Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys
Abstract
:1. Introduction
2. Materials and Methods
Table of Resources. | ||
Reagent/Resource | Source | Cat. No. |
Ambion miRVana Kit | Thermo Fisher, Waltham, MA, USA | AM1560 |
nCounter mouse v1.5 miRNA assay | NanoString, Seattle, WA, USA | CSO-MMIR15-12 |
MetaCore | GeneGo, Thomson Reuters, New York, NY, USA | Version 20.3 |
Anti-NFATc2 | Proteintech, Rosemont, IL, USA | 22023-1-AP |
Anti-NFATc3 | Proteintech, Rosemont, IL, USA | 18222-1-AP |
Anti-Rabbit-HRP | Cell Signalling Technology, Danvers, MA, USA | 7074S |
Anti-Rabbit Biotinylated | Vector Laboratories, Newark, CA, USA | BA-1000-1.5 |
VECTASTAIN® Elite® ABC Universal PLUS Kit, Peroxidase (Horse Anti-Mouse/Rabbit IgG) | Vector Laboratories, Newark, CA, USA | PK-8200 |
DAB Substrate Kit, Peroxidase (HRP), with Nickel, (3,3′-diaminobenzidine) | Vector Laboratories, Newark, CA, USA | SK-4100 |
IL-1a | Thermo Fisher, Waltham, MA, USA | BMS611 |
IL-6 | Thermo Fisher, Waltham, MA, USA | A43656 |
IL-10 | Thermo Fisher, Waltham, MA, USA | BMS614 |
IL-17A | Thermo Fisher, Waltham, MA, USA | BMS6001 |
MCP-1 | Thermo Fisher, Waltham, MA, USA | BMS6005 |
TNF-alpha | Thermo Fisher, Waltham, MA, USA | BMS607-3 |
All other Chemicals | Millipore-Sigma, St. Louis, MO, USA |
3. Results
KEGG Pathway | p-Value | Number of Target Genes of miRNAs | Number of miRNAs |
---|---|---|---|
Wnt signaling pathway | 0.00054352 | 30 | 9 |
Estrogen signaling pathway | 0.00068162 | 21 | 10 |
Neurotrophin signaling pathway | 0.00134064 | 26 | 10 |
MAPK signaling pathway | 0.00272778 | 44 | 12 |
GnRH signaling pathway | 0.00426589 | 20 | 9 |
Oxytocin signaling pathway | 0.00426589 | 31 | 12 |
B cell receptor signaling pathway | 0.00836808 | 17 | 10 |
cAMP signaling pathway | 0.00949667 | 36 | 12 |
cGMP-PKG signaling pathway | 0.01397984 | 32 | 12 |
T cell receptor signaling pathway | 0.01584336 | 21 | 9 |
FoxO signaling pathway | 0.02785748 | 27 | 8 |
Expression of Cytokines in the Kidneys of Old WT and NHERF1−/−
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boss, G.; Seegmiller, J. Age-related physiological changes and their clinical significance-PubMed. West. J. Med. 1981, 135, 434–440. Available online: https://pubmed.ncbi.nlm.nih.gov/7336713/ (accessed on 3 March 2024).
