The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research
Abstract
:1. Mental Disorder, Aggression, and Serotonin Deficiency
1.1. Mental Disorder, Social Stress, and Aggression
1.2. Serotonin Deficiency Theory
2. Stress and Injurious Behavior in Domestic Chickens
3. Chicken Model in Psychological Disorders
3.1. Chicken as an Animal Model in Biological Research
3.2. Chickens as an Animal Model in Mental Disorder Research
4. Gut Microbiota and the Gut–Brain Axis
4.1. Gut Microbiota in Stress Response
Model/Disorder | Findings | References |
---|---|---|
5-HTT+/− mice | 5-HTT+/− mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Also, 5-HTT−/− mice had decreased abundance of Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. | [42] |
Social anxiety disorder(SAD) patients | Beta-diversity was different between the SAD and control groups. Also, several taxonomic differences were found, i.e., genera Anaeromassillibacillus and Gordonibacter were elevated in SAD, while Parasuterella was enriched in healthy controls. At a species level, Anaeromassilibacillus sp. An250 was found to be more abundant in SAD patients, while Parasutterella excrementihominis was higher in controls. | [164] |
Autism spectrum disorder (ASD) patients | ASD children’s gut microbiota had higher abundance of Proteobacteria, Actinobacteria, and Sutterella compared to controls. | [165] |
Schizophrenia patients | Specific genus-level microbial panels of Ruminococcus, UCG005, Clostridium_sensu_stricto_1, and Bifidobacterium were increased in schizophrenia patients. | [166] |
Adverse post-traumatic neuropsychiatric sequelae (APNS) patients | Microbial species, including Flavonifractor plautii, Ruminococcus gnavus and, Bifidobacterium species were found to be important in predicting worse APNS outcomes from microbial abundance data. | [167] |
Chronic unpredictable mild stress (CUMS) model rats | B. licheniformis reduced depressive-like and anxiety-like behaviors in rats during the CUMS process. Also, B. licheniformis changed the gut microbiota composition; increased the short-chain fatty acids (SCFAs) in the colon; decreased kynurenine, norepinephrine, and glutamate levels; and increased the tryptophan, dopamine, epinephrine, and γ-aminobutyric acid (GABA) in the brain. Meanwhile, Parabacteroides, Anaerostipes, Ruminococcus-2, and Blautia showed significant correlation with neurotransmitters and SCFAs. | [173] |
Healthy female subjects followed a working memory task | The relative abundance of eight genera in the probiotics group was higher (uncorrected) relative to the placebo group: Butyricimonas, Parabacteroides, Alistipes, Christensenellaceae_R-7_group, Family_XIII_AD3011_group, Ruminococcaceae_UCG-003, Ruminococcaceae_UCG-005, and Ruminococcaceae_UCG-010. Also, the probiotic-induced change in genus Ruminococcaceae_UCG-003 was significantly associated with probiotics’ effect on stress-induced working memory changes compared to the placebo group. | [174] |
Common marmosets (Callithrix jacchus) with antibiotic cocktail | Increase in gut Fusobacterium spp. post-antibiotic administration with significant changes in concentrations of several gut metabolites that are either neurotransmitters (e.g., GABA and 5-HT) or the moderators of gut–brain axis communication in rodent models (e.g., short-chain fatty acids and bile acids). Also, antibiotic-administered marmosets exhibited increased affiliative behavior and sociability, which might be a coping mechanism in response to gut dysbiosis-induced stress. | [177] |
Meta-analysis of 48 rodent studies | The increased abundance in gut Proteobacteria showed statistically significant association with an increase in anxiety. | [178] |
49 eligible volunteers | Compared to placebo, probiotic Bifidobacterium longum reduced the stress negative effects in patients, correlated with a reduction in anxiety, depression, and the cortisol awakening response. | [191] |
Subjects with sleep disturbance and mood symptoms | An E3 multi-strain probiotic improved depressive anxious symptoms in patients with notable differences in beta diversity, i.e., the relative abundance of Bifidobacterium bifidum, Lactobacillus acidophilus, Lactobacillus helveticus, and Lactobacillus plantarum as well as increased Firmicutes/Bacteroidetes (F/B) ratio. | [193] |
Chronic Stress Mouse Model | Probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) and Lactobacillus reuteri ATG-F4 improved anxiety-like and depressive-like behaviors, accompanied by biochemical changes in tryptophan metabolism of unpredictable chronic mild stressed mice, respectively. | [194,195] |
Generalized anxiety disorder (GAD) patients: meta-analysis | Levels of specific enteric bacteria (Escherichia–Shigella) are increased in GAD patients; 71% of reviewed studies showed decreased levels of Escherichia–Shigella post-FMT compared to pre-FMT, suggesting FMT could be as a treatment modality for GAD. | [207] |
4.2. Gut Microbiota in Chickens
4.3. Cecal Microbiota Transplantation and Injurious Behavior in Chickens
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kirkbride, J.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The Social Determinants of Mental Health and Disorder: Evidence, Prevention and Recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef] [PubMed]
- Tanelian, A.; Nankova, B.; Cheriyan, A.; Arens, C.; Hu, F.; Sabban, E.L. Differences in Gut Microbiota Associated with Stress Resilience and Susceptibility to Single Prolonged Stress in Female Rodents. Neurobiol. Stress 2023, 24, 100533. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.K.; Nandan, A.; Prashant, S.; Sathianarayanan, S.; Jose, A.; Venkidasamy, B.; Nile, S.H. Decoding the Role of the Gut Microbiome in Gut-Brain Axis, Stress-Resilience, or Stress-Susceptibility: A Review. Asian J. Psychiatry 2024, 91, 103861. [Google Scholar] [CrossRef]
- Thams, F.; Brassen, S. The Need to Change: Is There a Critical Role of Midlife Adaptation in Mental Health Later in Life? eLife 2023, 12, e82390. [Google Scholar] [CrossRef]
- Mental Health and Substance Use (MSD) Comprehensive Mental Health Action Plan 2013–2030. Available online: https://www.who.int/publications/i/item/9789240031029 (accessed on 11 April 2024).
- Esposito, R.; Zhang, F.; Hu, M.; Li, P.; Guo, W. Editorial: Emotional Disturbance and Brain Imaging in Neuropsychiatric Disorders. Front. Psychiatry 2021, 12, 632244. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Mental Disorders Collaborators. Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Hannah, K.J.; Marie, K.; Horstick, O.; Stephan, B.C.M.; Andreas, D.; Michael, L.; Till, B.; Peter, D.A. The Global Economic Burden of Health Anxiety/Hypochondriasis- a Systematic Review. BMC Public Health 2023, 23, 2237. [Google Scholar] [CrossRef]
- Nearly One Billion People Have a Mental Disorder: WHO. Available online: https://news.un.org/en/story/2022/06/1120682 (accessed on 11 April 2024).
- Mental Health by the Numbers|NAMI: National Alliance on Mental Illness. Available online: https://www.nami.org/mhstats (accessed on 11 April 2024).
- Lee, B.; Wang, Y.; Carlson, S.A.; Greenlund, K.J.; Lu, H.; Liu, Y.; Croft, J.B.; Eke, P.I.; Town, M.; Thomas, C.W. National, State-Level, and County-Level Prevalence Estimates of Adults Aged ≥ 18 Years Self-Reporting A Lifetime Diagnosis of Depression—United States, 2020. Morb. Mortal. Wkly. Rep. 2023, 72, 644–650. [Google Scholar] [CrossRef]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the Global Burden of Mental Disorders and Their Economic Value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef] [PubMed]
- Reebye, P. Aggression during Early Years—Infancy and Preschool. Can. Child Adolesc. Psychiatry Rev. 2015, 14, 16. [Google Scholar]
- Flanigan, M.E.; Russo, S.J. Recent Advances in the Study of Aggression. Neuropsychopharmacology 2018, 44, 241–244. [Google Scholar] [CrossRef]
- Bernhardt, J.R.; Kratina, P.; Pereira, A.L.; Tamminen, M.; Thomas, M.K.; Narwani, A. The Evolution of Competitive Ability for Essential Resources. Philos. Trans. R. Society. Biol. Sci. 2020, 375, 20190247. [Google Scholar] [CrossRef]
- Sturmey, P. Biological Evolution of Violence and Aggression. i. Evolution and Genetics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 89–120. [Google Scholar]
- Price, E.O. Behavioral Development in Animals Undergoing Domestication. Appl. Anim. Behav. Sci. 1999, 65, 245–271. [Google Scholar] [CrossRef]
- Grether, G.F.; Anderson, C.N.; Drury, J.P.; Kirschel, A.N.G.; Losin, N.; Okamoto, K.W.; Peiman, K.S. The Evolutionary Consequences of Interspecific Aggression. Ann. N. Y. Acad. Sci. 2013, 1289, 48–68. [Google Scholar] [CrossRef]
- Martínez, V.; Jiménez-Molina, Á.; Gerber, M.M. Social Contagion, Violence, and Suicide among Adolescents. Curr. Opin. Psychiatry 2023, 36, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Kwan, M.; Ng, M.K.; Tieben, H. The Impacts of Housing Characteristics and Built-Environment Features on Mental Health. Int. J. Environ. Res. Public Health 2022, 19, 5143. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, N.; Polemiti, E.; Garcia-Mondragon, L.; Tang, J.; Liu, X.; Lett, T.A.; Yu, L.; Nöthen, M.M.; Feng, J.; et al. Effects of Urban Living Environments on Mental Health in Adults. Nat. Med. 2023, 29, 1456–1467. [Google Scholar] [CrossRef]
- Stress. Available online: https://www.who.int/news-room/questions-and-answers/item/stress (accessed on 12 April 2024).
