, 8, 1415–1444. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Li, J.; Liu, M.; Cao, D.; Li, Y.Y.; Yamashita, T.; Nio, K.; Tang, H. BMP9-ID1 Pathway Attenuates N(6)-Methyladenosine Levels of CyclinD1 to Promote Cell Proliferation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 981. [Google Scholar] [CrossRef]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Wu, S.; Kong, J.; Sun, Y.; Bai, Y.; Zhu, R.; Li, Z.; Sun, W.; Zheng, L. Angiogenesis in hepatocellular carcinoma: Mechanisms and anti-angiogenic therapies. Cancer Biol. Med. 2023, 20, 25–43. [Google Scholar] [CrossRef]
- Chu, Q.; Gu, X.; Zheng, Q.; Zhu, H. Regulatory mechanism of HIF-1alpha and its role in liver diseases: A narrative review. Ann. Transl. Med. 2022, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.H.; Wong, C.C. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021, 10, 1715. [Google Scholar] [CrossRef]
- Chen, H.; Nio, K.; Tang, H.; Yamashita, T.; Okada, H.; Li, Y.; Doan, P.T.B.; Li, R.; Lv, J.; Sakai, Y.; et al. BMP9-ID1 Signaling Activates HIF-1alpha and VEGFA Expression to Promote Tumor Angiogenesis in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 1475. [Google Scholar] [CrossRef]
- Han, Y.; Pan, Q.; Guo, Z.; Du, Y.; Zhang, Y.; Liu, Y.; Zhao, J.; Xu, J.; Yang, J.; Ouyang, D.; et al. BMP9-induced vascular normalisation improves the efficacy of immunotherapy against hepatitis B virus-associated hepatocellular carcinoma. Clin. Transl. Med. 2023, 13, e1247. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.Q.; Liu, B.B.; Xu, K.S. New insights into BMP9 signaling in liver diseases. Mol. Cell. Biochem. 2021, 476, 3591–3600. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Miksad, R.A.; Tejani, M.A.; Williamson, S.; Gutierrez, M.E.; Olowokure, O.O.; Sharma, M.R.; El Dika, I.; Sherman, M.L.; Pandya, S.S. A Phase Ib, Open-Label Study of Dalantercept, an Activin Receptor-Like Kinase 1 Ligand Trap, plus Sorafenib in Advanced Hepatocellular Carcinoma. Oncologist 2019, 24, 161-e70. [Google Scholar] [CrossRef] [PubMed]
- Goff, L.W.; Cohen, R.B.; Berlin, J.D.; de Braud, F.G.; Lyshchik, A.; Noberasco, C.; Bertolini, F.; Carpentieri, M.; Stampino, C.G.; Abbattista, A.; et al. A Phase I Study of the Anti-Activin Receptor-Like Kinase 1 (ALK-1) Monoclonal Antibody PF-03446962 in Patients with Advanced Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 2146–2154. [Google Scholar] [CrossRef]
- Simonelli, M.; Zucali, P.; Santoro, A.; Thomas, M.B.; de Braud, F.G.; Borghaei, H.; Berlin, J.; Denlinger, C.S.; Noberasco, C.; Rimassa, L.; et al. Phase I study of PF-03446962, a fully human monoclonal antibody against activin receptor-like kinase-1, in patients with hepatocellular carcinoma. Ann. Oncol. 2016, 27, 1782–1787. [Google Scholar] [CrossRef]
Molecular Mechanism | Effects of the Pathway | Effects of BMP9 | Study Type | Reference |
---|---|---|---|---|
BMP9 promotes M1 macrophage polarization | BMP9 enhances NF-κB signaling | BMP9 promotes nonalcoholic steatohepatitis | Animal model | Jiang (2021) [111,125] |
BMP9 reduces obesity, improves glucose metabolism, alleviates hepatic steatosis, and decreases inflammation | BMP9 decreases the promoter chromatin accessibility of CERS6, FABP4, FOS, and TLR1 | BMP9 suppresses NALFD | Animal model | Sun (2021) [104] |
FINS, LDL-C, HDL-C, and BMI were independent factors impacting serum BMP9 levels | Serum levels of BMP9 are significantly lower in patients with T2DM and NAFLD | BMP9 is an independent risk factor for patients with T2DM and NAFLD | Cross-sectional study | Hao (2022) [98] |
Alcohol induces the activation of BMP signaling | Alcohol induces the expression of BMP2, BMP4, BMP7, BMP9, Smad1, and Smad4 | BMP signaling exerts anti- and/or pro-fibrotic effects | Animal model | Hong (2023) [126] |
BMP9 attenuates triglyceride accumulation by enhancing PPARα promoter activity via the activation of pSmads | BMP9 attenuates triglyceride accumulation by enhancing PPARα promoter activity via the activation of pSmads | Loss of BMP9 promotes liver steatosis | Cell line and animal model | Yang (2020) [105] |
BMP9 decreases ALT as well as cholesterol and enhances brown adipogenesis | BMP9 promotes UCP1 expression through the activation of FGF21 | BMP9 suppresses NALFD and obesity | Animal model | Kim (2016) [103] |
There is a positive correlation between BMP9 levels and NASH/NAFLD | Patients with BMP9 > 1188 pg/mL show worse disease in NASH/NAFLD | BMP9 can be biomarker for NASH/NAFLD | Cross-sectional study | Bocci (2022) [96] |
Hepatic BMP9 expression negatively correlates with steatosis in obese patients with diabetes | BMP9 directly induces FGF19 in gut | Under pre-steatotic conditions, it is likely that increased levels of BMP9 would have beneficial effects | Cross-sectional study | Drexler (2023) [100] |
BMP9 is negatively associated with WHR, FBG, 2h-OGTT, HbA1c, TG levels, and HOMA-IR; on the other hand, BMP9 is positively associated with FFA and HDL levels | Circulating BMP9 is negatively associated with metabolic syndrome and insulin resistance | BMP9 is independently associated with T2DM, HOMA-IR, and FFA | Cross-sectional study | Xu (2017) [118] |
BMP9 level is negatively correlated with HbA1c, FBG, OGTT, AUC glucose, and HOMA-IR | Circulating BMP9 levels are significantly lower in newly diagnosed T2DM patients compared to healthy people | The decreased levels of circulating BMP9 could serve as a marker of insulin resistance in T2DM patients | Cross-sectional study | Luo (2017) [119] |
Platycodin induces BMP9 expression and reduces Smad4 expression | BMP9 rectifies blood glucose and lipid metabolism disorders | Animal model | Luan (2014) [120] | |
The deletion of BMP9 elevates the PEPCK protein levels and reduces the levels of InsR and Akt phosphorylation | The deletion of BMP9 exacerbates insulin resistance and glucose intolerance in mouse models fed a high-fat diet | Animal model | Jia (2019) [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, Y.-Y.; Nio, K.; Tang, H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024, 14, 1013. https://doi.org/10.3390/biom14081013
Chen H, Li Y-Y, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules. 2024; 14(8):1013. https://doi.org/10.3390/biom14081013
Chicago/Turabian StyleChen, Han, Ying-Yi Li, Kouki Nio, and Hong Tang. 2024. "Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential" Biomolecules 14, no. 8: 1013. https://doi.org/10.3390/biom14081013
APA StyleChen, H., Li, Y. -Y., Nio, K., & Tang, H. (2024). Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules, 14(8), 1013. https://doi.org/10.3390/biom14081013