- Kwekel, J.C.; Vijay, V.; Desai, V.G.; Moland, C.L.; Fuscoe, J.C. Age and sex differences in kidney microRNA expression during the life span of F344 rats. Biol. Sex Differ. 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Sprott, R.L. Development of animal models of aging at the national institute on aging. Neurobiol. Aging 1991, 12, 635–638. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1791897 (accessed on 20 May 2016). [CrossRef] [PubMed]
- Sprott, R.L.; Ramirez, I. Current Inbred and Hybrid Rat and Mouse Models. ILAR J. 1997, 38, 104–109. [Google Scholar] [CrossRef]
- Barati, M.T.; Ketchem, C.J.; Merchant, M.L.; Kusiak, W.B.; Jose, P.A.; Weinman, E.J.; LeBlanc, A.J.; Lederer, E.D.; Khundmiri, S.J. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: Aged F344 rats and spontaneously hypertensive rats. Am. J. Physiol.-Cell Physiol. 2017, 313, C197–C206. [Google Scholar] [CrossRef]
- Preuss, H.G.; Knapka, J.J.; MacArthy, P.; Yousufi, A.K.; Sabnis, S.G.; Antonovych, T.T. High sucrose diets increase blood pressure of both salt-sensitive and salt-resistant rats. Am. J. Hypertens. 1992, 5, 585–591. [Google Scholar] [CrossRef]
- Pushpakumar, S.; Ahmad, A.; Ketchem, C.J.; Jose, P.A.; Weinman, E.J.; Sen, U.; Lederer, E.D.; Khundmiri, S.J. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci. 2020, 243, 117226. [Google Scholar] [CrossRef]
- Ketchem, C.J.; Khundmiri, S.J.; Gaweda, A.E.; Murray, R.; Clark, B.J.; Weinman, E.J.; Lederer, E.D. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter. Am. J. Physiol. Ren. Physiol. 2015, 309, F109–F119. [Google Scholar] [CrossRef]
- Bushau-Sprinkle, A.M.; Barati, M.T.; Zheng, Y.; Watson, W.H.; Gagnon, K.B.; Khundmiri, S.J.; Kitterman, K.T.; Clark, B.J.; Siskind, L.J.; Doll, M.A.; et al. Na/H Exchange Regulatory Fac-tor 1 Deficient Mice Show Evidence of Oxidative Stress and Altered Cisplatin Pharmacokinetics. Antioxidants 2021, 10, 1036. Available online: http://www.ncbi.nlm.nih.gov/pubmed/34203453 (accessed on 27 August 2021). [CrossRef] [PubMed]
- Jung, H.J.; Park, E.J.; Choi, H.J.; Kwon, T.H. Regulation of aquaporin-2 by RNA interference. Vitam. Horm. 2020, 112, 119–145. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Mucha, O.; Podkalicka, P.; Sobczak, M.; Miksza-Cybulska, A.; Kaczara, P.; Jozkowicz, A.; Dulak, J. Kidney injury by cyclosporine A is aggravated in heme oxygenase-1 deficient mice and involves regulation of microRNAs. Acta Biochim. Pol. 2018, 65, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Rusu-Nastase, E.G.; Lupan, A.-M.; Marinescu, C.I.; Neculachi, C.A.; Preda, M.B.; Burlacu, A. MiR-29a Increase in Aging May Function as a Compensatory Mechanism Against Cardiac Fibrosis Through SERPINH1 Downregulation. Front. Cardiovasc. Med. 2022, 8, 810241. [Google Scholar] [CrossRef]
- Liu, Y.; Taylor, N.E.; Lu, L.; Usa, K.; Cowley, A.W.; Ferreri, N.R.; Yeo, N.C.; Liang, M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 2010, 55, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Charchar, F.J. microRNAs in Essential Hypertension and Blood Pressure Regulation. Adv. Exp. Med. Biol. 2015, 888, 215–235. [Google Scholar] [CrossRef]
