Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Reagents
2.3. Intravitreal Injection
2.4. Immunohistochemistry and Quantification of the RGC Number
2.5. Histological Evaluation of Optic Nerves and Quantification of Axon Numbers
2.6. Statistical Analyses
3. Results
3.1. Axonal Degeneration in the Optic Nerve by Intravitreal Injection of Rotenone
3.2. Axonal Degeneration of Retinal Ganglion Cells (RGCs) in the Retina by Intravitreal Injection of Rotenone
3.3. Rotenone-Induced RGC Soma Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorrentino, V.; Menzies, K.J.; Auwerx, J. Repairing Mitochondrial Dysfunction in Disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 353–389. [Google Scholar] [CrossRef]
- Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative Diseases: Pathogenesis and Treatment. CNS Neurosci. Ther. 2017, 23, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Carelli, V.; Rugolo, M.; Sgarbi, G.; Ghelli, A.; Zanna, C.; Baracca, A.; Lenaz, G.; Napoli, E.; Martinuzzi, A.; Solaini, G. Bioenergetics Shapes Cellular Death Pathways in Leber’s Hereditary Optic Neuropathy: A Model of Mitochondrial Neurodegeneration. Biochim. Biophys. Acta—Bioenerg. 2004, 1658, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, S. Mitochondrial Uncoupling, ROS Generation and Cardioprotection. Biochim. Biophys. Acta—Bioenerg. 2018, 1859, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Heitz, F.D.; Erb, M.; Anklin, C.; Robay, D.; Pernet, V.; Gueven, N. Idebenone Protects against Retinal Damage and Loss of Vision in a Mouse Model of Leber’s Hereditary Optic Neuropathy. PLoS ONE 2012, 7, e45182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, L.; Philip, A.L.; Martinez, J.C.; Guttierez, J.C.; Marella, M.; Patki, G.; Matsuno-Yagi, A.; Yagi, T.; Thomas, B.B. Long-Term Evaluation of Leber’s Hereditary Optic Neuropathy-like Symptoms in Rotenone Administered Rats. Neurosci. Lett. 2015, 585, 171–176. [Google Scholar] [CrossRef]
- Levin, L.A. Mechanisms of Retinal Ganglion Specific-Cell Death in Leber Hereditary Optic Neuropathy. Trans. Am. Ophthalmol. Soc. 2007, 105, 379–391. [Google Scholar]
- Manickam, A.H.; Michael, M.J.; Ramasamy, S. Mitochondrial Genetics and Therapeutic Overview of Leber’s Hereditary Optic Neuropathy. Indian J. Ophthalmol. 2017, 65, 1087–1092. [Google Scholar]
- Mascialino, B.; Leinonen, M.; Meier, T. Meta-Analysis of the Prevalence of Leber Hereditary Optic Neuropathy MtDNA Mutations in Europe. Eur. J. Ophthalmol. 2012, 22, 461–465. [Google Scholar] [CrossRef]
- Finnegan, L.K.; Chadderton, N.; Kenna, P.F.; Palfi, A.; Carty, M.; Bowie, A.G.; Millington-Ward, S.; Farrar, G.J. SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration. Int. J. Mol. Sci. 2022, 23, 1606. [Google Scholar] [CrossRef]
- Aoyama, Y.; Inagaki, S.; Aoshima, K.; Iwata, Y.; Nakamura, S.; Hara, H.; Shimazawa, M. Involvement of Endoplasmic Reticulum Stress in Rotenone-Induced Leber Hereditary Optic Neuropathy Model and the Discovery of New Therapeutic Agents. J. Pharmacol. Sci. 2021, 147, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Sasaoka, M.; Ota, T.; Kageyama, M. Rotenone-Induced Inner Retinal Degeneration via Presynaptic Activation of Voltage-Dependent Sodium and L-Type Calcium Channels in Rats. Sci. Rep. 2020, 10, 969. [Google Scholar] [CrossRef]
- Lim, W.C.; Webber, W.A. A Light and Transmission Electron-Microscopic Study of the Rat Iris in Pupillary Dilation and Constriction. Exp. Eye Res. 1975, 21, 433–449. [Google Scholar] [CrossRef]
- Gregory, M.; Carpenter, A.E.; Buys, E.S. An Open-Source Computational Tool to Automatically Quantify Immunolabeled Retinal Ganglion Cells. Exp. Eye Res. 2016, 147, 50–56. [Google Scholar] [CrossRef]
- Ghnenis, A.B.; Czaikowski, R.E.; Zhang, Z.J.; Bushman, J.S. Toluidine Blue Staining of Resin-Embedded Sections for Evaluation of Peripheral Nerve Morphology. J. Vis. Exp. 2018, 58031. [Google Scholar] [CrossRef]
- Ritch, M.D.; Hannon, B.G.; Read, A.T.; Feola, A.J.; Cull, G.A.; Reynaud, J.; Morrison, J.C.; Burgoyne, C.F.; Pardue, M.T.; Ethier, C.R. AxoNet: A Deep Learning-Based Tool to Count Retinal Ganglion Cell Axons. Sci. Rep. 2020, 10, 8034. [Google Scholar] [CrossRef] [PubMed]
- Ames, A. CNS Energy Metabolism as Related to Function. Brain Res. Rev. 2000, 34, 42–68. [Google Scholar] [CrossRef]
