Advancement and Potential Applications of Epididymal Organoids
Abstract
:1. Introduction
2. The Main Function of the Epididymal Epithelium
3. Basal Cell—The Prerequisite for Organoid Formation?
4. Development History of Epididymal Organoids
5. Potential Application of Epididymal Organoids
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jelinsky, S.A.; Turner, T.T.; Bang, H.J.; Finger, J.N.; Solarz, M.K.; Wilson, E.; Brown, E.L.; Kopf, G.S.; Johnston, D.S. The rat epididymal transcriptome: Comparison of segmental gene expression in the rat and mouse epididymides. Biol. Reprod. 2007, 76, 561–570. [Google Scholar] [CrossRef]
- Johnston, D.S.; Turner, T.T.; Finger, J.N.; Owtscharuk, T.L.; Kopf, G.S.; Jelinsky, S.A. Identification of epididymis-specific transcripts in the mouse and rat by transcriptional profiling. Asian J. Androl. 2007, 9, 522–527. [Google Scholar] [CrossRef]
- Legare, C.; Akintayo, A.; Blondin, P.; Calvo, E.; Sullivan, R. Impact of male fertility status on the transcriptome of the bovine epididymis. Mol. Hum. Reprod. 2017, 23, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.T.; Bomgardner, D.; Jacobs, J.P.; Nguyen, Q.A. Association of segmentation of the epididymal interstitium with segmented tubule function in rats and mice. Reproduction 2003, 125, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.Q.; Dou, Z.L.; Wang, X.; Zhang, K.Y.; Chen, H.; Gao, J.G.; Sun, X.Y. Epididymal initial segment-specific Cre recombinase activity in Lcn8-Cre knock-in mice. Mol. Biol. Rep. 2021, 48, 6015–6023. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, G.A. New insights into epididymal biology and function. Hum. Reprod. Update 2009, 15, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, S.; Magdi, Y.; Rashed, A.; Henkel, R.; Agarwal, A. Epididymal contribution to male infertility: An overlooked problem. Andrologia 2021, 53, e13721. [Google Scholar] [CrossRef]
- Dufresne, J.; Gregory, M.; Pinel, L.; Cyr, D.G. Three-Dimensional Cell Culture of Epididymal Basal Cells and Organoids: A Novel Tool for Toxicology. Curr. Protoc. 2024, 4, e975. [Google Scholar] [CrossRef]
- Sullivan, R.; Legare, C.; Lamontagne-Proulx, J.; Breton, S.; Soulet, D. Revisiting structure/functions of the human epididymis. Andrology 2019, 7, 748–757. [Google Scholar] [CrossRef]
- Breton, S.; Ruan, Y.C.; Park, Y.J.; Kim, B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J. Androl. 2016, 18, 3–9. [Google Scholar] [CrossRef]
- Shum, W.W.; Ruan, Y.C.; Da Silva, N.; Breton, S. Establishment of cell-cell cross talk in the epididymis: Control of luminal acidification. J. Androl. 2011, 32, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Zhang, J.; Wong, G.; Zhang, S.; Lu, X.; et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016, 167, 1511–1524.e10. [Google Scholar] [CrossRef] [PubMed]
- Mandon, M.; Hermo, L.; Cyr, D.G. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells. Biol. Reprod. 2015, 93, 115. [Google Scholar] [CrossRef] [PubMed]
- Seiler, P.; Wenzel, I.; Wagenfeld, A.; Yeung, C.H.; Nieschlag, E.; Cooper, T.G. The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int. J. Androl. 1998, 21, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Jégou, B.; Skinner, M.K. Content and Volume Overview; Academic Press: New York, NY, USA, 2018; pp. 1–2. [Google Scholar]
- Adamali, H.I.; Hermo, L. Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J. Androl. 1996, 17, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Belleannee, C.; Thimon, V.; Sullivan, R. Region-specific gene expression in the epididymis. Cell Tissue Res. 2012, 349, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Battistone, M.A.; Elizagaray, M.L.; Barrachina, F.; Ottino, K.; Mendelsohn, A.C.; Breton, S. Immunoregulatory mechanisms between epithelial clear cells and mononuclear phagocytes in the epididymis. Andrology 2023, 12, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Brown, D.; Nair, A.V.; Breton, S. Region-specific transcriptomic and functional signatures of mononuclear phagocytes in the epididymis. Mol. Hum. Reprod. 2020, 26, 14–29. [Google Scholar] [CrossRef]
