Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Oligonucleotides, Guide RNA, and DNA Templates
2.2. Yeast Strains and Culture
2.3. Genome Editing and Diagnostics
3. Results
3.1. Objective, Experimental Design, and Approach
3.2. SpEDIT Induces Changes in the Length and Sequence of DNA at the ade6 Gene
3.3. Successful, Partially Successful, and Unsuccessful Editing of ade6
4. Discussion
4.1. Efficiency of Precise Genome Editing by SpEDIT
4.2. Mechanisms for Diverse On-Target Alterations Created by SpEDIT
4.3. Summary and Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zickler, D.; Kleckner, N. Meiosis: Dances between homologs. Annu. Rev. Genet. 2023, 57, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Hall, H.; Hunt, P. The origin of human aneuploidy: Where we have been, where we are going. Hum. Mol. Genet. 2007, 16, R203–R208. [Google Scholar] [CrossRef] [PubMed]
- Dapper, A.L.; Payseur, B.A. Connecting theory and data to understand recombination rate evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160469. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.J.; Rice, D.P.; Desai, M.M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 2016, 531, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Protacio, R.U.; Davidson, M.K.; Wahls, W.P. Adaptive control of the meiotic recombination landscape by DNA site-dependent hotspots with implications for evolution. Front. Genet. 2022, 13, 947572. [Google Scholar] [CrossRef] [PubMed]
- Wahls, W.P.; Davidson, M.K. New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination. Nucleic Acids Res. 2012, 40, 9983–9989. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Henderson, I.R. Meiotic recombination hotspots—A comparative view. Plant J. 2015, 83, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ergoren, M.C. The control of meiotic recombination in the human genome. Crit. Rev. Eukaryot. Gene Expr. 2018, 28, 187–204. [Google Scholar] [CrossRef]
- Mukiza, T.O.; Protacio, R.U.; Davidson, M.K.; Steiner, W.W.; Wahls, W.P. Diverse DNA sequence motifs activate meiotic recombination hotspots through a common chromatin remodeling pathway. Genetics 2019, 213, 789–803. [Google Scholar] [CrossRef]
- Storey, A.J.; Wang, H.P.; Protacio, R.U.; Davidson, M.K.; Tackett, A.J.; Wahls, W.P. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenet. Chromatin 2018, 11, 64. [Google Scholar] [CrossRef]
- Schuchert, P.; Langsford, M.; Kaslin, E.; Kohli, J. A specific DNA sequence is required for high-frequency of recombination in the ade6 gene of fission yeast. EMBO J. 1991, 10, 2157–2163. [Google Scholar] [CrossRef]
- Kon, N.; Krawchuk, M.D.; Warren, B.G.; Smith, G.R.; Wahls, W.P. Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 1997, 94, 13765–13770. [Google Scholar] [CrossRef] [PubMed]
- Wahls, W.P.; Smith, G.R. A heteromeric protein that binds to a meiotic homologous recombination hot-spot—Correlation of binding and hot-spot activity. Genes Dev. 1994, 8, 1693–1702. [Google Scholar] [CrossRef]
- Steiner, W.W.; Smith, G.R. Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol. Cell. Biol. 2005, 25, 9054–9062. [Google Scholar] [CrossRef] [PubMed]
- Wahls, W.P.; Davidson, M.K. Discrete DNA sites regulate global distribution of meiotic recombination. Trends Genet. 2010, 26, 202–208. [Google Scholar] [CrossRef]
- Steiner, W.W.; Davidow, P.A.; Bagshaw, A.T. Important characteristics of sequence-specific recombination hotspots in Schizosaccharomyces pombe. Genetics 2011, 187, 385–396. [Google Scholar] [CrossRef]
- Steiner, W.W.; Steiner, E.M.; Girvin, A.R.; Plewik, L.E. Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe. Genetics 2009, 182, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Steiner, W.W.; Steiner, E.M. Fission yeast hotspot sequence motifs are also active in budding yeast. PLoS ONE 2012, 7, e53090. [Google Scholar] [CrossRef] [PubMed]
- Grimm, C.; Kohli, J.; Murray, J.; Maundrell, K. Genetic engineering of Schizosaccharomyces pombe—A system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol. Gen. Genet. 1988, 215, 81–86. [Google Scholar] [CrossRef]
- Mudge, D.K.; Hoffman, C.A.; Lubinski, T.J.; Hoffman, C.S. Use of a ura5+–lys7+ cassette to construct unmarked gene knock-ins in Schizosaccharomyces pombe. Curr. Genet. 2012, 58, 59–64. [Google Scholar] [CrossRef]
