Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Circularization of Linear ssDNA
2.3. Evaluation of Circularization Yield and Selectivity
2.4. Mfold Calculation
3. Results
3.1. Unexpected Ligation of an Intramolecular Nick Flanking Only Two orThree Base Pairs to Circularize a 39-nt ssDNA
3.2. The Length Limit for Efficient PPC
3.3. Effect of Nick Location on Circularization
3.4. Optimize Reaction Conditions to Increase the Yield of Circularization by Decreasing or Avoiding Adenylation
3.5. Universality of the Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Y.; Qi, P.; Zhou, Y.W.; Wang, Y.; Xin, Y.; Sun, Y.; Zhang, D. Multi pathogenic microorganisms determination using DNA composites-encapsulated DNA silver nanocluster/graphene oxide-based system through rolling cycle amplification. Microchim. Acta 2020, 189, e403. [Google Scholar] [CrossRef] [PubMed]
- Mezger, A.; Kühnemund, M.; Nilsson, M.; Herthnek, D. Highly specific DNA detection employing ligation on suspension bead array readout. New Biotech. 2015, 32, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.S.; Yang, Y.; Li, L.; Li, X.W.; Li, Q.; Cui, C.; Wang, B.; Kuai, J.H.; Jiang, J.H.; Tan, W.H. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. Chem. Sci. 2020, 11, 9648–9654. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, X.Y.; Gao, R.X.; Lan, X.Y.; Zhu, L.J.; Chen, K.R.; Hu, Y.Z.; Huang, K.L.; Xu, W.T. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy. ACS Nano 2022, 16, 1036–1050. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ku, S.H.; Kim, M.J.; Lee, S.J.; Kim, H.C.; Kim, K.; Kim, S.H.; Kwon, I.C. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. J. Control. Release 2017, 263, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Loeffler, R.S.; Leigh, P.J.; Lopez, H.A.; Yoon, J.-Y. Recent uses of paper microfluidics in isothermal nucleic acid amplification tests. Biosensors 2023, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Song, S.; Chang, M.S.; Chun, M.S. Point-of-care diagnostic devices for detection of Escherichia coli O157:H7 using microfluidic systems: A focused review. Biosensors 2023, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Chen, S.; Han, J.X.; Tan, Q.; Wang, X.R.; Wang, H.Z.; Zhong, W.L.; Qin, Y.; Qiao, K.L.; Zhang, C.; et al. Derepression of co-silenced tumor suppressor genes by nanoparticle-loaded circular ssDNA reduces tumor malignancy. Sci. Transl. Med. 2018, 10, eaao6321. [Google Scholar] [CrossRef]
- Lu, C.H.; Cecconello, A.; Qi, X.; Wu, N.; Jester, S.S.; Famulok, M.; Matthies, M.; Schmidt, T.L.; Willner, I. Switchable reconfiguration of a seven-ring interlocked DNA catenane nanostructure. Nano Lett. 2015, 15, 7133–7137. [Google Scholar] [CrossRef]
- Lu, C.H.; Cecconello, A.; Willner, I. Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 2016, 138, 5172–5185. [Google Scholar] [CrossRef]
- Han, D.R.; Pal, S.T.; Nangreave, J.; Deng, Z.T.; Liu, Y.; Yan, H. DNA Origami with complex curvatures in three-dimensional space. Science 2011, 332, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.M.; Nathwani, B.; Lin, C.X.; Wang, J.; Karatekin, E.; Pincet, F.; Shih, W.; Rothman, J.E. A programmable DNA origami platform to organize SNAREs for membrane fusion. J. Am. Chem. Soc. 2016, 138, 4439–4447. [Google Scholar] [CrossRef]
- Lv, Y.F.; Hu, R.; Zhu, G.Z.; Zhang, X.B.; Mei, L.; Liu, Q.L.; Qiu, L.P.; Wu, C.C.; Tan, W.H. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 2015, 10, 1508–1524. [Google Scholar] [CrossRef]
- Zhu, G.Z.; Mei, L.; Vishwasrao, H.D.; Jacobson, O.; Wang, Z.T.; Liu, Y.J.; Yung, B.C.; Fu, X.; Jin, A.; Niu, G.; et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat. Commun. 2017, 8, e1482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Cui, Y.X.; An, R.; Liang, X.G.; Li, Q.; Wang, H.T.; Wang, H.; Fan, Y.Q.; Dong, P.; Li, J.; et al. Topo-logically constrained formation of stable Z-DNA from normal sequence under physiological conditions. J. Am. Chem. Soc. 2019, 141, 7758–7764. [Google Scholar] [CrossRef] [PubMed]