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Nakama, N.; Usui, N.; Doi, M.; Shimada, S. Early Life Stress Impairs Brain and Mental Development during Childhood Increasing the Risk of Developing Psychiatric Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 126, 110783. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.J.; Egger, H.; Angold, A. 10-year Research Update Review: The Epidemiology of Child and Adolescent Psychiatric Disorders: I. Methods and Public Health Burden. J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 972–986. [Google Scholar] [CrossRef]
- Srinivasan, P.; Kurian, L.P.; Rentala, S.; Belsiyal, C.X.; Thimmajja, S.G. Aggressive Behavior and Its Associated Factors among Persons with Mental Illness: An Observational Study. J. Educ. Health Promot. 2023, 12, 249. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha-Bang, S.; Knudsen, G.M. The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol. Psychiatry 2021, 90, 447–457. [Google Scholar] [CrossRef]
- Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.T.; Ahadi, R.; Joghataei, M.T. The Roles of Serotonin in Neuropsychiatric Disorders. Cell. Mol. Neurobiol. 2021, 42, 1671–1692. [Google Scholar] [CrossRef]
- McLaughlin, L. Serotonin and the Brain. Deleted J. 2023, 2, 54–74. [Google Scholar] [CrossRef]
- Dennis, R.L.; Chen, Z.Q.; Cheng, H.-W. Serotonergic Mediation of Aggression in High and Low Aggressive Chicken Strains. Poult. Sci. 2008, 87, 612–620. [Google Scholar] [CrossRef] [PubMed]
- De Haas, E.N.; Van Der Eijk, J.A.J. Where in the Serotonergic System Does It Go Wrong? Unravelling the Route by Which the Serotonergic System Affects Feather Pecking in Chickens. Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 2018, 95, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Han, J.; Fasina, Y.O.; Harrison, S.H. Connecting Gut Microbiomes and Short Chain Fatty Acids with the Serotonergic System and Behavior in Gallus Gallus and Other Avian Species. Front. Physiol. 2022, 13, 1035538. [Google Scholar] [CrossRef] [PubMed]
- Tricklebank, M.D.; Petrinovic, M.M. Serotonin and Aggression; Elsevier: Amsterdam, The Netherlands, 2019; pp. 155–180. [Google Scholar]
- Beliveau, V.; Svarer, C.; Frøkjær, V.G.; Knudsen, G.M.; Greve, D.N.; Fisher, P.M. Functional Connectivity of the Dorsal and Median Raphe Nuclei at Rest. NeuroImage 2015, 116, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Chen, R.; Pun, A.; Sun, Y.-S.; et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-Systems. Cell 2018, 175, 472–487.e20. [Google Scholar] [CrossRef]
- Bamalan, O.A.; Moore, M.J.; Khalili, Y.A. Physiology, Serotonin. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545168 (accessed on 12 April 2024).
- Li, H.; Wang, J.; Zhang, X.; Hu, Y.; Liu, Y.; Ma, Z. Comparing Behavioral Performance and Physiological Responses of Sebastes Schlegelii with Different Aggressiveness. Fish Physiol. Biochem. 2022, 48, 1333–1347. [Google Scholar] [CrossRef]
- Nikulina, E.M. Neural Control of Predatory Aggression in Wild and Domesticated Animals. Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 1991, 15, 545–547. [Google Scholar] [CrossRef]
- Morandini, L.; Ramallo, M.R.; Scaia, M.F.; Höcht, C.; Somoza, G.M.; Pandolfi, M. Dietary L-Tryptophan Modulates Agonistic Behavior and Brain Serotonin in Male Dyadic Contests of a Cichlid Fish. J. Comp. Physiol. 2019, 205, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Jayamohananan, H.; Kumar, M.K.M.P. 5-HIAA as a as a Potential Biological Marker for Neurological and Psychiatric Disorders. Adv. Pharm. Bull. 2019, 9, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ran, L.-S.; Wu, Y.; Liang, M.; Jing, Z.; Ke, F.; Wang, F.; Yang, J.; Lao, X.; Liu, L.; et al. Oral Administration of 5-Hydroxytryptophan Restores Gut Microbiota Dysbiosis in a Mouse Model of Depression. Front. Microbiol. 2022, 13, 864571. [Google Scholar] [CrossRef]
- Shoji, H.; Ikeda, K.; Miyakawa, T. Behavioral Phenotype, Intestinal Microbiome, and Brain Neuronal Activity of Male Serotonin Transporter Knockout Mice. Mol. Brain 2023, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Ivković, S.; Mitić, M.; Adžić, M. Tryptophan Metabolites in Depression: Modulation by Gut Microbiota. Front. Behav. Neurosci. 2022, 16, 987697. [Google Scholar] [CrossRef]
- Kästner, N.; Richter, S.H.; Urbanik, S.; Kunert, J.; Waider, J.; Lesch, K.; Kaiser, S.; Sachser, N. Brain Serotonin Deficiency Affects Female Aggression. Sci. Rep. 2019, 9, 1366. [Google Scholar] [CrossRef]
- Meng, X.; Grandjean, J.; Sbrini, G.; Schipper, P.; Hofwijks, N.; Stoop, J.; Calabrese, F.; Homberg, J.R. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem. Neurosci. 2022, 13, 2974–2981. [Google Scholar] [CrossRef]
- Mentis, A.A.; Dardiotis, E.; Katsouni, E.; Chrousos, G.P. From Warrior Genes to Translational Solutions: Novel Insights into Monoamine Oxidases (MAOs) and Aggression. Transl. Psychiatry 2021, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Пoпoва, Н.К.; Цыбкo, А.С.; Науменкo, В.С. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int. J. Mol. Sci. 2022, 23, 8814. [Google Scholar] [CrossRef]
- Salvan, P.; Fonseca, M.S.; Winkler, A.M.; Beauchamp, A.; Lerch, J.P.; Johansen-Berg, H. Serotonin Regulation of Behavior via Large-Scale Neuromodulation of Serotonin Receptor Networks. Nat. Neurosci. 2022, 26, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Mosienko, V.; Bert, B.; Beis, D.; Matthes, S.; Fink, H.; Bäder, M.; Alenina, N. Exaggerated Aggression and Decreased Anxiety in Mice Deficient in Brain Serotonin. Transl. Psychiatry 2012, 2, e122. [Google Scholar] [CrossRef]
- Audero, E.; Mlinar, B.; Baccini, G.; Skachokova, Z.K.; Corradetti, R.; Gross, C. Suppression of Serotonin Neuron Firing Increases Aggression in Mice. J. Neurosci. 2013, 33, 8678–8688. [Google Scholar] [CrossRef] [PubMed]
- Popova, Н.К. From Genes to Aggressive Behavior: The Role of Serotonergic System. BioEssays 2006, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Ortiz, J.L.; Coccaro, E.F. The Role of 5-HT2B Receptor on Aggression and Drugs of Abuse. In 5-HT2B Receptors; Springer: Cham, Switzelrand, 2021; pp. 291–307. [Google Scholar]
- Albert, P.R.; Benkelfat, C.; Descarries, L. The Neurobiology of Depression—Revisiting the Serotonin Hypothesis. I. Cellular and Molecular Mechanisms. Philos. Trans. R. Society. Biol. Sci. 2012, 367, 2378–2381. [Google Scholar] [CrossRef]
- Duke, A.A.; Bègue, L.; Bell, R.; Eisenlohr-Moul, T.A. Revisiting the Serotonin–Aggression Relation in Humans: A Meta-Analysis. Psychol. Bull. 2013, 139, 1148–1172. [Google Scholar] [CrossRef] [PubMed]