- Schena, F.P.; Serino, G.; Sallustio, F. MicroRNAs in kidney diseases: New promising biomarkers for diagnosis and monitoring. Nephrol. Dial. Transplant. 2014, 29, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Silva-Santos, R.M.; Costa-Pinheiro, P.; Luis, A.; Antunes, L.; Lobo, F.; Oliveira, J.; Henrique, R.; Jerónimo, C. MicroRNA profile: A promising ancillary tool for accurate renal cell tumour diagnosis. Br. J. Cancer 2013, 109, 2646–2653. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Wilflingseder, J.; Reindl-Schwaighofer, R.; Sunzenauer, J.; Kainz, A.; Heinzel, A.; Mayer, B.; Oberbauer, R. MicroRNAs in kidney transplantation. Nephrol. Dial. Transplant. 2015, 30, 910–917. [Google Scholar] [CrossRef]
- Aravindraja, C.; Jeepipalli, S.; Vekariya, K.M.; Botello-Escalante, R.; Chan, E.K.L.; Kesavalu, L. Oral Spirochete Treponema denticola Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis. Int. J. Mol. Sci. 2023, 24, 12105. [Google Scholar] [CrossRef]
- Schultz, D.J.; Wickramasinghe, N.S.; Ivanova, M.M.; Isaacs, S.M.; Dougherty, S.M.; Imbert-Fernandez, Y.; Cunningham, A.R.; Chen, C.; Klinge, C.M. Anacardic acid inhibits estrogen receptor α-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol. Cancer Ther. 2010, 9, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Khundmiri, S.J.; Metzler, M.A.; Ameen, M.; Amin, V.; Rane, M.J.; Delamere, N.A. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am. J. Physiol.-Cell Physiol. 2006, 291, C1247–C1257. [Google Scholar] [CrossRef]
- Holthouser, K.A.; Mandal, A.; Merchant, M.L.; Schelling, J.R.; Delamere, N.A.; Valdes, R.R., Jr.; Tyagi, S.C.; Lederer, E.D.; Khundmiri, S.J. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2010, 299, F77–F90. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, W.; Syme, C.A.; Bisello, A.; Magyar, C.E.; Rochdi, M.D.; Parent, J.-L.; Weinman, E.J. Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J. Biol. Chem. 2003, 278, 43787–43796. [Google Scholar] [CrossRef]
- Lee, J.W.; Chou, C.L.; Knepper, M.A. Deep sequencing in microdissected renal tubules identifies neph-ron segment-specific transcriptomes. J. Am. Soc. Nephrol. 2015, 26, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Kasacka, I.; Piotrowska, Ż.; Domian, N.; Lewandowska, A. Wnt/β-catenin signaling in the adrenal glands of rats in various types of experimental hypertension. Endocr. Connect. 2022, 11, e220121. [Google Scholar] [CrossRef]
- Vallée, A.; Vallée, J.-N.; Lecarpentier, Y. WNT/β-catenin Pathway: A Possible Link Between Hypertension and Alzheimer’s Disease. Curr. Hypertens. Rep. 2022, 24, 465–475. [Google Scholar] [CrossRef]
- Kawarazaki, W.; Fujita, T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat. Rev. Nephrol. 2021, 17, 350–363. [Google Scholar] [CrossRef]
- Schunk, S.J.; Floege, J.; Fliser, D.; Speer, T. WNT-β-catenin signalling—A versatile player in kidney injury and repair. Nat. Rev. Nephrol. 2020, 17, 172–184. [Google Scholar] [CrossRef]
- Terabayashi, T.; Germino, G.G.; Menezes, L.F. Pathway identification through transcriptome analysis. Cell. Signal. 2020, 74, 109701. [Google Scholar] [CrossRef]