- Breton, S.; Nair, A.V.; Battistone, M.A. Epithelial dynamics in the epididymis: Role in the maturation, protection, and storage of spermatozoa. Andrology 2019, 7, 631–643. [Google Scholar] [CrossRef]
- Shum, W.W.; Hill, E.; Brown, D.; Breton, S. Plasticity of basal cells during postnatal development in the rat epididymis. Reproduction 2013, 146, 455–469. [Google Scholar] [CrossRef]
- Voisin, A.; Damon-Soubeyrand, C.; Bravard, S.; Saez, F.; Drevet, J.R.; Guiton, R. Differential expression and localisation of TGF-beta isoforms and receptors in the murine epididymis. Sci. Rep. 2020, 10, 995. [Google Scholar] [CrossRef]
- Shum, W.W.; Smith, T.B.; Cortez-Retamozo, V.; Grigoryeva, L.S.; Roy, J.W.; Hill, E.; Pittet, M.J.; Breton, S.; Da Silva, N. Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol. Reprod. 2014, 90, 90. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Alves, M.B.R.; Belleannee, C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum. Reprod. Update 2022, 28, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Belleannee, C.; Da Silva, N.; Shum, W.W.; Marsolais, M.; Laprade, R.; Brown, D.; Breton, S. Segmental expression of the bradykinin type 2 receptor in rat efferent ducts and epididymis and its role in the regulation of aquaporin 9. Biol. Reprod. 2009, 80, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumaran, G.K.; Hanukoglu, I. High-resolution imaging of the actin cytoskeleton and epithelial sodium channel, CFTR, and aquaporin-9 localization in the vas deferens. Mol. Reprod. Dev. 2020, 87, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Feng, X.L.; Qi, C.; Zhang, S.E.; Zhang, G.L. The significance of single-cell transcriptome analysis in epididymis research. Front. Cell Dev. Biol. 2024, 12, 1357370. [Google Scholar] [CrossRef]
- Isnard-Bagnis, C.; Da Silva, N.; Beaulieu, V.; Yu, A.S.; Brown, D.; Breton, S. Detection of ClC-3 and ClC-5 in epididymal epithelium: Immunofluorescence and RT-PCR after LCM. Am. J. Physiol. Cell Physiol. 2003, 284, C220–C232. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, F.; Regadera, J.; Cobo, P.; Palacios, J.; Paniagua, R.; Nistal, M. The apical mitochondria-rich cells of the mammalian epididymis. Andrologia 1995, 27, 195–206. [Google Scholar] [CrossRef]
- Leir, S.H.; Yin, S.; Kerschner, J.L.; Cosme, W.; Harris, A. An atlas of human proximal epididymis reveals cell-specific functions and distinct roles for CFTR. Life Sci. Alliance 2020, 3, 11. [Google Scholar] [CrossRef]
- Byers, S.W.; Hadley, M.A.; Djakiew, D.; Dym, M. Growth and characterization of polarized monolayers of epididymal epithelial cells and Sertoli cells in dual environment culture chambers. J. Androl. 1986, 7, 59–68. [Google Scholar] [CrossRef]
- Cooper, T.G.; Yeung, C.H.; Meyer, R.; Schulze, H. Maintenance of human epididymal epithelial cell function in monolayer culture. J. Reprod. Fertil. 1990, 90, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.D.; Hartman, T.D.; Smith, C.A. In-vitro culture of hamster epididymal epithelium and induction of sperm motility. J. Reprod. Fertil. 1986, 78, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.D.; Curry, M.R.; Penfold, L.M.; Pryor, J.P. The culture of human epididymal epithelium and in vitro maturation of epididymal spermatozoa. Fertil. Steril. 1992, 58, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Kervancioglu, M.E.; Djahanbakhch, O.; Aitken, R.J. Epithelial cell coculture and the induction of sperm capacitation. Fertil. Steril. 1994, 61, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Bongso, A.; Trounson, A. Evaluation of motility, freezing ability and embryonic development of murine epididymal sperm after coculture with epididymal epithelium. Hum. Reprod. 1996, 11, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Akhondi, M.A.; Chapple, C.; Moore, H.D. Prolonged survival of human spermatozoa when co-incubated with epididymal cell cultures. Hum. Reprod. 