- Terenina, E.; Cavigelli, S.A.; Mormède, P.; Zhao, W.; Parks, C.; Lu, L.; Jones, B.C.; Mulligan, M.K. Genetic Factors Mediate the Impact of Chronic Stress and Subsequent Response to Novel Acute Stress. Front. Neurosci. 2019, 13, 446395. [Google Scholar] [CrossRef]
- Wilson, Y.; Gunnersen, J.M.; Murphy, M. Genetics of Stress Responsiveness; Elsevier: Amsterdam, The Netherlands, 2021; pp. 167–177. [Google Scholar]
- Buchanan, T.W.; Lovallo, W.R. The Role of Genetics in Stress Effects on Health and Addiction. Curr. Opin. Psychol. 2019, 27, 72–76. [Google Scholar] [CrossRef]
- Løtvedt, P.; Fallahshahroudi, A.; Bektic, L.; Altimiras, J.; Jensen, P. Chicken Domestication Changes Expression of Stress-Related Genes in Brain, Pituitary and Adrenals. Neurobiol. Stress 2017, 7, 113–121. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, R.; Su, A.; Tian, H.; Zhang, Y.; Li, W.; Tian, Y.; Li, K.; Sun, G.; Han, R.; et al. Identification of Genes Related to Effects of Stress on Immune Function in the Spleen in a Chicken Stress Model Using Transcriptome Analysis. Mol. Immunol. 2020, 124, 180–189. [Google Scholar] [CrossRef]
- Barber, J.; Barber, J.C. The Chicken: A Natural History; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Johnsson, M. Changes in Behavior and Emotion under Chicken Domestication. Anim. Sentience 2017, 2, 10. [Google Scholar] [CrossRef]
- Mehlhorn, J.; Caspers, S. The Effects of Domestication on the Brain and Behavior of the Chicken in the Light of Evolution. Brain Behav. Evol. 2020, 95, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Khalil, M.H.; El-Sabrout, K.; Shebl, M.K. Crossing Effect for Improving Egg Production Traits in Chickens Involving Local and Commercial Strains. Vet. World Vet. World 2020, 13, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-W. Breeding of Tomorrow’s Chickens to Improve Well-Being. Poult. Sci. 2010, 89, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Bonnefous, C.; Collin, A.; Guilloteau, L.; Guesdon, V.; Filliat, C.; Réhault-Godbert, S.; Rodenburg, T.B.; Tuyttens, F.; Warin, L.; Steenfeldt, S.; et al. Welfare Issues and Potential Solutions for Laying Hens in Free Range and Organic Production Systems: A Review Based on Literature and Interviews. Front. Vet. Sci. 2022, 9, 952922. [Google Scholar] [CrossRef] [PubMed]
- Biro, P.A.; Stamps, J.A. Are Animal Personality Traits Linked to Life-History Productivity? Trends Ecol. Evol. 2008, 23, 361–368. [Google Scholar] [PubMed]
- Backus, M. Why Is Productivity Correlated with Competition? Econometrica 2020, 88, 2415–2444. [Google Scholar]
- Hocking, P. Unexpected Consequences of Genetic Selection in Broilers and Turkeys: Problems and Solutions. Br. Poult. Sci. 2014, 55, 1–12. [Google Scholar] [PubMed]
- Drury, J.P.; Cowen, M.C.; Grether, G.F. Competition and Hybridization Drive Interspecific Territoriality in Birds. Proc. Natl. Acad. Sci. USA 2020, 117, 12923–12930. [Google Scholar] [CrossRef]
- Kleszcz, A.; Cholewińska, P.; Front, G.; Pacoń, J.; Bodkowski, R.; Janczak, M.; Dorobisz, T. Review on Selected Aggression Causes and the Role of Neurocognitive Science in the Diagnosis. Animals 2022, 12, 281. [Google Scholar] [CrossRef]
- Meuser, V.; Weinhold, L.; Hillemacher, S.; Tiemann, I. Welfare-Related Behaviors in Chickens: Characterization of Fear and Exploration in Local and Commercial Chicken Strains. Animals 2021, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, A.; Plattner, C.; Bergmann, S.; Rauch, E.; Erhard, M.; Reese, S.; Louton, H. Feather Pecking in Non-Beak-Trimmed and Beak-Trimmed Laying Hens on Commercial Farms with Aviaries. Animals 2021, 11, 3085. [Google Scholar] [CrossRef] [PubMed]
- Daigle, C.L.; Rodenburg, T.B.; Bolhuis, J.E.; Swanson, J.C.; Siegford, J.M. Individual Consistency of Feather Pecking Behavior in Laying Hens: Once a Feather Pecker Always a Feather Pecker? Front. Vet. Sci. 2015, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Antonoplis, S. Studying Personality and Social Structure. Soc. Personal. Psychol. Compass 2024, 18, e12932. [Google Scholar] [CrossRef]
- Park, J. Yes, Chickens Have Feelings Too. The Recognition of Animal Sentience will Address Outdated Animal Protection Laws for Chickens and other Poultry in the United States. San Diego Int. Law J. 2021, 22, 335–364. [Google Scholar]
- Daigle, C.L.; Rodenburg, T.B.; Bolhuis, J.E.; Swanson, J.C.; Siegford, J.M. Use of Dynamic and Rewarding Environmental Enrichment to Alleviate Feather Pecking in Non-Cage Laying Hens. Appl. Anim. Behav. Sci. 2014, 161, 75–85. [Google Scholar] [CrossRef]
- Van Staaveren, N.; Ellis, J.L.; Baes, C.F.; Harlander-Matauschek, A. A Meta-Analysis on the Effect of Environmental Enrichment on Feather Pecking and Feather Damage in Laying Hens. Poult. Sci. 2021, 100, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Fossum, O.; Jansson, D.S.; Etterlin, P.E.; Vågsholm, I. Causes of Mortality in Laying Hens in Different Housing Systems in 2001 to 2004. Acta Vet. Scand. 2009, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Weeks, C.A.; Lambton, S.L.; Williams, A.G. Implications for Welfare, Productivity and Sustainability of the Variation in Reported Levels of Mortality for Laying Hen Flocks Kept in Different Housing Systems: A Meta-Analysis of Ten Studies. PLoS ONE 2016, 11, e0146394. [Google Scholar] [CrossRef]
- United Egg Producers Facts & Stats—United Egg Producers. Available online: https://unitedegg.com/facts-stats/ (accessed on 16 April 2024).
- How Can Feather Pecking Be Managed in Cage-Free Layer Hen Systems? Available online: https://kb.rspca.org.au/knowledge-base/how-can-feather-pecking-be-managed-in-cage-free-layer-hen-systems/ (accessed on 16 April 2024).
- Karcher, D.M.; Mench, J.A. Overview of Commercial Poultry Production Systems and Their Main Welfare Challenges; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–25. [Google Scholar]
- Campbell, A.; Johnson, A.M.; Persia, M.E.; Jacobs, L. Effects of Housing System on Anxiety, Chronic Stress, Fear, and Immune Function in Bovan Brown Laying Hens. Animals 2022, 12, 1803. [Google Scholar] [CrossRef]
- Mench, J.A.; Duncan, I. Poultry Welfare in North America: Opportunities and Challenges. Poult. Sci. 1998, 77, 1763–1765. [Google Scholar] [CrossRef] [PubMed]
- Bird Brain? Birds and Humans Have Similar Brain Wiring. Available online: https://www.sciencedaily.com/releases/2013/07/130717095336.htm (accessed on 16 April 2024).