- Paluzzi, V.E.; Zhang, C.; Mao, C.D. Near-quantitative preparation of short single-stranded DNA circles. Angew. Chem.-Int. Edit. 2023, 62, e202218443. [Google Scholar] [CrossRef] [PubMed]
- Gubu, A.; Wang, J.; Jin, H.; Tang, X. Synthesis and "DNA Inter-locks" formation of small circular oligodeoxynucleotides. ACS Appl. Mater. Interfaces 2020, 12, 12584–12590. [Google Scholar] [CrossRef]
- Cui, Y.X.; Han, X.T.G.; An, R.; Zhang, Y.P.; Cheng, K.; Liang, X.G.; Komiyama, M. Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: An exclusive methodology for producing ssDNA rings. Nucleic Acids Res. 2018, 46, e132. [Google Scholar] [CrossRef]
- An, R.; Li, Q.; Fan, Y.Q.; Li, J.; Pan, X.M.; Komiyama, M.; Liang, X.G. Highly efficient preparation of single-stranded DNA rings by T4 ligase at abnormally low Mg(II) concentration. Nucleic Acids Res. 2017, 45, e139. [Google Scholar] [CrossRef]
- Petersen, K.V.; Tesauro, C.; Hede, M.S.; Pages, C.; Marcussen, L.B.; Keller, J.G.; Bugge, M.; Holm, K.; Bjergbaek, L.; Stougaard, M.; et al. Rolling circle enhanced detection of specific restriction endonuclease activities in crude cell extracts. Sensors 2022, 22, 7763. [Google Scholar] [CrossRef]
- Stougaard, M.; Lohmann, J.S.; Zajac, M.; Hamilton-Dutoit, S.; Koch, J. In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS. BMC Biotechnol. 2007, 7, 69. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Li, W.; Ge, Z.L.; Fan, C.H.; Gu, H.Z. Programming CircLigase catalysis for DNA rings and topologies. Anal. Chem. 2021, 93, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xi, Y.; Li, Z.; Zhang, D.W.; Huang, F.B.Q.; Fang, X.; Zhao, X.Q.; Zhang, X.; Chen, A.; Chen, T.; et al. Novel target capture DNA library preparation method using CircLigase-mediated hook ligation. New Biotech. 2020, 59, 44–50. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, K.; Liu, X.; An, R.; Komiyama, M.; Liang, X.G. Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand. Nucleic Acids Res. 2020, 48, e54. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chen, H.; An, R.; Liang, X.G. Efficient preparation of AppDNA/AppRNA by T4 DNA ligase aided by a DNA involving mismatched minihairpin structure at its 3′ side. Bull. Chem. Soc. Jpn. 2022, 95, 1380–1388. [Google Scholar] [CrossRef]
- Kuhn, H.; Frank-Kamenetskii, M. Template-independent ligation of single-stranded DNA by T4 DNA ligase. FEBS J. 2005, 272, 5991–6000. [Google Scholar] [CrossRef]
- Ng, P.S.; Bergstrom, D.E. Protein-DNA footprinting by endcapped duplex oligodeoxyribonucleotides. Nucleic Acids Res. 2004, 32, e107. [Google Scholar] [CrossRef]
- Cui, Y.; Han, X.T.G.; An, R.; Zhou, G.Q.; Komiyama, M.; Liang, X.G. Cyclization of secondarily structured oligonucleotides to single-stranded rings by using Taq DNA ligase at high temperatures. RSC Adv. 2018, 8, 18972–18979. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Shi, K.; Bohl, T.E.; Park, J.; Zasada, A.; Malik, S.; Banerjee, S.; Tran, V.; Li, N.; Yin, Z.; Kurniawan, F.; et al. T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction. Nucleic Acids Res. 2018, 46, 10474–10488. [Google Scholar] [CrossRef]
- Cherepanov, A.V.; de Vries, S. Kinetics and thermodynamics of nick sealing by T4 DNA ligase. Eur. J. Biochem. 2003, 270, 4315–4325. [Google Scholar] [CrossRef] [PubMed]