- Franzin, R.; Stasi, A.; Fiorentino, M.; Stallone, G.; Cantaluppi, V.; Gesualdo, L.; Castellano, G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front. Immunol. 2020, 11, 734. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, K.; Daniel, C.; Lehr, H.A.; Nikolaev, A.; Gerlach, T.; Atreya, R.; Rose-John, S.; Neurath, M.F.; Weigmann, B. Transcription factor NFATc2 controls the emergence of colon cancer associated with IL-6-dependent colitis. Cancer Res. 2012, 72, 4340–4350. [Google Scholar] [CrossRef]
- Graham, B.B.; Chabon, J.; Kumar, R.; Kolosionek, E.; Gebreab, L.; Debella, E.; Edwards, M.; Diener, K.; Shade, T.; Bifeng, G.; et al. Protective Role of IL-6 in Vascular Remodeling in Schistosoma Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2013, 49, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Gong, A.Y.; Haller, S.T.; Dworkin, L.D.; Liu, Z.; Gong, R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res. Rev. 2020, 63, 101151. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Y.; Mladinov, D.; Cowley, A.W.; Trivedi, H.; Fang, Y.; Xu, X.; Ding, X.; Tian, Z. MicroRNA: A new frontier in kidney and blood pressure research. Am. J. Physiol. Ren. Physiol. 2009, 297, F553–F558. [Google Scholar] [CrossRef]
- Lozano-Velasco, E.; Inácio, J.M.; Sousa, I.; Guimarães, A.R.; Franco, D.; Moura, G.; Belo, J.A. miRNAs in Heart Development and Disease. Int. J. Mol. Sci. 2024, 25, 1673. [Google Scholar] [CrossRef]
- Maiese, K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023, 12, 2595. [Google Scholar] [CrossRef]
- Kotagama, K.; McJunkin, K. Recent advances in understanding microRNA function and regulation in C. elegans. Semin. Cell Dev. Biol. 2024, 154, 4–13. [Google Scholar] [CrossRef]
- Kwekel, J.C.; Vijay, V.; Han, T.; Moland, C.L.; Desai, V.G.; Fuscoe, J.C. Sex and age differences in the expression of liver microRNAs during the life span of F344 rats. Biol. Sex Differ. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Kasacka, I.; Piotrowska, Z.; Domian, N.; Acewicz, M.; Lewandowska, A. Canonical Wnt signaling in the kidney in different hypertension models. Hypertens. Res. 2021, 44, 1054–1066. [Google Scholar] [CrossRef]
- McCaffrey, P.G.; Luo, C.; Kerppola, T.K.; Jain, J.; Badalian, T.M.; Ho, A.M.; Burgeon, E.; Lane, W.S.; Lambert, J.N.; Curran, T.; et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 1993, 262, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Burgeon, E.; Carew, J.A.; McCaffrey, P.G.; Badalian, T.M.; Lane, W.S.; Hogan, P.G.; Rao, A. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol. Cell. Biol. 1996, 16, 3955–3966. [Google Scholar] [CrossRef] [PubMed]
- Plyte, S.; Boncristiano, M.; Fattori, E.; Galvagni, F.; Paccani, S.R.; Majolini, M.B.; Oliviero, S.; Ciliberto, G.; Telford, J.L.; Baldari, C.T. Identification and characterization of a novel nuclear factor of activated T-cells-1 isoform expressed in mouse brain. J. Biol. Chem. 2001, 276, 14350–14358. [Google Scholar] [CrossRef] [PubMed]