- Banich, M.T.; Floresco, S.B. Reward Systems, Cognition, and Emotion: Introduction to the Special Issue. Cogn. Affect. Behav. Neurosci. 2019, 19, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Van Der Staay, F.J.; Arndt, S.S.; Nordquist, R.E. Evaluation of Animal Models of Neurobehavioral Disorders. Behav. Brain Funct. 2009, 5, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Abel, T.; Akil, H.; Carlezon, W.A.; Moghaddam, B.; Nestler, E.J.; Ressler, K.J.; Thompson, S.M. The Critical Importance of Basic Animal Research for Neuropsychiatric Disorders. Neuropsychopharmacology 2019, 44, 1349–1353. [Google Scholar] [CrossRef]
- Sesia, T.; Wenzel, J.; Sagalajev, B.; Jahanshahi, A.; Visser-Vandewalle, V. Editorial: Animal Models of Neuropsychiatric Disorders: Validity, Strengths, and Limitations. Front. Behav. Neurosci. 2023, 17, 1200068. [Google Scholar] [CrossRef] [PubMed]
- Beacon, T.H.; Davie, J.R. The Chicken Model Organism for Epigenomic Research. Genome 2021, 64, 476–489. [Google Scholar] [CrossRef]
- Flores-Santin, J.; Burggren, W.W. Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research. Front. Physiol. 2021, 12, 712633. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, H. Perspective: Chicken Models for Studying the Ontogenetic Origin of Neuropsychiatric Disorders. Biomedicines 2022, 10, 1155. [Google Scholar] [CrossRef]
- Ribatti, D.; Annese, T. Chick Embryo in Experimental Embryology and More. Pathol. Res. Pract. 2023, 245, 154478. [Google Scholar] [CrossRef]
- Tregaskes, C.A.; Kaufman, J. Chickens as a Simple System for Scientific Discovery: The Example of the MHC. Mol. Immunol. 2021, 135, 12–20. [Google Scholar] [CrossRef]
- Huang, X.; Kuang, S.; Applegate, T.J.; Lin, T.-L.; Cheng, H. Prenatal Serotonin Fluctuation Affects Serotoninergic Development and Related Neural Circuits in Chicken Embryos. Neuroscience 2021, 473, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, J.; Peng, H.; Cheng, H. Embryonic Exposure to Tryptophan Yields Bullying Victimization via Reprogramming the Microbiota-Gut-Brain Axis in a Chicken Model. Nutrients 2022, 14, 661. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Feng, Z.; Cheng, H. Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells 2022, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
- Browne, H.P.; Neville, B.A.; Forster, S.C.; Lawley, T.D. Transmission of the Gut Microbiota: Spreading of Health. Nat. Reviews. Microbiol. 2017, 15, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Beghetti, I.; Barone, M.; Brigidi, P.; Sansavini, A.; Corvaglia, L.; Aceti, A.; Turroni, S. Early-Life Gut Microbiota and Neurodevelopment in Preterm Infants: A Narrative Review. Front. Nutr. 2023, 10, 1241303. [Google Scholar] [CrossRef] [PubMed]
- Mady, E.A.; Doghish, A.S.; El-Dakroury, W.A.; Elkhawaga, S.Y.; Ismail, A.; El-Mahdy, H.A.; Elsakka, E.G.E.; El-Husseiny, H.M. Impact of the Mother’s Gut Microbiota on Infant Microbiome and Brain Development. Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 2023, 150, 105195. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.M.; Ameha, N. Review on Egg Handling and Management of Incubation and Hatchery Environment. Asian J. Biol. Sci. 2023, 16, 474–484. [Google Scholar] [CrossRef]
- Consortium, I.C.G.S. Erratum: Corrigendum: Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution. Nature 2005, 433, 777. [Google Scholar] [CrossRef]
- Rushen, J. The Peck Orders of Chickens: How Do They Develop and Why Are They Linear? Anim. Behav. 1982, 30, 1129–1137. [Google Scholar] [CrossRef]
- Cheng, H.; Singleton, P.; Muir, W.M. Social Stress Differentially Regulates Neuroendocrine Responses in Laying Hens: I. Genetic Basis of Dopamine Responses under Three Different Social Conditions. Psychoneuroendocrinology 2003, 28, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Muir, W.M. Chronic Social Stress Differentially Regulates Neuroendocrine Responses in Laying Hens: II. Genetic Basis of Adrenal Responses under Three Different Social Conditions. Psychoneuroendocrinology 2004, 29, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.L.; Fahey, A.G.; Cheng, H. Alterations to Embryonic Serotonin Change Aggression and Fearfulness. Aggress. Behav. 2013, 39, 91–98. [Google Scholar] [CrossRef]
- Dennis, R.L.; Lay, D.C.; Cheng, H. Effects of Early Serotonin Programming on Behavior and Central Monoamine Concentrations in an Avian Model. Behav. Brain Res. 2013, 253, 290–296. [Google Scholar] [CrossRef]
- Rodenburg, T.B.; Tuyttens, F.; Sonck, B.; De Reu, K.; Herman, L.; Zoons, J. Welfare, Health, and Hygiene of Laying Hens Housed in Furnished Cages and in Alternative Housing Systems. J. Appl. Anim. Welf. Sci. 2005, 8, 211–226. [Google Scholar] [CrossRef]
- Walker, S.; Papilloud, A.; Huzard, D.; Sandi, C. The Link between Aberrant Hypothalamic–Pituitary–Adrenal Axis Activity during Development and the Emergence of Aggression—Animal Studies. Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 2018, 91, 138–152. [Google Scholar] [CrossRef]
- Goodson, J.L. The Vertebrate Social Behavior Network: Evolutionary Themes and Variations. Horm. Behav. 2005, 48, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Broadbent, N. Is the Avian Hippocampus a Functional Homologue of the Mammalian Hippocampus? Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 2000, 24, 465–484. [Google Scholar] [CrossRef]
- Fujita, T.; Aoki, N.; Mori, C.; Homma, K.J.; Yamaguchi, S. Molecular Biology of Serotonergic Systems in Avian Brains. Front. Mol. Neurosci. 2023, 16, 1226645. [Google Scholar] [CrossRef] [PubMed]
- Kuenzel, W.J. Research Advances Made in the Avian Brain and Their Relevance to Poultry Scientists. Poult. Sci. 2014, 93, 2945–2952. [Google Scholar] [CrossRef]
- Kuenzel, W.J. Mapping the Brain of the Chicken (Gallus Gallus), with Emphasis on the Septal-Hypothalamic Region. Gen. Comp. Endocrinol. 2018, 256, 4–15. [Google Scholar] [CrossRef]
- Herold, C.; Schlömer, P.; Mafoppa-Fomat, I.; Mehlhorn, J.; Amunts, K.; Axer, M. The Hippocampus of Birds in a View of Evolutionary Connectomics. Cortex 2019, 118, 165–187. [Google Scholar] [CrossRef]
- Thompson, R.G.; Goodson, J.L.; Ruscio, M.G.; Adkins-Regan, E. Role of the Archistriatal Nucleus Taeniae in the Sexual Behavior of Male Japanese Quail (Coturnix Japonica): A comparison of function with the medial nucleus of the amygdala in mammals. Brain Behav. Evol. 1998, 51, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Saint-Dizier, H.; Constantin, P.; Davies, D.C.; Leterrier, C.; Lévy, F.; Richard, S. Subdivisions of the Arcopallium/Posterior Pallial Amygdala Complex are Differentially Involved in the Control of Fear Behaviour in the Japanese Quail. Brain Res. Bull. 2009, 79, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Challet, É.; Miceli, D.; Pierre, J.; Repérant, J.; Masicotte, G.; Herbin, M.; Vesselkin, N.P. Distribution of Serotonin-Immunoreactivity in the Brain of the Pigeon (Columba Livia). Anat. Embryol. 1996, 193, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Dietl, M.; Palacios, J.M. Neurotransmitter Receptors in the Avian Brain. I. Dopamine Receptors. Brain Res. 1988, 439, 354–359. [Google Scholar] [CrossRef]
- Dennis, R.L.; Cheng, H. Effects of Selective Serotonin Antagonism on Central Neurotransmission. Poult. Sci. 2012, 91, 817–822. [Google Scholar] [CrossRef]
- Huang, C.; Hao, E.; Yue, Q.; Liu, M.; Wang, D.; Chen, Y.; Shi, L.; Zhang, D.; Zhao, G.; Chen, H. Malfunctioned Inflammatory Response and Serotonin Metabolism at the Microbiota-Gut-Brain Axis Drive Feather Pecking Behavior in Laying Hens. Poult. Sci. 2023, 102, 102686. [Google Scholar] [CrossRef] [PubMed]
- Gostner, J.M.; Geisler, S.; Stonig, M.; Mair, L.; Sperner-Unterweger, B.; Fuchs, D. Tryptophan Metabolism and Related Pathways in Psychoneuroimmunology: The Impact of Nutrition and Lifestyle. Neuropsychobiology 2019, 79, 89–99. [Google Scholar] [CrossRef]
- Van Hierden, Y.M.; Koolhaas, J.M.; Korte, S.M. Chronic Increase of Dietary L-Tryptophan Decreases Gentle Feather Pecking Behaviour. Appl. Anim. Behav. Sci. 2004, 89, 71–84. [Google Scholar] [CrossRef]
- Falker-Gieske, C.; Bennewitz, J.; Tetens, J. The Light Response in Chickens Divergently Selected for Feather Pecking Behavior Reveals Mechanistic Insights towards Psychiatric Disorders. Mol. Biol. Rep. 2021, 49, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.M.; Mench, J.A.; Thomas, O. The Effect of Dietary Tryptophan on Aggressive Behavior in Developing and Mature Broiler Breeder Males. Poult. Sci. 1990, 69, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Linh, N.T.; Guntoro, B.; Qui, N.H. Immunomodulatory, Behavioral, and Nutritional Response of Tryptophan Application on Poultry. Vet. World Vet. World 2021, 14, 2244–2250. [Google Scholar] [CrossRef]
- Henry, M.; Shoveller, A.K.; O’Sullivan, T.L.; Niel, L.; Friendship, R. Effect of Varying Levels of Dietary Tryptophan on Aggression and Abnormal Behavior in Growing Pigs. Front. Vet. Sci. 2022, 9, 849970. [Google Scholar] [CrossRef]
- Morandini, L.; Ramallo, M.R.; Moreira, R.G.; Höcht, C.; Somoza, G.M.; Silva, A.C.; Pandolfi, M. Serotonergic Outcome, Stress and Sexual Steroid Hormones, and Growth in a South American Cichlid Fish Fed with an l-Tryptophan Enriched Diet. Gen. Comp. Endocrinol. 2015, 223, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Saleem, D.M.; Haleem, M.A.; Haleem, D.J. Inhibition of Hormonal and Behavioral Effects of Stress by Tryptophan in Rats. Nutr. Neurosci. 2017, 22, 409–417. [Google Scholar] [CrossRef]
- Smulders, T.V. The Avian Hippocampal Formation and the Stress Response. Brain Behav. Evol. 2017, 90, 81–91. [Google Scholar] [CrossRef]
- Stress and Animal Health: Physiological Mechanisms and Ecological Consequences|Learn Science at Scitable. Available online: https://www.nature.com/scitable/knowledge/library/stress-and-animal-health-physiological-mechanisms-and-23672697/ (accessed on 16 April 2024).