- Hirao, I.; Kawai, G.; Yoshizawa, S.; Nishimura, Y.; Ishido, Y.; Watanabe, K.; Miura, K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: An extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994, 22, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, S.; Kawai, G.; Watanabe, K.; Miura, K.; Hirao, I. GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry 1997, 36, 4761–4767. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.L.; Sun, W.H.; Chen, H.; Luo, J.; Song, Z.T.; An, R.; Komiyama, M.; Liang, X.G. Formation of an instantaneous nick for highly efficient adenylation of oligonucleotides by ligase without subsequent jointing. Chem. Commun. 2024, 60, 2942–2945. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Cheon, E.J.; Lee, M.H.; Kim, H.A. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthr. Rheum. 2013, 65, 3141–3152. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.G.W.; Williams, M.A.; Thaiss, C.A.; Cabrera-Rubio, R.; Raverdeau, M.; McEntee, C.; Cotter, P.D.; Elinav, E.; O’Neill, L.A.J.; Corr, S.C. Loss of microRNA-21 influences the gut microbiota, causing reduced susceptibility in a murine model of colitis. J. Crohns Colitis 2018, 12, 835–848. [Google Scholar] [CrossRef]
- Mazzini, G.S.; Khoraki, J.; Browning, M.G.; Campos, G.M. Concurrent miR-21 suppression and FXR activation as a mechanism of improvement in nonalcoholic fatty liver disease. Cell Death Dis. 2018, 9, e354. [Google Scholar] [CrossRef] [PubMed]
- Baker, Y.R.; Yuan, L.; Chen, J.; Belle, R.; Carlisle, R.; El-Sagheer, A.; Brown, T. Expanding the chemical functionality of DNA nano-materials generated by rolling circle amplification. Nucleic Acids Res. 2021, 49, 9042–9052. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.K.; Wu, C.; Alibakhshi, M.A.; Liu, X.Y.; Yu, L.N.; Walt, D.R.; Wanunu, M. Nanopore-based fingerprint immunoassay based on rolling circle amplification and DNA fragmentation. ACS Nano 2023, 17, 5412–5420. [Google Scholar] [CrossRef]
- Tomkinson, A.E.; Vijayakumar, S.; Pascal, J.M.; Ellenberger, T. DNA ligases: Structure, reaction mechanism, and function. Chem. Rev. 2006, 106, 687–699. [Google Scholar] [CrossRef]
- Çağlayan, M. Interplay between DNA polymerases and DNA ligases: Influence on substrate channeling and the fidelity of DNA ligation. J. Mol. Biol. 2019, 431, 2068–2081. [Google Scholar] [CrossRef]
- Beard, W.A.; Shock, D.D.; Vande Berg, B.J.; Wilson, S.H. Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J. Biol. Chem. 2002, 277, 47393–47398. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.I.; Bambara, R.A. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 433–452. [Google Scholar] [CrossRef]
- Bilotti, K.; Potapov, V.; Pryor, J.M.; Duckworth, A.T.; Keck, J.L.; Lohman, G.J.S. Mismatch discrimination and sequence bias during end-joining by DNA ligases. Nucleic Acids Res. 2022, 50, 4647–4658. [Google Scholar] [CrossRef]
- Wu, D.Y.; Wallace, R.B. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene 1989, 76, 245–254. [Google Scholar] [CrossRef]
- Yuan, C.; Lou, X.W.; Rhoades, E.; Chen, H.; Archer, L.A. T4 DNA ligase is more than an effective trap of cyclized dsDNA. Nucleic Acids Res. 2007, 35, 5294–5302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Hu, K.; Liu, M.; Luo, J.; An, R.; Liang, X. Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick. Biomolecules 2024, 14, 1027. https://doi.org/10.3390/biom14081027
Sun W, Hu K, Liu M, Luo J, An R, Liang X. Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick. Biomolecules. 2024; 14(8):1027. https://doi.org/10.3390/biom14081027
Chicago/Turabian StyleSun, Wenhua, Kunling Hu, Mengqin Liu, Jian Luo, Ran An, and Xingguo Liang. 2024. "Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick" Biomolecules 14, no. 8: 1027. https://doi.org/10.3390/biom14081027
APA StyleSun, W., Hu, K., Liu, M., Luo, J., An, R., & Liang, X. (2024). Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick. Biomolecules, 14(8), 1027. https://doi.org/10.3390/biom14081027