- Gao, J.; Kan, F.; Wagnon, J.L.; Storey, A.J.; Protacio, R.U.; Davidson, M.K.; Wahls, W.P. Rapid, efficient and precise allele replacement in the fission yeast Schizosaccharomyces pombe. Curr. Genet. 2014, 60, 109–119. [Google Scholar] [CrossRef]
- Storey, A.J.; Wang, H.P.; Protacio, R.U.; Davidson, M.K.; Wahls, W.P. Targeted forward genetics: Population-scale analyses of allele replacements spanning thousands of base pairs in fission yeast. G3 2019, 9, 4097–4106. [Google Scholar] [CrossRef] [PubMed]
- Bahler, J.; Wu, J.Q.; Longtine, M.S.; Shah, N.G.; McKenzie, A., 3rd; Steever, A.B.; Wach, A.; Philippsen, P.; Pringle, J.R. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 1998, 14, 943–951. [Google Scholar] [CrossRef]
- Krawchuk, M.D.; Wahls, W.P. High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 1999, 15, 1419–1427. [Google Scholar] [CrossRef]
- Torres-Garcia, S.; Di Pompeo, L.; Eivers, L.; Gaborieau, B.; White, S.A.; Pidoux, A.L.; Kanigowska, P.; Yaseen, I.; Cai, Y.; Allshire, R.C. SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast. Wellcome Open Res. 2020, 5, 274. [Google Scholar] [CrossRef]
- Fernandez, R.; Berro, J. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9. Yeast 2016, 33, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Tanaka, K. Short-homology-mediated CRISPR/Cas9-based method for genome editing in fission yeast. G3 2019, 9, 1153–1163. [Google Scholar] [CrossRef]
- Zhang, X.R.; He, J.B.; Wang, Y.Z.; Du, L.L. A Cloning-free method for CRISPR/Cas9-mediated genome editing in fission yeast. G3 2018, 8, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Boeke, J.D. Construction of designer selectable marker deletions with a CRISPR-Cas9 toolbox in Schizosaccharomyces pombe and new design of common entry vectors. G3 2018, 8, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Boeke, J.D. CRISPR-Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference. Nucleic Acids Res. 2020, 48, 5788–5798. [Google Scholar] [CrossRef]
- Protacio, R.U.; Malone, E.G.; Wahls, W.P. Distance-dependent effects on CRISPR/Cas9-mediated genome editing in Schizosaccharomyces pombe compromise efficiency and create unsought alleles. MicroPubl. Biol. 2024, 2024, 001248. [Google Scholar] [CrossRef]
- Kon, N.; Schroeder, S.C.; Krawchuk, M.D.; Wahls, W.P. Regulation of the Mts1-Mts2-dependent ade6-M26 meiotic recombination hot spot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast. Mol. Cell. Biol. 1998, 18, 7575–7583. [Google Scholar] [CrossRef] [PubMed]
- Forsburg, S.L.; Rhind, N. Basic methods for fission yeast. Yeast 2006, 23, 173–183. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, M.; Cotobal, C.; Fernandez-Sanchez, O.; Borbaran Bravo, N.; Oktriani, R.; Abendroth, H.; Uka, D.; Hoti, M.; Wang, J.; Zaratiegui, M.; et al. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast. Wellcome Open Res. 2016, 1, 19. [Google Scholar] [CrossRef] [PubMed]
- Grallert, B.; Nurse, P.; Patterson, T.E. A study of integrative transformation in Schizosaccharomyces pombe. Mol. Gen. Genet. 1993, 238, 26–32. [Google Scholar] [CrossRef]
- Ito, H.; Fukuda, Y.; Murata, K.; Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 1983, 153, 163–168. [Google Scholar] [CrossRef]
- Gutz, H.; Heslot, H.; Leupold, U.; Loprieno, N. Schizosaccharomyces pombe. In Handbook of Genetics; King, R.C., Ed.; Plenum Press: New York, NY, USA, 1974; Volume 1, pp. 395–446. [Google Scholar]
- Hoffman, C.S. Preparation of yeast DNA. Curr. Protoc. Mol. Biol. 2001, 13, 13.11. [Google Scholar] [CrossRef]
- Protacio, R.U.; Mukiza, T.O.; Davidson, M.K.; Wahls, W.P. Molecular mechanisms for environmentally induced and evolutionarily rapid redistribution (plasticity) of meiotic recombination. Genetics 2022, 220, iyab212. [Google Scholar] [CrossRef]
- Weber, V.M.; Doucet, A.J.; Cristofari, G. Precise and scarless insertion of transposable elements by Cas9-mediatedgenome engineering. Methods Mol. Biol. 2023, 2607, 329–353. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.R.; Shen, Z.J.; Tyler, J.K. A Simple, Improved method for scarless genome editing of budding yeast using CRISPR-Cas9. Methods Protoc. 2022, 5, 79. [Google Scholar] [CrossRef]
- Fernandez, R.; Berro, J. CRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection. MicroPubl. Biol. 2024, 2024, 001191. [Google Scholar] [CrossRef]