- Karaer, M.C.; Čebulj-Kadunc, N.; Snoj, T. Stress in Wildlife: Comparison of the Stress Response among Domestic, Captive, and Free-Ranging Animals. Front. Vet. Sci. 2023, 10, 1167016. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress Hormones in Mammals and Birds: Comparative Aspects Regarding Metabolism, Excretion, and Noninvasive Measurement in Fecal Samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Stern, C.D. The Chick. Dev. Cell 2005, 8, 9–17. [Google Scholar] [CrossRef]
- Johnsson, M.; Williams, M.J.; Jensen, P.; Wright, D. Genetical Genomics of Behavior: A Novel Chicken Genomic Model for Anxiety Behavior. Genetics 2015, 202, 327–340. [Google Scholar] [CrossRef]
- Lormant, F.; Ferreira, V.H.B.; Meurisse, M.; Lemarchand, J.; Constantin, P.; Morisse, M.; Cornilleau, F.; Parias, C.; Chaillou, É.; Bertin, A.; et al. Emotionality Modulates the Impact of Chronic Stress on Memory and Neurogenesis in Birds. Sci. Rep. 2020, 10, 14620. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, J.; Erasmus, M.A.; Zhang, H.; Johnson, T.A.; Cheng, H. Cecal Microbiota Transplantation: Unique Influence of Cecal Microbiota from Divergently Selected Inbred Donor Lines on Cecal Microbial Profile, Serotonergic Activity, and Aggressive Behavior of Recipient Chickens. J. Anim. Sci. Biotechnol. 2023, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- De Haas, E.N.; Newberry, R.C.; Edgar, J.; Riber, A.B.; Estévez, I.; Ferrante, V.; Hernández, C.; Kjaer, J.; Özkan, S.; Dimitrov, I.; et al. Prenatal and Early Postnatal Behavioural Programming in Laying Hens, with Possible Implications for the Development of Injurious Pecking. Front. Vet. Sci. 2021, 8, 678500. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Cryan, J.F. The Impact of Gut Microbiota on Brain and Behaviour. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 552–558. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.H. Regulation of Common Neurological Disorders by Gut Microbial Metabolites. Exp. Mol. Med. 2021, 53, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Ruiz, A.; Borrego, J.J. An Updated Overview on the Relationship between Human Gut Microbiome Dysbiosis and Psychiatric and Psychological Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 128, 110861. [Google Scholar] [CrossRef]
- Mhanna, A.; Martini, N.; Hmaydoosh, G.; Hamwi, G.; Jarjanazi, M.; Zaifah, G.; Kazzazo, R.; Mohamad, A.H.; Alshehabi, Z. The Correlation between Gut Microbiota and Both Neurotransmitters and Mental Disorders: A Narrative Review. Medicine 2024, 103, e37114. [Google Scholar] [CrossRef] [PubMed]
- Rosin, S.P.; Xia, K.; Azcárate-Peril, M.A.; Carlson, A.L.; Propper, C.B.; Thompson, A.L.; Grewen, K.; Knickmeyer, R. A Preliminary Study of Gut Microbiome Variation and HPA Axis Reactivity in Healthy Infants. Psychoneuroendocrinology 2021, 124, 105046. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef]
- Scriven, M.; Dinan, T.G.; Cryan, J.F.; Wall, M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases 2018, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Sylvia, K.E.; Demas, G.E. A Gut Feeling: Microbiome-Brain-Immune Interactions Modulate Social and Affective Behaviors. Horm. Behav. 2018, 99, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Mu, C.; Farzi, A.; Zhu, W. Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Khan, W.I. Peripheral Serotonin: Cultivating Companionship with Gut Microbiota in Intestinal Homeostasis. Am. J. Physiol. Cell Physiol. 2022, 323, C550–C555. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Salbaum, J.M.; Berthoud, H. Harnessing Gut Microbes for Mental Health: Getting from Here to There. Biol. Psychiatry 2018, 83, 214–223. [Google Scholar] [CrossRef]
- Kelsey, C.M.; Prescott, S.; McCulloch, J.A.; Trinchieri, G.; Valladares, T.L.; Dreisbach, C.; Alhusen, J.L.; Großmann, T. Gut Microbiota Composition Is Associated with Newborn Functional Brain Connectivity and Behavioral Temperament. Brain Behav. Immun. 2021, 91, 472–486. [Google Scholar] [CrossRef]
- Johnson, K.V.-A. Gut Microbiome Composition and Diversity Are Related to Human Personality Traits. Hum. Microbiome J. 2020, 15, 100069. [Google Scholar] [CrossRef]
- Shin, C.; Kim, Y.K. Microbiota–Gut–Brain Axis: Pathophysiological Mechanism in Neuropsychiatric Disorders. In Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders; Springer Nature Singapore: Singapore, 2023; pp. 17–37. [Google Scholar]
- Tap, J.; Mondot, S.; Levenez, F.; Pelletier, E.; Caron, C.; Furet, J.-P.; Ugarte, E.; Muñoz-Tamayo, R.; Paslier, D.L.E.; Nalin, R.; et al. Towards the Human Intestinal Microbiota Phylogenetic Core. Environ. Microbiol. 2009, 11, 2574–2584. [Google Scholar] [CrossRef]
- Liu, T.; Du, D.; Zhao, R.; Xie, Q.; Dong, Z. Gut Microbes Influence the Development of Central Nervous System Disorders through Epigenetic Inheritance. Microbiol. Res. 2023, 274, 127440. [Google Scholar] [CrossRef]
- Mumtaz, F.; Khan, M.I.; Zubair, M.; Dehpour, A.R. Neurobiology and Consequences of Social Isolation Stress in Animal Model—A Comprehensive Review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef]
- Kasarełło, K.; Cudnoch-Jędrzejewska, A.; Czarzasta, K. Communication of Gut Microbiota and Brain via Immune and Neuroendocrine Signaling. Front. Microbiol. 2023, 14, 1118529. [Google Scholar] [CrossRef] [PubMed]
- Riehl, L.; Fürst, J.; Kress, M.; Rykalo, N.A. The Importance of the Gut Microbiome and Its Signals for a Healthy Nervous System and the Multifaceted Mechanisms of Neuropsychiatric Disorders. Front. Neurosci. 2023, 17, 1302957. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Bailey, M.T. Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes. Biol. Psychiatry 2024, 95, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Rathour, D.; Shah, S.; Khan, S.; Singh, P.K.; Srivastava, S.; Singh, S.B.; Khatri, D.K. Role of Gut Microbiota in Depression: Understanding Molecular Pathways, Recent Research, and Future Direction. Behav. Brain Res. 2023, 436, 114081. [Google Scholar] [CrossRef] [PubMed]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Gut Brain Axis and Its Microbiota Regulation in Mammals and Birds. Vet. Clin. Exot. Anim. Pract. 2018, 21, 159–167. [Google Scholar] [CrossRef]
- Wang, Q.; Song, Y.X.; Wu, X.D.; Luo, Y.G.; Miao, R.; Yu, X.M.; Guo, X.; Wu, D.Z.; Bao, R.; Mi, W.D.; et al. Gut Microbiota and Cognitive Performance: A Bidirectional Two-sample Mendelian Randomization. J. Affect. Disord. 2024, 353, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.I.; Bastiaanssen, T.F.S.; Long-Smith, C.; Morkl, S.; Berding, K.; Ritz, N.L.; Strain, C.; Patangia, D.; Patel, S.; Stanton, C.; et al. The Gut Microbiome in Social Anxiety Disorder: Evidence of Altered Composition and Function. Transl. Psychiatry 2023, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Korteniemi, J.; Karlsson, L.; Aatsinki, A. Systematic Review: Autism Spectrum Disorder and the Gut Microbiota. Acta Psychiatr. Scand. 2023, 148, 242–254. [Google Scholar] [CrossRef]