1997, 12, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhang, X.; Murdoch, R.; Aitken, R.J. In vitro culture of brushtail possum (Trichosurus vulpecula) epididymal epithelium and induction of epididymal sperm maturation in co-culture. J. Reprod. Fertil. 2000, 119, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.S.; Lin, W.Z.; Wang, T.E.; Lee, W.Y.; Li, S.H.; Lin, F.J.; Nixon, B.; Sipila, P.; Tsai, P.S. Polarized epithelium-sperm co-culture system reveals stimulatory factors for the secretion of mouse epididymal quiescin sulfhydryl oxidase 1. J. Reprod. Dev. 2022, 68, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Dube, E.; Dufresne, J.; Chan, P.T.; Hermo, L.; Cyr, D.G. Assessing the role of claudins in maintaining the integrity of epididymal tight junctions using novel human epididymal cell lines. Biol. Reprod. 2010, 82, 1119–1128. [Google Scholar] [CrossRef]
- Dube, E.; Hermo, L.; Chan, P.T.; Cyr, D.G. Alterations in the human blood-epididymis barrier in obstructive azoospermia and the development of novel epididymal cell lines from infertile men. Biol. Reprod. 2010, 83, 584–596. [Google Scholar] [CrossRef]
- Dufresne, J.; St-Pierre, N.; Viger, R.S.; Hermo, L.; Cyr, D.G. Characterization of a novel rat epididymal cell line to study epididymal function. Endocrinology 2005, 146, 4710–4720. [Google Scholar] [CrossRef] [PubMed]
- Araki, Y.; Suzuki, K.; Matusik, R.J.; Obinata, M.; Orgebin-Crist, M.C. Immortalized epididymal cell lines from transgenic mice overexpressing temperature-sensitive simian virus 40 large T-antigen gene. J. Androl. 2002, 23, 854–869. [Google Scholar] [CrossRef] [PubMed]
- Sipila, P.; Shariatmadari, R.; Huhtaniemi, I.T.; Poutanen, M. Immortalization of epididymal epithelium in transgenic mice expressing simian virus 40 T antigen: Characterization of cell lines and regulation of the polyoma enhancer activator 3. Endocrinology 2004, 145, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Adam, C.; Cyr, D.G. Role of Specificity Protein-1 and Activating Protein-2 Transcription Factors in the Regulation of the Gap Junction Protein Beta-2 Gene in the Epididymis of the Rat. Biol. Reprod. 2016, 94, 120. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, J.; Cyr, D.G. Activation of an SP binding site is crucial for the expression of claudin 1 in rat epididymal principal cells. Biol. Reprod. 2007, 76, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.R.; Cyr, D.G. Regulation and characterization of the ATP-binding cassette transporter-B1 in the epididymis and epididymal spermatozoa of the rat. Toxicol. Sci. 2011, 119, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Ellerbrock, K.; Pera, I.; Hartung, S.; Ivell, R. Gene expression in the dog epididymis: A model for human epididymal function. Int. J. Androl. 1994, 17, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Pearl, C.A.; Roser, J.F. Lactoferrin expression and secretion in the stallion epididymis. Reprod. Biol. 2014, 14, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tanwar, P. Organ Culture and Whole Mount Immunofluorescence Staining of Mouse Wolffian Ducts. J. Vis. Exp. 2017, 119, e55134. [Google Scholar]
- Klinefelter, G.R.; Hamilton, D.W. Organ culture of rat caput epididymal tubules in a perifusion chamber. J. Androl. 1984, 5, 243–258. [Google Scholar] [CrossRef]
- Battaglia, G. Preliminary observations on movements of the epididymis of the rat in rotating organ type culture. Boll. Soc. Ital. Biol. Sper. 1956, 32, 265–267. [Google Scholar] [PubMed]
- Kaur, J.; Ramakrishnan, P.R.; Rajalakshmi, M. In vitro organ culture of rhesus monkey epididymal tubules. Contraception 1991, 43, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Leir, S.H.; Browne, J.A.; Eggener, S.E.; Harris, A. Characterization of primary cultures of adult human epididymis epithelial cells. Fertil. Steril. 2015, 103, 647–654.e1. [Google Scholar] [CrossRef] [PubMed]