- Hodge, M.R.; Chun, H.J.; Rengarajan, J.; Alt, A.; Lieberson, R.; Glimcher, L.H. NF-AT-Driven Interleukin-4 Transcription Potentiated by NIP45. Science 1996, 274, 1903–1905. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, G.R. Generic signals and specific outcomes: Signaling through Ca2+, calcineurin, and NF-AT. Cell 1999, 96, 611–614. [Google Scholar] [CrossRef]
- Okamura, H.; Aramburu, J.; García-Rodríguez, C.; Viola, J.P.; Raghavan, A.; Tahiliani, M.; Zhang, X.; Qin, J.; Hogan, P.G.; Rao, A. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol. Cell 2000, 6, 539–550. [Google Scholar] [CrossRef]
- Bushdid, P.B.; Osinska, H.; Waclaw, R.R.; Molkentin, J.D.; Yutzey, K.E. NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ. Res. 2003, 92, 1305–1313. [Google Scholar] [CrossRef]
- Liu, J.; Koyano-Nakagawa, N.; Amasaki, Y.; Saito-Ohara, F.; Ikeuchi, T.; Imai, S.; Takano, T.; Arai, N.; Yokota, T.; Arai, K.; et al. Calcineurin-dependent nuclear translocation of a murine transcription factor NFATx: Molecular cloning and functional characterization. Mol. Biol. Cell 1997, 8, 157–170. [Google Scholar] [CrossRef]
- Ho, S.N.; Thomas, D.J.; Timmerman, L.A.; Li, X.; Francke, U.; Crabtree, G.R. NFATc3, a lymphoid-specific NFATc family member that is calcium-regulated and exhibits distinct DNA binding specificity. J. Biol. Chem. 1995, 270, 19898–19907. [Google Scholar] [CrossRef]
- Mojsa, B.; Mora, S.; Bossowski, J.P.; Lassot, I.; Desagher, S. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Cell Death Differ. 2015, 22, 274–286. [Google Scholar] [CrossRef]
- Westhorpe, C.L.V.; Norman, M.U.; Hall, P.; Snelgrove, S.L.; Finsterbusch, M.; Li, A.; Lo, C.; Tan, Z.H.; Li, S.; Nilsson, S.K.; et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat. Commun. 2018, 9, 747. [Google Scholar] [CrossRef]
- Kreiner, F.F.; Kraaijenhof, J.M.; von Herrath, M.; Hovingh, G.K.K.; von Scholten, B.J. Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: Mechanisms and therapeutic perspectives. Expert. Rev. Clin. Immunol. 2022, 18, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, C.C.J.; Petrykiv, S.; Laverman, G.D.; Cherney, D.Z.; Gansevoort, R.T.; Heerspink, H.J.L. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes. Metab. 2018, 20, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.G.; Molina, M.; Soler-Majoral, J.; Romero-González, G.; Chitiva, N.R.; Troya-Saborido, M.; Rullan, G.S.; Burgos, E.; Martínez, J.P.; Jou, M.U.; et al. Evolving Concepts on Inflammatory Biomarkers and Malnutrition in Chronic Kidney Disease. Nutrients 2022, 14, 4297. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Nordfors, L.; Stenvinkel, P.; Heimbürger, O.; Bárány, P.; Pecoits-Filho, R.; Axelsson, J.; Hoff, C.M.; Holmes, C.J.; Schalling, M.; et al. Interleukin-1 gene cluster polymorphisms are associated with nutritional status and inflammation in patients with end-stage renal disease. Blood Purif. 2005, 23, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Bushau-Sprinkle, A.M.; Lederer, E.D. New roles of the Na+/H+ exchange regulatory factor 1 scaffolding protein: A review. Am. J. Physiol. Ren. Physiol. 2020, 318, F804–F808. [Google Scholar] [CrossRef]