- Gokulakrishnan, K.; Nikhil, J.; Viswanath, B.; Thirumoorthy, C.; Narasimhan, S.; Devarajan, B.; Joseph, E.; David, A.K.D.; Sharma, S.; Vasudevan, K.; et al. Comparison of Gut Microbiome Profile in Patients with Schizophrenia and Healthy Controls—A Plausible Non-Invasive Biomarker? J. Psychiatr. Res. 2023, 162, 140–149. [Google Scholar] [CrossRef]
- Zeamer, A.L.; Salive, M.-C.; An, X.; Beaudoin, F.L.; House, S.L.; Stevens, J.S.; Zeng, D.; Neylan, T.C.; Clifford, G.D.; Linnstaedt, S.D.; et al. Association between Microbiome and the Development of Adverse Posttraumatic Neuropsychiatric Sequelae after Traumatic Stress Exposure. Transl. Psychiatry 2023, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Buey, B.; Forcén, A.; Grasa, L.; Layunta, E.; Mesonero, J.E.; Latorre, E. Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter. Life 2023, 13, 1085. [Google Scholar] [CrossRef] [PubMed]
- Valle, C.G.-D.; Fernández, J.; Solá, E.; Montoya-Castilla, I.; Morillas, C.; Bañuls, C. Association between Gut Microbiota and Psychiatric Disorders: A Systematic Review. Front. Psychol. 2023, 14, 1215674. [Google Scholar]
- Balasubramanian, R.; Schneider, E.; Gunnigle, E.; Cotter, P.D.; Cryan, J.F. Fermented Foods: Harnessing Their Potential to Modulate the Microbiota-Gut-Brain Axis for Mental Health. Neurosci. Biobehav. Rev. Neurosci. Biobehav. Rev. 2024, 158, 105562. [Google Scholar] [CrossRef] [PubMed]
- Swer, N.M.; Venkidesh, B.S.; Murali, T.S.; Mumbrekar, K.D. Gut Microbiota-Derived Metabolites and Their Importance in Neurological Disorders. Mol. Biol. Rep. 2022, 50, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Cryan, J.F. Regulation of the Stress Response by the Gut Microbiota: Implications for Psychoneuroendocrinology. Psychoneuroendocrinology 2012, 37, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Chen, M.; Liu, Y.; Yi, Y.; Liang, A.; Zhang, Y.; Hao, Z. Correction to: Bacillus Licheniformis Prevents and Reduces Anxiety-like and Depression-like Behaviours. Appl. Microbiol. Biotechnol. 2023, 107, 4989. [Google Scholar] [CrossRef]
- Bloemendaal, M.; Szopinska-Tokov, J.; Belzer, C.; Boverhoff, D.; Papalini, S.; Michels, F.; Van Hemert, S.; Vásquez, A.A.; Aarts, E. Probiotics-Induced Changes in Gut Microbial Composition and Its Effects on Cognitive Performance after Stress: Exploratory Analyses. Transl. Psychiatry 2021, 11, 300. [Google Scholar] [CrossRef]
- Nitzan, O. Role of Antibiotics for Treatment of Inflammatory Bowel Disease. World J. Gastroenterol. 2016, 22, 1078. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Hall, M.; Hall, L.J.; Cleare, A.J.; Stone, J.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders. JAMA Psychiatry 2021, 78, 1343. [Google Scholar] [CrossRef]
- Hayer, S.S.; Conrin, M.; French, J.A.; Benson, A.K.; Alvarez, S.; Cooper, K.; Fischer, A.; Alsafwani, Z.W.; Gasper, W.; Van Haute, M.J.S.; et al. Antibiotic-Induced Gut Dysbiosis Elicits Gut-Brain Axis Relevant Multi-Omic Signatures and Behavioral and Neuroendocrine Changes in a Nonhuman Primate Model. Gut Microbes 2024, 16, 2305476. [Google Scholar] [CrossRef] [PubMed]
- Hayer, S.S.; Hwang, S.; Clayton, J.B. Antibiotic-Induced Gut Dysbiosis and Cognitive, Emotional, and Behavioral Changes in Rodents: A Systematic Review and Meta-Analysis. Front. Neurosci. 2023, 17, 1237177. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.A.; Guarner, F.; Fernández, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, Y.; He, H.; Peng, M.; Zeng, M.; Sun, H. The Role of the Indoles in Microbiota-Gut-Brain Axis and Potential Therapeutic Targets: A Focus on Human Neurological and Neuropsychiatric Diseases. Neuropharmacology 2023, 239, 109690. [Google Scholar] [CrossRef]
- Yang, L.; Bajinka, O.; Jarju, P.O.; Bajinka, O.; Taal, A.M.; Özdemir, G. The Varying Effects of Antibiotics on Gut Microbiota. AMB Express 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, P.; Goyal, C.; Dhull, S.B.; Chauhan, A.K.; Saharan, B.S.; Harshita, N.; Duhan, J.S.; Goksen, G. Psychobiotics for Mitigation of Neuro-Degenerative Diseases: Recent Advancements. Mol. Nutr. Food Res. 2023, 68, e2300461. [Google Scholar] [CrossRef]
- Dziedzic, A.; Maciak, K.; Bliźniewska-Kowalska, K.; Gałecka, M.; Kobierecka, W.; Saluk, J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota–Gut–Brain Axis: A Literature Review. Nutrients 2024, 16, 1054. [Google Scholar] [CrossRef] [PubMed]
- Ķimse, L.; Reinis, A.; Miķelsone-Jansone, L.; Gintere, S.; Krūmiņa, A. A Narrative Review of Psychobiotics: Probiotics That Influence the Gut–Brain Axis. Medicina 2024, 60, 601. [Google Scholar] [CrossRef]
- Luiz, J.D.; Manassi, C.; Magnani, M.; Da Cruz, A.G.; Pimentel, T.C.; Verruck, S. Lactiplantibacillus Plantarum as a Promising Adjuvant for Neurological Disorders Therapy through the Brain-Gut Axis and Related Action Pathways. Crit. Rev. Food Sci. Nutr. 2023, 1–13. [Google Scholar] [CrossRef]
- Bi, M.; Liu, C.; Wang, Y.; Liu, S. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023, 11, 1527. [Google Scholar] [CrossRef] [PubMed]
- Handajani, Y.S.; Hengky, A.; Schröeder-Butterfill, E.; Hogervorst, E.; Turana, Y. Probiotic Supplementation Improved Cognitive Function in Cognitively Impaired and Healthy Older Adults: A Systematic Review of Recent Trials. Neurol. Sci. 2022, 44, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Patil, N.; Jain, M.; Kole, C.; Kaushik, P. Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms 2023, 11, 1083. [Google Scholar] [CrossRef] [PubMed]
- Varesi, A.; Campagnoli, L.I.M.; Chirumbolo, S.; Candiano, B.; Carrara, A.; Ricevuti, G.; Esposito, C.; Pascale, A. The Brain-Gut-Microbiota Interplay in Depression: A Key to Design Innovative Therapeutic Approaches. Pharmacol. Res. 2023, 192, 106799. [Google Scholar] [CrossRef] [PubMed]
- Boehme, M.; Rémond-Derbez, N.; Lerond, C.; Lavalle, L.; Keddani, S.; Steinmann, M.; Rytz, A.; Dalile, B.; Verbeke, K.; Van Oudenhove, L.; et al. Bifidobacterium Longum Subsp. Longum Reduces Perceived Psychological Stress in Healthy Adults: An Exploratory Clinical Trial. Nutrients 2023, 15, 3122. [Google Scholar] [CrossRef] [PubMed]
- Obi-Azuike, C.; Ebiai, R.; Gibson, T.; Hernandez, A.; Khan, A.; Anugwom, G.; Urhi, A.; Prasad, S.; Souabni, S.A.; Oladunjoye, F. A Systematic Review on Gut–Brain Axis Aberrations in Bipolar Disorder and Methods of Balancing the Gut Microbiota. Brain Behav. 2023, 13, e303. [Google Scholar] [CrossRef]
- Chan, H.H.Y.; Siu, P.L.K.; Choy, C.T.; Chan, U.K.; Zhou, J.; Wong, C.H.; Lee, Y.W.; Chan, H.W.; Tsui, J.C.C.; Loo, S.K.F.; et al. Novel Multi-Strain E3 Probiotic Formulation Improved Mental Health Symptoms and Sleep Quality in Hong Kong Chinese. Nutrients 2023, 15, 5037. [Google Scholar] [CrossRef]
- Song, J.G.; Mun, D.; Lee, B.; Song, M.; Oh, S.; Kim, J.-M.; Yang, J.; Kim, Y.; Kim, H.W. Protective Effects of Lacticaseibacillus Rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model. Food Sci. Anim. Resour. 2023, 43, 1044–1054. [Google Scholar] [CrossRef]