- Coatti, G.C.; Paranjapye, A.; Harris, A. Dual SMAD inhibition enhances the longevity of human epididymis epithelial cells. Cell Tissue Res. 2023, 391, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Buff, S.; Lambert, V.; Marchal, T.; Guerin, P. Isolation, culture and characteristics of epididymal epithelial cells from adult cats. Theriogenology 2005, 64, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Gu, Y.; Shen, J.; Qin, J.; Bao, J.; Hu, Y.; Zeng, W.; Dong, W. Trehalose maintains vitality of mouse epididymal epithelial cells and mediates gene transfer. PLoS ONE 2014, 9, e92483. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Kong, S.; Zhou, D.; Dong, J.; Cheng, Y.; Zhang, S.; Wang, F.; Kalra, A.; Yang, N.; et al. Establishing mouse and human oral esophageal organoids to investigate the tumor immune response. Dis. Model. Mech. 2024, 17, dmm050319. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, A.; Melino, G.; Candi, E. Gene expression in organoids: An expanding horizon. Biol. Direct 2023, 18, 11. [Google Scholar] [CrossRef]
- Corro, C.; Novellasdemunt, L.; Li, V.S.W. A brief history of organoids. Am. J. Physiol. Cell Physiol. 2020, 319, C151–C165. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Jones, C.; Mecca, R.; Davies, J.; Lane, S.; Coward, K. Anin vitrothree-dimensional (3D) testicular organoid culture system for efficient gonocyte maintenance and propagation using frozen/thawed neonatal bovine testicular tissues. Biomed. Mater. 2024, 19, 025040. [Google Scholar] [CrossRef]
- Richer, G.; Vanhaecke, T.; Rogiers, V.; Goossens, E.; Baert, Y. Mouse In Vitro Spermatogenesis on 3D Bioprinted Scaffolds. Methods Mol. Biol. 2024, 2770, 135–149. [Google Scholar] [PubMed]
- Skardal, A.; Aleman, J.; Forsythe, S.; Rajan, S.; Murphy, S.; Devarasetty, M.; Pourhabibi Zarandi, N.; Nzou, G.; Wicks, R.; Sadri-Ardekani, H.; et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication 2020, 12, 025017. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.M.; Calvin, H.; Cooper, G.W. The maturation of spermatozoa in the human epididymis. J. Reprod. Fertil. Suppl. 1973, 18, 199–213. [Google Scholar] [PubMed]
- Bedford, J.M. The status and the state of the human epididymis. Hum. Reprod. 1994, 9, 2187–2199. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, F.; Yu, J.; Zhou, M.; Zuo, A.; Xu, X.; Sun, X.Y.; Wang, Z. Transcriptome profiling of the initial segment and proximal caput of mouse epididymis. Front. Endocrinol. 2023, 14, 1190890. [Google Scholar] [CrossRef] [PubMed]
- Barrachina, F.; Battistone, M.A.; Castillo, J.; Mallofre, C.; Jodar, M.; Breton, S.; Oliva, R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum. Reprod. 2022, 37, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.T. Resorption versus secretion in the rat epididymis. J. Reprod. Fertil. 1984, 72, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.T. On the epididymis and its role in the development of the fertile ejaculate. J. Androl. 1995, 16, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Mieusset, R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Update 2016, 22, 574–587. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Brown, D. Regulation of luminal acidification by the V-ATPase. Physiology 2013, 28, 318–329. [Google Scholar] [CrossRef]
- Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016, 351, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R. Epididymosomes: A heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J. Androl. 2015, 17, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Dube, E.; Cyr, D.G. The blood-epididymis barrier and human male fertility. Adv. Exp. Med. Biol. 2012, 763, 218–236. [Google Scholar] [PubMed]
- Mital, P.; Hinton, B.T.; Dufour, J.M. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 2011, 84, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Wang, F.; Yu, X.Q.; Wu, H.; Gong, M.L.; Chen, R.; Zhang, W.J.; Han, R.Q.; Liu, A.J.; Chen, Y.M.; et al. Damaged male germ cells induce epididymitis in mice. Asian J. Androl. 2020, 22, 472–480. [Google Scholar] [PubMed]
- Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, K.; Clevers, H. Organoids: Modeling Development and the Stem Cell Niche in a Dish. Dev. Cell 2016, 38, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Pinel, L.; Mandon, M.; Cyr, D.G. Tissue regeneration and the epididymal stem cell. Andrology 2019, 7, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.W. Structure and function of the epithelium lining the ductuli efferentes, ductus epididymidis and ductus deferens in the rat. In Handbook of Physiology Endocrinology; American Physiological Society: Washington, DC, USA, 1975. [Google Scholar]
- Ramos, A.S., Jr.; Dym, M. Fine structure of the monkey epididymis. Am. J. Anat. 1977, 149, 501–531. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Shum, W.W.; Belleannee, C.; Da Silva, N.; Breton, S. ATP secretion in the male reproductive tract: Essential role of CFTR. J. Physiol. 2012, 590, 4209–4222. [Google Scholar] [CrossRef]
- Pastor-Soler, N.; Bagnis, C.; Sabolic, I.; Tyszkowski, R.; McKee, M.; Van Hoek, A.; Breton, S.; Brown, D. Aquaporin 9 expression along the male reproductive tract. Biol. Reprod. 2001, 65, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Pinel, L.; Cyr, D.G. Self-renewal and differentiation of rat epididymal basal cells using a novel in vitro organoid modeldagger. Biol. Reprod. 2021, 105, 987–1001. [Google Scholar] [CrossRef]
- Seaberg, R.M.; van der Kooy, D. Stem and progenitor cells: The premature desertion of rigorous definitions. Trends Neurosci. 2003, 26, 125–131. [Google Scholar] [CrossRef]
- Rinaldi, V.D.; Donnard, E.; Gellatly, K.; Rasmussen, M.; Kucukural, A.; Yukselen, O.; Garber, M.; Sharma, U.; Rando, O.J. An atlas of cell types in the mouse epididymis and vas deferens. Elife 2020, 9, e55474. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Takano, H.; Ito, T. Ultrastructure of the mouse epididymal duct with special reference to the regional differences of the principal cells. Arch. Histol. Jpn. 1983, 46, 51–68. [Google Scholar] [CrossRef]
- Dufresne, J.; Finnson, K.W.; Gregory, M.; Cyr, D.G. Expression of multiple connexins in the rat epididymis indicates a complex regulation of gap junctional communication. Am. J. Physiol. Cell Physiol. 2003, 284, C33–C43. [Google Scholar] [CrossRef]
- Tadokoro, T.; Wang, Y.; Barak, L.S.; Bai, Y.; Randell, S.H.; Hogan, B.L. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, E3641–E3649. [Google Scholar] [CrossRef]
- Yang, Y.; Riccio, P.; Schotsaert, M.; Mori, M.; Lu, J.; Lee, D.K.; Garcia-Sastre, A.; Xu, J.; Cardoso, W.V. Spatial-Temporal Lineage Restrictions of Embryonic p63(+) Progenitors Establish Distinct Stem Cell Pools in Adult Airways. Dev. Cell 2018, 44, 752–761.e4. [Google Scholar] [CrossRef]
- Clermont, Y.; Flannery, J. Mitotic activity in the epithelium of the epididymis in young and old adult rats. Biol. Reprod. 1970, 3, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Espinoza, L.; Dowbaj, A.M.; Kohler, T.N.; Strauss, B.; Sarlidou, O.; Belenguer, G.; Pacini, C.; Martins, N.P.; Dobie, R.; Wilson-Kanamori, J.R.; et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 2021, 28, 1907–1921.e8. [Google Scholar] [CrossRef]
- Pratama, G.; Vaghjiani, V.; Tee, J.Y.; Liu, Y.H.; Chan, J.; Tan, C.; Murthi, P.; Gargett, C.; Manuelpillai, U. Changes in culture expanded human amniotic epithelial cells: Implications for potential therapeutic applications. PLoS ONE 2011, 6, e26136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Luo, X.C.; Yu, C.R.; Huang, L. Matrix metalloprotease-mediated cleavage of neural glial-related cell adhesion molecules activates quiescent olfactory stem cells via EGFR. Mol. Cell Neurosci. 2020, 108, 103552. [Google Scholar] [CrossRef] [PubMed]