- Bushau-Sprinkle, A.; Barati, M.; Conklin, C.; Dupre, T.; Gagnon, K.B.; Khundmiri, S.J.; Clark, B.; Siskind, L.; Doll, M.A.; Rane, M.; et al. Loss of the Na+/H+ Exchange Regulatory Factor 1 Increases Susceptibility to Cisplatin-Induced Acute Kidney Injury. Am. J. Pathol. 2019, 189, 1190–1200. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Zhang, J.; Guo, X.; Liu, H.; Li, P.; Zhang, Y.; Lin, C.; Fan, Z. LncRNA PVT1 knockdown alleviated ox-LDL-induced vascular endothelial cell injury and atherosclerosis by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3508–3521. [Google Scholar] [CrossRef]
Name | Accession | Mean NHERF1−/− | SD NHERF−/− | Mean WT | SD WT | t-Test | NHERF1−/−/WT |
---|---|---|---|---|---|---|---|
mmu-miR-691 | MI0004659 | 4.291 | 0.916 | 5.411 | 0.579 | 0.0259 | 0.793 |
mmu-miR-291b-5p | MI0003539 | 2.698 | 0.865 | 3.672 | 0.590 | 0.0371 | 0.735 |
mmu-miR-18b | MI0005483 | 2.498 | 1.088 | 3.540 | 0.264 | 0.0465 | 0.706 |
Name | Accession | Mean NHERF1−/− | SD NHERF1−/− | Mean WT | SD WT | t-Test | NHERF1−/−/WT |
---|---|---|---|---|---|---|---|
mmu-miR-684 | MIMAT0003462 | 2.994 | 0.148 | 3.759 | 0.424 | 0.0103 | 0.797 |
mmu-miR-380-5p | MIMAT0000744 | 3.141 | 0.331 | 3.970 | 0.789 | 0.0501 | 0.791 |
mmu-miR-675-3p | MIMAT0003726 | 2.598 | 0.433 | 3.287 | 0.607 | 0.0492 | 0.790 |
mmu-miR-293 | MIMAT0000371 | 3.260 | 0.304 | 4.145 | 0.310 | 0.0194 | 0.787 |
mmu-miR-92b | MIMAT0004899 | 2.873 | 0.597 | 3.684 | 0.256 | 0.0380 | 0.780 |
mmu-miR-539 | MIMAT0003169 | 3.991 | 0.474 | 5.151 | 0.553 | 0.0127 | 0.775 |
mmu-miR-466k | MIMAT0005845 | 3.060 | 0.538 | 3.999 | 0.648 | 0.0294 | 0.765 |
mmu-miR-1894-3p | MIMAT0007878 | 2.600 | 0.400 | 3.489 | 0.368 | 0.0463 | 0.745 |
mmu-miR-184 | MIMAT0000213 | 2.614 | 0.864 | 3.570 | 0.675 | 0.0325 | 0.732 |
mmu-miR-188-3p | MIMAT0004541 | 2.689 | 1.152 | 3.847 | 0.366 | 0.0392 | 0.699 |
mmu-miR-409-3p | MIMAT0001090 | 2.146 | 0.867 | 3.098 | 0.337 | 0.0274 | 0.693 |
mmu-miR-491 | MIMAT0003486 | 2.807 | 0.641 | 4.157 | 0.351 | 0.0339 | 0.675 |
mmu-miR-669m | MIMAT0009419 | 1.727 | 0.571 | 2.896 | 0.208 | 0.0053 | 0.596 |
Name | Accession | Mean Old | SD Old | Mean Young | SD Young | t-Test | Old/Young |
---|---|---|---|---|---|---|---|
mmu-miR-1186 | MIMAT0005836 | 6.313 | 0.607 | 3.634 | 0.473 | 0.0001 | 1.737 |
mmu-miR-1896 | MIMAT0007873 | 5.695 | 0.633 | 4.045 | 0.658 | 0.0034 | 1.408 |
mmu-miR-375 | MIMAT0000739 | 7.191 | 0.445 | 5.278 | 0.229 | 0.00003 | 1.363 |
mmu-miR-1966 | MIMAT0009439 | 5.763 | 0.215 | 4.352 | 0.310 | 0.0001 | 1.324 |
mmu-miR-1927 | MIMAT0009390 | 5.038 | 0.252 | 3.827 | 0.529 | 0.0021 | 1.316 |
mmu-miR-341 | MIMAT0000588 | 2.388 | 1.189 | 3.446 | 0.393 | 0.0501 | 0.693 |
mmu-miR-466c-5p | MIMAT0004877 | 2.989 | 1.132 | 4.327 | 0.885 | 0.0431 | 0.691 |
mmu-miR-702 | MIMAT0003492 | 2.429 | 0.348 | 3.519 | 0.247 | 0.0004 | 0.690 |
mmu-miR-1905 | MIMAT0007866 | 2.744 | 0.518 | 4.033 | 0.456 | 0.0027 | 0.680 |
mmu-miR-678 | MIMAT0003452 | 3.494 | 0.728 | 5.135 | 0.304 | 0.0012 | 0.680 |
mmu-miR-504 | MIMAT0004889 | 2.675 | 1.165 | 3.972 | 0.315 | 0.0230 | 0.674 |
mmu-miR-465a-5p | MIMAT0002106 | 2.592 | 0.626 | 3.850 | 0.454 | 0.0049 | 0.673 |