- Lee, J.; Kim, E.-J.; Park, G.-S.; Kim, J.; Kim, T.-E.; Lee, Y.J.; Park, J.; Kang, J.; Koo, J.W.; Choi, T.-Y. Lactobacillus Reuteri ATG-F4 Alleviates Chronic Stress-Induced Anhedonia by Modulating the Prefrontal Serotonergic System. Exp. Neurobiol. Exp. Neurobiol. 2023, 32, 313–327. [Google Scholar] [CrossRef]
- Lei, W.; Cheng, Y.; Gao, J.; Liu, X.; Shao, L.; Kong, Q.; Zheng, N.; Ling, Z.; Hu, W. Akkermansia Muciniphila in Neuropsychiatric Disorders: Friend or Foe? Front. Cell. Infect. Microbiol. 2023, 13, 1224155. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, Y.; Chen, S.; Zeng, Y.; Fu, X.; Chen, T.; Luo, S.; Zhang, X. The Role of the Probiotic Akkermansia Muciniphila in Brain Functions: Insights Underpinning Therapeutic Potential. Crit. Rev. Microbiol. 2022, 49, 151–176. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, X.; Fang, Z.; Li, L.; Wu, C.; Bi, D.; Li, N.; Chen, Q.; Qin, H. Fecal Microbiota Transplantation in Clinical Practice: Present Controversies and Future Prospects. hLife 2024, 2, 269–283. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Our Mental Health Is Determined by an Intrinsic Interplay between the Central Nervous System, Enteric Nerves, and Gut Microbiota. Int. J. Mol. Sci. 2023, 25, 38. [Google Scholar] [CrossRef]
- Tariq, R.; Syed, T.; Yadav, D.; Prokop, L.J.; Singh, S.; Loftus, E.V.; Pardi, D.S.; Khanna, S. Outcomes of Fecal Microbiota Transplantation for C. Difficile Infection in Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2021, 57, 285–293. [Google Scholar] [CrossRef]
- Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Zhang, Z.; Wang, J.; Qiu, X.; Wang, Q.; Yang, F.; Huang, J.; Liu, Z. Introduction of Colonic and Fecal Microbiota from an Adult Pig Differently Affects the Growth, Gut Health, Intestinal Microbiota and Blood Metabolome of Newborn Piglets. Front. Microbiol. 2021, 12, 623673. [Google Scholar] [CrossRef]
- Shehata, E.; Parker, A.; Suzuki, T.; Swann, J.R.; Suez, J.; Kroon, P.A.; Day-Walsh, P. Microbiomes in Physiology: Insights into 21st-century Global Medical Challenges. Exp. Physiol. 2022, 107, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Medel-Matus, J.-S.; Shin, D.; Dorfman, E.; Sankar, R.; Mazarati, A. Facilitation of Kindling Epileptogenesis by Chronic Stress May Be Mediated by Intestinal Microbiome. Epilepsia Open 2018, 3, 290–294. [Google Scholar] [CrossRef]
- Pittman, Q.J. Stress Co-opts the Gut to Affect Epileptogenesis. Commentary on “Facilitation of Kindling Epileptogenesis by Chronic Stress May Be Mediated by Intestinal Microbiome”. Epilepsia Open 2019, 4, 230–231. [Google Scholar] [CrossRef]
- Baske, M.M.; Timmerman, K.C.; Garmo, L.G.; Freitas, M.N.; McCollum, K.A.; Ren, T.Y. Fecal Microbiota Transplant on Escherichia-Shigella Gut Composition and Its Potential Role in the Treatment of Generalized Anxiety Disorder: A Systematic Review. J. Affect. Disord. 2024, 354, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Research C. for B.E.A. Fecal Microbiota Products. Available online: https://www.fda.gov/vaccines-blood-biologics/fecal-microbiota-products (accessed on 16 April 2024).
- Rebyota: Uses, Dosage, Side Effects & Warnings. Available online: https://www.drugs.com/rebyota.html (accessed on 16 April 2024).
- Ting, N.L.-N.; Lau, H.C.-H.; Yu, J. Cancer Pharmacomicrobiomics: Targeting Microbiota to Optimise Cancer Therapy Outcomes. Gut 2022, 71, 1412–1425. [Google Scholar] [CrossRef]
- Clavijo, V.; Flórez, M.J.V. The Gastrointestinal Microbiome and Its Association with the Control of Pathogens in Broiler Chicken Production: A Review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Bliss, E.S.; Whiteside, E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front. Physiol. 2018, 9, 900. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Paslier, D.L.; Yamada, T.; Mende, D.; Fernandes, G.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Villageliú, D.N.; Lyte, M. Microbial Endocrinology: Why the Intersection of Microbiology and Neurobiology Matters to Poultry Health. Poult. Sci. 2017, 96, 2501–2508. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; Eeckhaut, V.; Van Immerseel, F. Poultry Gut Health and Beyond. Anim. Nutr. 2023, 13, 240–248. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, E.; Liu, C.; Tian, X.; Xue, B.; Zhang, K.; Luo, B. Avian Influenza and Gut Microbiome in Poultry and Humans: A “One Health” Perspective. Fundam. Res. 2023, 4, 455–462. [Google Scholar] [CrossRef]
- Mandal, R.K.; Jiang, T.; Wideman, R.F.; Lohrmann, T.; Kwon, Y.M. Microbiota Analysis of Chickens Raised under Stressed Conditions. Front. Vet. Sci. 2020, 7, 482637. [Google Scholar] [CrossRef]
- Cerdó, T.; Nieto-Ruíz, A.; García-Santos, J.A.; Rodríguez-Pöhnlein, A.; García-Ricobaraza, M.; Suárez, A.; Bermúdez, M.G.; Campoy, C. Current Knowledge about the Impact of Maternal and Infant Nutrition on the Development of the Microbiota–Gut–Brain Axis. Annu. Rev. Nutr. 2023, 43, 251–278. [Google Scholar] [CrossRef]
- Ratsika, A.; Pereira, J.S.C.; Lynch, C.M.K.; Clarke, G.; Cryan, J.F. Microbiota-Immune-Brain Interactions: A Lifespan Perspective. Curr. Opin. Neurobiol. 2023, 78, 102652. [Google Scholar] [CrossRef] [PubMed]
- Kraïmi, N.; Dawkins, M.S.; Gebhardt-Henrich, S.G.; Velge, P.; RychlίK, I.; Volf, J.; Créach, P.; Smith, A.L.; Colles, F.M.; Leterrier, C. Influence of the Microbiota-Gut-Brain Axis on Behavior and Welfare in Farm Animals: A Review. Physiol. Behav. 2019, 210, 112658. [Google Scholar] [CrossRef]
- Van Der Eijk, J.A.J.; De Vries, H.; Kjaer, J.; Naguib, M.; Kemp, B.; Smidt, H.; Rodenburg, T.B.; Lammers, A. Differences in Gut Microbiota Composition of Laying Hen Lines Divergently Selected on Feather Pecking. Poult. Sci. 2019, 98, 7009–7021. [Google Scholar] [CrossRef] [PubMed]
- Van Der Eijk, J.A.J.; Lammers, A.; Kjaer, J.; Rodenburg, T.B. Stress Response, Peripheral Serotonin and Natural Antibodies in Feather Pecking Genotypes and Phenotypes and Their Relation with Coping Style. Physiol. Behav. 2019, 199, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Van Der Eijk, J.A.J.; Verwoolde, M.B.; De Vries Reilingh, G.; Jansen, C.A.; Rodenburg, T.B.; Lammers, A. Chicken Lines Divergently Selected on Feather Pecking Differ in Immune Characteristics. Physiol. Behav. 2019, 212, 112680. [Google Scholar] [CrossRef] [PubMed]
- Birkl, P.; Bharwani, A.; Kjaer, J.; Kunze, W.; McBride, P.; Forsythe, P.; Harlander-Matauschek, A. Differences in Cecal Microbiome of Selected High and Low Feather-Pecking Laying Hens. Poult. Sci. 2018, 97, 3009–3014. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, D.; Li, M.; Rong, J.; Liao, X.; Wu, Y.; Wang, Y. Differences in Peripheral and Central Metabolites and Gut Microbiome of Laying Hens with Different Feather-Pecking Phenotypes. Front. Microbiol. 2023, 14, 1132866. [Google Scholar] [CrossRef]