- Serrano Martinez, P.; Maimets, M.; Bron, R.; van Os, R.; de Haan, G.; Pringle, S.; Coppes, R.P. Role of quiescent cells in the homeostatic maintenance of the adult submandibular salivary gland. iScience 2022, 25, 105047. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, K.; Bolkestein, M.; Yin, Y.; Verstegen, M.M.A.; Bijvelds, M.J.C.; Wang, W.; Tuysuz, N.; Ten Berge, D.; Sprengers, D.; et al. Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury. Gastroenterology 2017, 153, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Basak, O.; Beumer, J.; Wiebrands, K.; Seno, H.; van Oudenaarden, A.; Clevers, H. Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells. Cell Stem Cell 2017, 20, 177–190.e4. [Google Scholar] [CrossRef] [PubMed]
- Vennekens, A.; Laporte, E.; Hermans, F.; Cox, B.; Modave, E.; Janiszewski, A.; Nys, C.; Kobayashi, H.; Malengier-Devlies, B.; Chappell, J.; et al. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proc. Natl. Acad. Sci. USA 2021, 118, e2100052118. [Google Scholar] [CrossRef] [PubMed]
- Mou, H.; Vinarsky, V.; Tata, P.R.; Brazauskas, K.; Choi, S.H.; Crooke, A.K.; Zhang, B.; Solomon, G.M.; Turner, B.; Bihler, H.; et al. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell 2016, 19, 217–231. [Google Scholar] [CrossRef]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Mooney, D.J. Biomaterials and emerging anticancer therapeutics: Engineering the microenvironment. Nat. Rev. Cancer 2016, 16, 56–66. [Google Scholar] [CrossRef]
- Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011, 21, 745–754. [Google Scholar] [CrossRef]
- Smith, E.; Cochrane, W.J. Cystic Organoid Teratoma: (Report of a Case). Can. Med. Assoc. J. 1946, 55, 151–152. [Google Scholar] [PubMed]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Ootani, A.; Li, X.; Sangiorgi, E.; Ho, Q.T.; Ueno, H.; Toda, S.; Sugihara, H.; Fujimoto, K.; Weissman, I.L.; Capecchi, M.R.; et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 2009, 15, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Busslinger, G.A.; Weusten, B.L.A.; Bogte, A.; Begthel, H.; Brosens, L.A.A.; Clevers, H. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep. 2021, 34, 108819. [Google Scholar] [CrossRef] [PubMed]
- Broutier, L.; Mastrogiovanni, G.; Verstegen, M.M.; Francies, H.E.; Gavarro, L.M.; Bradshaw, C.R.; Allen, G.E.; Arnes-Benito, R.; Sidorova, O.; Gaspersz, M.P.; et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 2017, 23, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Tan, Z.; Su, Y.; Liu, J.; Chang, M.; Yan, F.; Chen, J.; Chen, T.; Li, C.; et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 2019, 29, 1009–1026. [Google Scholar] [CrossRef]
- Cerrizuela, S.; Kaya, O.; Kremer, L.P.M.; Sarvari, A.; Ellinger, T.; Straub, J.; Brunken, J.; Sanz-Morejón, A.; Korkmaz, A.; Martín-Villalba, A. High-throughput scNMT protocol for multiomics profiling of single cell s from mouse brain and pancreatic organoids. STAR Protoc. 2022, 3, 101555. [Google Scholar] [CrossRef]
- Drost, J.; Karthaus, W.R.; Gao, D.; Driehuis, E.; Sawyers, C.L.; Chen, Y.; Clevers, H. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 2016, 11, 347–358. [Google Scholar] [CrossRef]
- Ranjan, M.; Lee, O.; Cottone, G.; Mirzaei Mehrabad, E.; Spike, B.T.; Zeng, Z.; Yadav, S.; Chatterton, R.; Kim, J.J.; Clare, S.E.; et al. Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of progesterone action in the mouse mammary gland. Breast Cancer Res. 2021, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, R.; Cao, Z.; Ma, S.; Chen, D.; Wang, Z.; Feng, Y.; Lei, Y.; Zhang, Q.; Huang, Y. In vitro reconstitution of the hormone-responsive testicular organoids from murine primary testicular cells. Biofabrication 2022, 15, 015001. [Google Scholar] [CrossRef] [PubMed]