- Ames, A. Energy Requirements of CNS Cells as Related to Their Function and to Their Vulnerability to Ischemia: A Commentary Based on Studies on Retina. Can. J. Physiol. Pharmacol. 1992, 70, 158–164. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Jiang, J. Mitochondrial Dysfunction in Neurodegenerative Diseases and Drug Targets via Apoptotic Signaling. Mitochondrion 2019, 49, 35–45. [Google Scholar] [CrossRef]
- Campbell, G.; Mahad, D.J. Mitochondrial Dysfunction and Axon Degeneration in Progressive Multiple Sclerosis. FEBS Lett. 2018, 592, 1113–1121. [Google Scholar] [CrossRef]
- Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production. J. Biol. Chem. 2003, 278, 8516–8525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jones, D.; Gonzalez-Lima, F. Mouse Model of Optic Neuropathy Caused by Mitochondrial Complex I Dysfunction. Neurosci. Lett. 2002, 326, 97–100. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, J.; Shen, M.; Xu, H.; Yu, S.; Cheng, Q.; Ding, F. Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy. Molecules 2020, 25, 4359. [Google Scholar] [CrossRef]
- Tawarayama, H.; Inoue-Yanagimachi, M.; Himori, N.; Nakazawa, T. Glial Cells Modulate Retinal Cell Survival in Rotenone-Induced Neural Degeneration. Sci. Rep. 2021, 11, 11159. [Google Scholar] [CrossRef]
- Moon, H.J.; Kim, J.H.; Lee, H.S.; Chotai, S.; Kang, J.D.; Suh, J.K.; Park, Y.K. Annulus Fibrosus Cells Interact with Neuron-like Cells to Modulate Production of Growth Factors and Cytokines in Symptomatic Disc Degeneration. Spine 2012, 37, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, Y.; Kitaoka, Y.; Kwong, J.M.K.; Fred N Ross-Cisneros, J.W.; Tsai, R.K.; Sadun, A.A.; Lam, T.T. TNF-Alpha-Induced Optic Nerve Degeneration and Nuclear Factor-KappaB P65. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1448–1457. [Google Scholar] [CrossRef]
- Pekny, M.; Pekna, M. Reactive Gliosis in the Pathogenesis of CNS Diseases. Biochim. Biophys. Acta—Mol. Basis Dis. 2016, 1862, 483–491. [Google Scholar] [CrossRef]
- Takeuchi, H.; Mizuno, T.; Zhang, G.; Wang, J.; Kawanokuchi, J.; Kuno, R.; Suzumura, A. Neuritic Beading Induced by Activated Microglia Is an Early Feature of Neuronal Dysfunction toward Neuronal Death by Inhibition of Mitochondrial Respiration and Axonal Transport. J. Biol. Chem. 2005, 280, 10444–10454. [Google Scholar] [CrossRef] [PubMed]
- Datar, A.; Ameeramja, J.; Bhat, A.; Srivastava, R.; Mishra, A.; Bernal, R.; Prost, J.; Callan-Jones, A.; Pullarkat, P.A. The Roles of Microtubules and Membrane Tension in Axonal Beading, Retraction, and Atrophy. Biophys. J. 2019, 117, 880–891. [Google Scholar] [CrossRef]
- Luo, L.; O’Leary, D.D.M. Axon Retraction and Degeneration in Development and Disease. Annu. Rev. Neurosci. 2005, 28, 127–156. [Google Scholar] [CrossRef]
- Zhai, Q.; Wang, J.; Kim, A.; Liu, Q.; Watts, R.; Hoopfer, E.; Mitchison, T.; Luo, L.; He, Z. Involvement of the Ubiquitin-Proteasome System in the Early Stages of Wallerian Degeneration. Neuron 2003, 39, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, X.; Feng, Z.; Cai, X.; Zhu, X.; Cao, M.; Yang, L.; Chen, Y.; Wang, Y.; Feng, H. MEC17-Induced α-Tubulin Acetylation Restores Mitochondrial Transport Function and Alleviates Axonal Injury after Intracerebral Hemorrhage in Mice. J. Neurochem. 2022, 160, 51–63. [Google Scholar] [CrossRef] [PubMed]
Group | Average (% of Vehicle) | SEM | |
---|---|---|---|
Day 3 | Vehicle | 100 | 9.8 |
Rotenone | 86.4 | 6.4 | |
Day 7 | Vehicle | 100 | 5.2 |
Rotenone | 16.3 | 0.3 |
Group | Average (% of Vehicle) | SEM | |
---|---|---|---|
Day 3 | Vehicle | 100 | 6 |
Rotenone | 68.7 | 9.6 | |
Day 7 | Vehicle | 100 | 14 |
Rotenone | 15.2 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, Y.; Taniguchi, T.; Shimazaki, A. Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats. Biomolecules 2024, 14, 1047. https://doi.org/10.3390/biom14091047
Yamamoto Y, Taniguchi T, Shimazaki A. Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats. Biomolecules. 2024; 14(9):1047. https://doi.org/10.3390/biom14091047
Chicago/Turabian StyleYamamoto, Yasuko, Takazumi Taniguchi, and Atsushi Shimazaki. 2024. "Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats" Biomolecules 14, no. 9: 1047. https://doi.org/10.3390/biom14091047
APA StyleYamamoto, Y., Taniguchi, T., & Shimazaki, A. (2024). Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats. Biomolecules, 14(9), 1047. https://doi.org/10.3390/biom14091047