- Parois, S.; Calandreau, L.; Kraïmi, N.; Gabriel, I.; Leterrier, C. The Influence of a Probiotic Supplementation on Memory in Quail Suggests a Role of Gut Microbiota on Cognitive Abilities in Birds. Behav. Brain Res. 2017, 331, 47–53. [Google Scholar] [CrossRef]
- Pramanik, S.; Venkatraman, S.; Karthik, P.; Vaidyanathan, V.K. A Systematic Review on Selection Characterization and Implementation of Probiotics in Human Health. Food Sci. Biotechnol. Food Sci. Biotechnol. 2023, 32, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Abdel- Azeem, N. Do Probiotics Affect the Behavior of Turkey Poults? J. Vet. Med. Anim. Health 2013, 5, 144–148. [Google Scholar]
- Mindus, C.; Van Staaveren, N.; Bharwani, A.; Fuchs, D.; Gostner, J.M.; Kjaer, J.; Kunze, W.; Mian, M.F.; Shoveller, A.K.; Forsythe, P.; et al. Ingestion of Lactobacillus Rhamnosus Modulates Chronic Stress-Induced Feather Pecking in Chickens. Sci. Rep. 2021, 11, 17119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Hu, J.; Cheng, H. The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals 2022, 12, 870. [Google Scholar] [CrossRef]
- Quaranta, G.; Guarnaccia, A.; Fancello, G.; Agrillo, C.; Iannarelli, F.; Sanguinetti, M.; Masucci, L. Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms 2022, 10, 2424. [Google Scholar] [CrossRef]
- Stanley, D.; Geier, M.S.; Chen, H.; Hughes, R.; Moore, R.J. Comparison of Fecal and Cecal Microbiotas Reveals Qualitative Similarities but Quantitative Differences. BMC Microbiol. 2015, 15, 51. [Google Scholar] [CrossRef]
- Di Marcantonio, L.; Marotta, F.; Vulpiani, M.P.; Sonntag, Q.; Iannetti, L.; Janowicz, A.; Di Serafino, G.; Di Giannatale, E.; Garofolo, G. Investigating the Cecal Microbiota in Broiler Poultry Farms and Its Potential Relationships with Animal Welfare. Res. Vet. Sci. Res. Vet. Sci. 2022, 144, 115–125. [Google Scholar] [CrossRef]
- Grant, A.; Gay, C.G.; Lillehoj, H.S. Bacillusspp.as Direct-Fed Microbial Antibiotic Alternatives to Enhance Growth, Immunity, and Gut Health in Poultry. Avian Pathol. 2018, 47, 339–351. [Google Scholar] [CrossRef] [PubMed]
- RychlίK, I. Composition and Function of Chicken Gut Microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Farkas, V.; Csitári, G.; Pál, L.; Márton, A.; Menyhárt, L.; Dublecz, K. Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens. Vet. Sci. 2021, 8, 187. [Google Scholar] [CrossRef]
- Xiao, S.; Mi, J.; Liang, M.; Liang, J.; Feng, K.; Wu, Y.; Liao, X.; Wang, Y. Microbial Diversity and Community Variation in the Intestines of Layer Chickens. Animals 2021, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Baloch, Z.; Shah, Z.; Cui, X.; Xia, X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int. J. Mol. Sci. 2021, 22, 6597. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.M.; Schreier, L.L.; Proszkowiec-Weglarz, M.; Dridi, S. Cecal Microbiota Composition Differs under Normal and High Ambient Temperatures in Genetically Distinct Chicken Lines. Sci. Rep. 2023, 13, 16037. [Google Scholar] [CrossRef] [PubMed]
- Cazals, A.; Estellé, J.; Bruneau, N.; Coville, J.; Menanteau, P.; Rossignol, M.; Jardet, D.; Bevilacqua, C.; Rau, A.; Bed’Hom, B.; et al. Differences in Caecal Microbiota Composition and Salmonella Carriage between Experimentally Infected Inbred Lines of Chickens. Genet. Sel. Evol. 2022, 54, 7. [Google Scholar] [CrossRef]
- Kang, K.; Hu, Y.; Wu, S.; Shi, S. Comparative Metagenomic Analysis of Chicken Gut Microbial Community, Function, and Resistome to Evaluate Noninvasive and CEcal Sampling Resources. Animals 2021, 11, 1718. [Google Scholar] [CrossRef] [PubMed]
- Pasquaretta, C.; Gómez-Moracho, T.; Heeb, P.; Lihoreau, M. Exploring Interactions between the Gut Microbiota and Social Behavior through Nutrition. Genes 2018, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Johnson, T.A.; Zhang, H.; Cheng, H. The Microbiota–Gut–Brain Axis: Gut Microbiota Modulates Conspecific Aggression in Diversely Selected Laying Hens. Microorganisms 2022, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Glendinning, L.; Chintoan-Uta, C.; Stevens, M.P.; Watson, M. Effect of Cecal Microbiota Transplantation between Different Broiler Breeds on the Chick Flora in the First Week of Life. Poult. Sci. 2022, 101, 101624. [Google Scholar] [CrossRef]
- Sabry, M.I.E.; Yalçın, S. Factors Influencing the Development of Gastrointestinal Tract and Nutrient Transporters’ Function during the Embryonic Life of Chickens—A Review. J. Anim. Physiol. Anim. Nutr. 2023, 107, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hu, J.; Zhang, H.; Erasmus, M.A.; Johnson, T.A.; Cheng, H. The Impact of Early-Life Cecal Microbiota Transplantation on Social Stress and Injurious Behaviors in Egg-Laying Chickens. Microorganisms 2024, 12, 471. [Google Scholar] [CrossRef]
- Franco, L.; Boulianne, M.; Parent, E.; Barjesteh, N.; Costa, M.C. Colonization of the gastrointestinal tract of chicks with different bacterial microbiota profiles. Animals 2023, 13, 2633. [Google Scholar] [CrossRef]
- Rubio, L.A. Possibilities of Early Life Programming in Broiler Chickens via Intestinal Microbiota Modulation. Poult. Sci. 2019, 98, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Xiao, J.; Li, Z.; Liu, H.; Zhao, X.; Liu, J.; Chen, S.; Zhao, X. Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers. Front. Vet. Sci. 2021, 8, 706987. [Google Scholar] [CrossRef] [PubMed]
- Van Der Eijk, J.A.J.; Rodenburg, T.B.; De Vries, H.; Kjaer, J.; Smidt, H.; Naguib, M.; Kemp, B.; Lammers, A. Early-Life Microbiota Transplantation Affects Behavioural Responses, Serotonin and Immune Characteristics in Chicken Lines Divergently Selected on Feather Pecking. Sci. Rep. 2020, 10, 2750. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, L.A.C.; Clavijo, V.; Vives, M.; Reyes, A. Bacterial Meta-Analysis of Chicken Cecal Microbiota. PeerJ 2021, 9, e10571. [Google Scholar] [CrossRef] [PubMed]
- Borda-Molina, D.; Iffland, H.; Schmid, M.; Müller, R.C.S.; Schad, S.; Seifert, J.; Tetens, J.; Bessei, W.; Bennewitz, J.; Camarinha-Silva, A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. Life 2021, 11, 235. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, J.; Erasmus, M.A.; Johnson, T.A.; Cheng, H.-W. Effects of Early-Life Cecal Microbiota Transplantation from Divergently Selected Inbred Chicken Lines on Growth, Gut Serotonin, and Immune Parameters in Recipient Chickens. Poult. Sci. 2022, 101, 101925. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Cheng, H.-W. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024, 14, 1017. https://doi.org/10.3390/biom14081017
Fu Y, Cheng H-W. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules. 2024; 14(8):1017. https://doi.org/10.3390/biom14081017
Chicago/Turabian StyleFu, Yuechi, and Heng-Wei Cheng. 2024. "The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research" Biomolecules 14, no. 8: 1017. https://doi.org/10.3390/biom14081017
APA StyleFu, Y., & Cheng, H. -W. (2024). The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules, 14(8), 1017. https://doi.org/10.3390/biom14081017