mmu-miR-217 | MIMAT0000679 | 2.445 | 1.071 | 3.654 | 0.503 | 0.0292 | 0.669 |
mmu-miR-1954 | MIMAT0009425 | 2.445 | 1.071 | 3.660 | 0.382 | 0.0241 | 0.668 |
mmu-miR-1957 | MIMAT0009430 | 3.172 | 0.577 | 4.767 | 0.605 | 0.0026 | 0.665 |
mmu-miR-466d-3p | MIMAT0004931 | 3.453 | 0.371 | 5.434 | 0.459 | 0.0001 | 0.636 |
mmu-miR-434-5p | MIMAT0001421 | 3.042 | 0.821 | 4.795 | 0.636 | 0.0042 | 0.635 |
mmu-miR-343 | MIMAT0004868 | 2.429 | 0.782 | 3.901 | 0.551 | 0.0063 | 0.623 |
mmu-miR-1902 | MIMAT0007863 | 4.210 | 1.087 | 7.383 | 0.744 | 0.0006 | 0.570 |
mmu-miR-1947 | MIMAT0009413 | 2.250 | 0.500 | 3.951 | 0.219 | 0.0001 | 0.569 |
mmu-miR-377 | MIMAT0000741 | 3.113 | 0.855 | 5.672 | 0.418 | 0.0003 | 0.549 |
mmu-miR-1274a | MIMAT0009445 | 2.282 | 0.901 | 4.280 | 0.216 | 0.0009 | 0.533 |
mmu-miR-1958 | MIMAT0009431 | 2.623 | 1.845 | 4.961 | 0.701 | 0.0166 | 0.529 |
mmu-miR-1962 | MIMAT0009435 | 2.042 | 0.748 | 4.513 | 0.416 | 0.0002 | 0.453 |
miRNAs | miRNA ID | Fold Change in Old vs. Young in WT | p-Value of Old vs. Young in WT | Fold Change in Old vs. Young in KO | p-Value of Old vs. Young in KO | Aging Dependent * | WT Only. ** | Aging Associated with KO. *** |
---|---|---|---|---|---|---|---|---|
mmu-miR-1186 | MIMAT0005836 | 1.737 | 7.05 × 10−5 | 1.756 | 7.93 × 10−5 | Yes | ||
mmu-miR-690 | MIMAT0003469 | 1.354 | 7.07 × 10−3 | Yes | ||||
mmu-miR-1960 | MIMAT0009433 | 1.307 | 6.04 × 10−3 | Yes | ||||
mmu-miR-1274a | MIMAT0009445 | 0.533 | 9.14 × 10−4 | 0.490 | 1.69 × 10−3 | Yes | ||
mmu-miR-1839-3p | MIMAT0009457 | 0.698 | 5.33 × 10−4 | Yes | ||||
mmu-miR-3471 | MIMAT0015642 | 0.696 | 4.26 × 10−2 | Yes | ||||
mmu-miR-466d-5p | MIMAT0004930 | 0.693 | 1.46 × 10−3 | Yes | ||||
mmu-miR-511 | MIMAT0004940 | 0.690 | 2.21 × 10−3 | Yes | ||||
mmu-miR-380-5p | MIMAT0000744 | 0.689 | 7.76 × 10−3 | Yes | ||||
mmu-miR-1896 | MIMAT0007873 | 1.408 | 3.36 × 10−3 | 1.398 | 4.57 × 10−3 | Yes | ||
mmu-miR-1902 | MIMAT0007863 | 0.570 | 6.18 × 10−4 | 0.591 | 5.11 × 10−4 | Yes | ||
mmu-miR-1905 | MIMAT0007866 | 0.680 | 2.68 × 10−3 | Yes | ||||
mmu-miR-1927 | MIMAT0009390 | 1.316 | 2.09 × 10−3 | Yes | ||||
mmu-miR-376c | MIMAT0003183 | 0.688 | 1.27 × 10−2 | Yes | ||||
mmu-miR-1970 | MIMAT0009444 | 0.683 | 1.48 × 10−4 | Yes | ||||
mmu-miR-1947 | MIMAT0009413 | 0.569 | 1.14 × 10−4 | 0.605 | 9.79 × 10−3 | Yes | ||
mmu-miR-1954 | MIMAT0009425 | 0.668 | 2.41 × 10−2 | Yes | ||||
mmu-miR-1957 | MIMAT0009430 | 0.665 | 2.57 × 10−3 | Yes | ||||
mmu-miR-1958 | MIMAT0009431 | 0.529 | 1.66 × 10−2 | 0.532 | 1.84 × 10−2 | Yes | ||
mmu-miR-1946b | MIMAT0009443 | 0.680 | 1.13 × 10−2 | Yes | ||||
mmu-miR-1962 | MIMAT0009435 | 0.453 | 1.96 × 10−4 | 0.412 | 2.18 × 10−3 | Yes | ||
mmu-miR-599 | MIMAT0012772 | 0.680 | 2.76 × 10−3 | Yes | ||||
mmu-miR-1966 | MIMAT0009439 | 1.324 | 5.86 × 10−5 | Yes | ||||
mmu-miR-1964 | MIMAT0009437 | 0.674 | 6.48 × 10−4 | Yes | ||||
mmu-miR-297b-5p | MIMAT0003480 | 0.671 | 2.46 × 10−3 | Yes | ||||
mmu-miR-217 | MIMAT0000679 | 0.669 | 2.92 × 10−2 | Yes | ||||
mmu-miR-483 | MIMAT0004782 | 0.657 | 6.81 × 10−3 | Yes | ||||
mmu-miR-92b | MIMAT0004899 | 0.651 | 5.07 × 10−3 | Yes | ||||