- Alves-Lopes, J.P.; Stukenborg, J.B. Testicular organoids: A new model to study the testicular microenvironment in vitro? Hum. Reprod. Update 2018, 24, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Richer, G.; Baert, Y.; Goossens, E. In-vitro spermatogenesis through testis modelling: Toward the generation of testicular organoids. Andrology 2020, 8, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.Y.; Gardner, L.; Hughes, J.; Cindrova-Davies, T.; Gomez, M.J.; Farrell, L.; Hollinshead, M.; Marsh, S.G.E.; Brosens, J.J.; Critchley, H.O.; et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 2017, 19, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Chumduri, C.; Turco, M.Y. Organoids of the female reproductive tract. J. Mol. Med. 2021, 99, 531–553. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wei, Y.; Jiang, M.; Tang, X.; Huang, F.; Yang, X. Organoid culture of mouse fallopian tube epithelial stem cells with a thermo-reversible gelation polymer. Tissue Cell 2021, 73, 101622. [Google Scholar] [CrossRef]
- Li, X.Y.; Zheng, M.; Xu, B.; Li, D.L.; Shen, Y.; Nie, Y.Q.; Ma, L.; Wu, J. Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials 2021, 279, 121213. [Google Scholar] [CrossRef]
- Leir, S.H.; Yin, S.; Kerschner, J.L.; Xia, S.; Ahmadi, S.; Bear, C.; Harris, A. An organoid model to assay the role of CFTR in the human epididymis epithelium. Cell Tissue Res. 2020, 381, 327–336. [Google Scholar] [CrossRef]
- Cyr, D.G.; Pinel, L. Emerging organoid models to study the epididymis in male reproductive toxicology. Reprod. Toxicol. 2022, 112, 88–99. [Google Scholar] [CrossRef]
- Dufresne, J.; Gregory, M.; Pinel, L.; Cyr, D.G. Differential gene expression and hallmarks of stemness in epithelial cells of the developing rat epididymis. Cell Tissue Res. 2022, 389, 327–349. [Google Scholar] [CrossRef]
- Lu, C.; Le, Q. Advances in Organoid Technology: A Focus on Corneal Limbal Organoids. Stem Cell Rev. Rep. 2024, 20, 1227–1235. [Google Scholar] [CrossRef]
- Soto-Gamez, A.; Gunawan, J.P.; Barazzuol, L.; Pringle, S.; Coppes, R.P. Organoid-based personalized medicine: From tumor outcome prediction to autologous transplantation. Stem Cells 2024, 42, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.D.; Hartman, T.D. In-vitro development of the fertilizing ability of hamster epididymal spermatozoa after co-culture with epithelium from the proximal cauda epididymidis. J. Reprod. Fertil. 1986, 78, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Patricio, D.; Santiago, J.; Mano, J.F.; Fardilha, M. Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mech. Dis. 2023, 15, e1590. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, D.M.; Nielsen, J.E.; Kalisz, M.; Dalgaard, M.D.; Audouze, K.; Larsen, M.E.; Jacobsen, G.K.; Horn, T.; Brunak, S.; Skakkebaek, N.E.; et al. OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres. Mol. Hum. Reprod. 2010, 16, 835–845. [Google Scholar] [CrossRef]
- Kanbar, M.; Vermeulen, M.; Wyns, C. Organoids as tools to investigate the molecular mechanisms of male infertility and its treatments. Reproduction 2021, 161, R103–R112. [Google Scholar] [CrossRef]
- Sakib, S.; Yu, Y.; Voigt, A.; Ungrin, M.; Dobrinski, I. Generation of Porcine Testicular Organoids with Testis Specific Architecture using Microwell Culture. J. Vis. Exp. 2019, 152, e60387. [Google Scholar]
- Cala, G.; Sina, B.; De Coppi, P.; Giobbe, G.G.; Gerli, M.F.M. Primary human organoids models: Current progress and key milestones. Front. Bioeng. Biotechnol. 2023, 11, 1058970. [Google Scholar] [CrossRef]
- Li, H.; Gao, L.; Ye, Z.; Du, J.; Li, W.; Liang, L.; Zeng, Q.; Xi, J.; Yue, W.; Li, Z. Protective effects of resveratrol on the ethanol-induced disruption of retinogenesis in pluripotent stem cell-derived organoids. FEBS Open Bio 2023, 13, 845–866. [Google Scholar] [CrossRef]
- Sun, X.C.; Kong, D.F.; Zhao, J.; Faber, K.N.; Xia, Q.; He, K. Liver organoids: Established tools for disease modeling and drug development. Hepatol. Commun. 2023, 7, e0105. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.C.; Casella, J.L.; Litvin, M.; Dobs, A.S. Male reproductive health in cystic fibrosis. J. Cyst. Fibros. 2019, 18 (Suppl. 2), S105–S110. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Gan, W.; Li, X.; Wang, S.; Zhang, W.; Huang, L.; Liu, S.; Zhong, Q.; Guo, J.; Zhang, J.; et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat. Med. 2017, 23, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ma, J.; Wang, D.; Lin, D.; Pang, X.; Wang, S.; Zhao, Y.; Shi, L.; Xue, H.; Pan, Y.; et al. The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer. EMBO Mol. Med. 2019, 11, e10659. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Kumari, P.; Sharma, A.; Saha, S.C. SARS-CoV-2 and the reproductive system: Known and the unknown!! Middle East. Fertil. Soc. J. 2021, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, L.Q. Evaluating the impact of COVID-19 on male reproduction. Reproduction 2021, 161, R37–R44. [Google Scholar] [CrossRef] [PubMed]