- Cejka, P.; Symington, L.S. DNA end resection: Mechanism and control. Annu. Rev. Genet. 2021, 55, 285–307. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, P.J.; Caldecott, K.W. DNA strand break repair and human genetic disease. Annu. Rev. Genom. Hum. Genet. 2007, 8, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Longmuir, S.; Akhtar, N.; MacNeill, S.A. Unexpected insertion of carrier DNA sequences into the fission yeast genome during CRISPR-Cas9 mediated gene deletion. BMC Res. Notes 2019, 12, 191. [Google Scholar] [CrossRef]
- Davidson, M.K.; Young, N.P.; Glick, G.G.; Wahls, W.P. Meiotic chromosome segregation mutants identified by insertional mutagenesis of fission yeast: Tandem-repeat, single-site integrations. Nucleic Acids Res. 2004, 32, 4400–4410. [Google Scholar] [CrossRef] [PubMed]
- Hanscom, T.; McVey, M. Regulation of error-prone DNA double-strand break repair and its impact on genome evolution. Cells 2020, 9, 1657. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.M.; Watson, A.T.; Carr, A.M. Identifying products of recombinase-mediated cassette exchange (RMCE) in Schizosaccharomyces pombe. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot090944. [Google Scholar] [CrossRef]
- Watson, A.T.; Garcia, V.; Bone, N.; Carr, A.M.; Armstrong, J. Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 2008, 407, 63–74. [Google Scholar] [CrossRef]
Name | Sequence |
---|---|
ade6sgRNA-F | 5′-CTAGAGGTCTCGGACTACAGTTCAACAATTGCATCGGTTTCGAGACCCTTCC-3′ |
ade6sgRNA-R | 5′-GGAAGGGTCTCGAAACCGATGCAATTGTTGAACTGTAGTCCGAGACCTCTAG-3′ |
HRuniv-R | 5′-CGGCTGCCAAGGCATCAGTGTTAATATGCTCAATTTCAGTTGTTAATAACGTGCACTTCTTAGACAGTTCAACAATTGCATCGCCATCAGTAAATGATGC-3′ |
HES92-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGTTACGTTAATTTTGGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES95-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGCAAAAGATAGATCGGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES96-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACTTTGCGGATAAAGCAGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES98-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGACGGAAAAACTCTAGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES99-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACCACTCGTTCTAGCCTGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES102-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACTCGCTTCGTCATCGCGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES113-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGGGTACTATTACCCGGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES120-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACCAATAAAAGGGCGGGGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES122-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACAGCCCAGATATTAGGGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES199-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACCAATCAGAAATAGTCGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES226-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGTTTCAAGCCCTCTCGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES231-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACCAAAGCGACGTAATAGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES253-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACGTTAGATCAGAAAGCGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HES397-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACAGGGTGGGCGTGTGAGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
HEScon-F | 5′-GCTTAAACATCAAATGCATCATCTTGGATGCAGCAAATTCTCCTGCCTAACAAATTGATGGAGGACGTGAGCACATTGATGCATCATTTACTGATGGCGA-3′ |
ade6+63-F | 5′-GGCAGCCCATCGCTTAAACA-3′ |
ade6+258-R | 5′-CGTAACGGCTGCCAAGGCAT-3′ |
ade6-57-F | 5′-CAACATTTACCATCTCATTAAGCTGAG-3′ |
ade6+984-R | 5′-TGAAACATAATCAGGATCATCAGTACC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Protacio, R.U.; Dixon, S.; Davidson, M.K.; Wahls, W.P. Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions. Biomolecules 2024, 14, 1016. https://doi.org/10.3390/biom14081016
Protacio RU, Dixon S, Davidson MK, Wahls WP. Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions. Biomolecules. 2024; 14(8):1016. https://doi.org/10.3390/biom14081016
Chicago/Turabian StyleProtacio, Reine U., Seth Dixon, Mari K. Davidson, and Wayne P. Wahls. 2024. "Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions" Biomolecules 14, no. 8: 1016. https://doi.org/10.3390/biom14081016
APA StyleProtacio, R. U., Dixon, S., Davidson, M. K., & Wahls, W. P. (2024). Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions. Biomolecules, 14(8), 1016. https://doi.org/10.3390/biom14081016