mmu-miR-341 | MIMAT0000588 | 0.693 | 5.01 × 10−2 | Yes | ||||
mmu-miR-343 | MIMAT0004868 | 0.623 | 6.35 × 10−3 | 0.617 | 5.42 × 10−3 | Yes | ||
mmu-miR-876-5p | MIMAT0004854 | 0.650 | 7.23 × 10−4 | Yes | ||||
mmu-miR-139-3p | MIMAT0004662 | 0.643 | 2.19 × 10−3 | Yes | ||||
mmu-miR-375 | MIMAT0000739 | 1.363 | 3.28 × 10−5 | 1.414 | 6.66 × 10−3 | Yes | ||
mmu-miR-1186b | MIMAT0015644 | 0.641 | 1.23 × 10−2 | Yes | ||||
mmu-miR-377 | MIMAT0000741 | 0.549 | 2.89 × 10−4 | 0.647 | 1.19 × 10−3 | Yes | ||
mmu-miR-224 | MIMAT0000671 | 0.641 | 5.92 × 10−4 | Yes | ||||
mmu-miR-491 | MIMAT0003486 | 0.633 | 8.33 × 10−3 | Yes | ||||
mmu-miR-434-5p | MIMAT0001421 | 0.635 | 4.24 × 10−3 | 0.685 | 1.97 × 10−2 | Yes | ||
mmu-miR-465a-5p | MIMAT0002106 | 0.673 | 4.94 × 10−3 | Yes | ||||
mmu-miR-466c-5p | MIMAT0004877 | 0.691 | 4.31 × 10−2 | Yes | ||||
mmu-miR-466d-3p | MIMAT0004931 | 0.636 | 1.09 × 10−4 | 0.556 | 2.83 × 10−4 | Yes | ||
mmu-miR-711 | MIMAT0003501 | 0.618 | 1.78 × 10−3 | Yes | ||||
mmu-miR-1894-3p | MIMAT0007878 | 0.617 | 1.01 × 10−3 | Yes | ||||
mmu-miR-495 | MIMAT0003456 | 0.612 | 1.32 × 10−2 | Yes | ||||
mmu-miR-1969 | MIMAT0009442 | 0.607 | 1.25 × 10−2 | Yes | ||||
mmu-miR-411 | MIMAT0004747 | 0.593 | 2.43 × 10−4 | Yes | ||||
mmu-miR-504 | MIMAT0004889 | 0.674 | 2.30 × 10−2 | Yes | ||||
mmu-miR-466k | MIMAT0005845 | 0.589 | 2.82 × 10−4 | Yes | ||||
mmu-miR-184 | MIMAT0000213 | 0.586 | 4.16 × 10−3 | Yes | ||||
mmu-miR-1932 | MIMAT0009395 | 0.580 | 3.09 × 10−3 | Yes | ||||
mmu-miR-369-5p | MIMAT0003185 | 0.563 | 2.14 × 10−2 | Yes | ||||
mmu-miR-669m | MIMAT0009419 | 0.549 | 2.35 × 10−3 | Yes | ||||
mmu-miR-678 | MIMAT0003452 | 0.680 | 1.21 × 10−3 | 0.620 | 2.90 × 10−3 | Yes | ||
mmu-miR-590-3p | MIMAT0004896 | 0.521 | 1.66 × 10−3 | Yes | ||||
mmu-miR-702 | MIMAT0003492 | 0.690 | 4.45 × 10−4 | Yes | ||||
mmu-miR-153 | MIMAT0000163 | 0.483 | 1.78 × 10−2 | Yes | ||||
mmu-miR-673-3p | MIMAT0004824 | 0.467 | 5.10 × 10−3 | Yes | ||||
mmu-miR-127 | MIMAT0000139 | 0.464 | 4.38 × 10−3 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, A.; Jung, H.J.; Aubee, J.; O’Neil, J.N.; Muhammad, L.A.; Khan, S.; Thompson, K.; Fluitt, M.B.; Lee, D.L.; Klinge, C.M.; et al. Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys. Biomolecules 2024, 14, 1048. https://doi.org/10.3390/biom14091048
Jain A, Jung HJ, Aubee J, O’Neil JN, Muhammad LA, Khan S, Thompson K, Fluitt MB, Lee DL, Klinge CM, et al. Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys. Biomolecules. 2024; 14(9):1048. https://doi.org/10.3390/biom14091048
Chicago/Turabian StyleJain, Anish, Hyun Jun Jung, Joseph Aubee, Jahn N. O’Neil, Laila A. Muhammad, Shaza Khan, Karl Thompson, Maurice B. Fluitt, Dexter L. Lee, Carolyn M. Klinge, and et al. 2024. "Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys" Biomolecules 14, no. 9: 1048. https://doi.org/10.3390/biom14091048
APA StyleJain, A., Jung, H. J., Aubee, J., O’Neil, J. N., Muhammad, L. A., Khan, S., Thompson, K., Fluitt, M. B., Lee, D. L., Klinge, C. M., & Khundmiri, S. J. (2024). Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys. Biomolecules, 14(9), 1048. https://doi.org/10.3390/biom14091048