- Zuchowska, A.; Baranowska, P.; Flont, M.; Brzozka, Z.; Jastrzebska, E. Review: 3D cell models for organ-on-a-chip applications. Anal. Chim. Acta 2024, 1301, 342413. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.D.; Akhondi, M.A. In vitro maturation of mammalian spermatozoa. Rev. Reprod. 1996, 1, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kervancioglu, M.E.; Saridogan, E.; Aitken, R.J.; Djahanbakhch, O. Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures. Fertil. Steril. 2000, 74, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Partiot, E.; Hirschler, A.; Colomb, S.; Lutz, W.; Claeys, T.; Delalande, F.; Deffieu, M.S.; Bare, Y.; Roels, J.R.E.; Gorda, B.; et al. Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis. Nat. Microbiol. 2024, 9, 1189–1206. [Google Scholar] [CrossRef]
Cell Type | Characteristic | Function | Marker | References |
---|---|---|---|---|
Principal cell | Tall, columnar shape in the proximal regions with a squared-off appearance in the distal regions, with microvilli 500 nm–1.0 mm in length and 100 nm in width forming the epididymal brush border | Secretion/Reabsorb, Merocrine, Apocrine secretions | AQP-9, CFTR, NHER1 | [11,25,26] |
Clear cell | An apical pole enriched with mitochondria which displays a complete and functional endocytic apparatus | Endocytic cells, proton secretion | V-ATPase, CIC-5 | [27,28] |
Apical cell | Present in the initial segment of the epididymis displaying a spherical nucleus at the apical pole of the epithelium | Control of inflammatory responses in the epididymis | V-ATPase, GSTM3 | [11,29,30] |
Basal cell | Pyramidal-shaped cells located at the base of the epithelium which directly interact with neighboring principal and clear cells through gap junctions | “Stem cell” character and “lumen-reaching” property | KRT5 | [11,23] |
Narrow cell | Elongated and narrow shape, present in the initial segment of the epididymis | Proton secretion and acidification of the epididymal fluid | V-ATPase, CIC-5 | [27,28] |
Year | Species | Results | References |
---|---|---|---|
1992 | Human | Epididymal fragments formed everted epithelial spheres that maintained cell integrity for 5–7 days. | [34] |
2010 | Human | Epididymal cells formed spheres for at least 20 days. | [128] |
2015 | Rat | Basal cells may represent an epididymal stem cell population. | [13] |
2016 | Mouse | Expanded epididymis basal cells efficiently generated organoids in Matrigel. | [99] |
2020 | Human | Epididymal cells generated organoid and provided the tool for studying cystic fibrosis (CF) in infertile men. | [121] |
2021–2022 | Rat | Basal cells generated organoids capable of secreting function and columnar cells represent an epididymal stem/progenitor cell population. | [84,123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, J.; Chen, H.; Zhao, X. Advancement and Potential Applications of Epididymal Organoids. Biomolecules 2024, 14, 1026. https://doi.org/10.3390/biom14081026
Nie J, Chen H, Zhao X. Advancement and Potential Applications of Epididymal Organoids. Biomolecules. 2024; 14(8):1026. https://doi.org/10.3390/biom14081026
Chicago/Turabian StyleNie, Junyu, Hao Chen, and Xiuling Zhao. 2024. "Advancement and Potential Applications of Epididymal Organoids" Biomolecules 14, no. 8: 1026. https://doi.org/10.3390/biom14081026
APA StyleNie, J., Chen, H., & Zhao, X. (2024). Advancement and Potential Applications of Epididymal Organoids. Biomolecules, 14(8), 1026. https://doi.org/10.3390/biom14081026