Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Constructs
2.2. Cell Cultures, Transfections, and Luciferase Assays
2.3. RNA Purification and Quantitative PCR Analyses
2.4. RNA Sequencing and Data Analyses
3. Results
3.1. Rationale of the Study
3.2. Transcriptomic Changes Induced by Increased miR-125a Levels
3.3. Identification of Potential miR-125a Targets and Experimental Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Shankaraiah, R.C.; Gramantieri, L.; Fornari, F.; Sabbioni, S.; Callegari, E.; Negrini, M. Animal Models of Hepatocellular Carcinoma Prevention. Cancers 2019, 11, 1792. [Google Scholar] [CrossRef] [PubMed]
- Sagnelli, E.; Potenza, N.; Onorato, L.; Sagnelli, C.; Coppola, N.; Russo, A. Micro-RNAs in Hepatitis B Virus-Related Chronic Liver Diseases and Hepatocellular Carcinoma. World J. Hepatol. 2018, 10, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Dimri, M.; Satyanarayana, A. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers 2020, 12, 491. [Google Scholar] [CrossRef]
- Wong, C.-M.; Tsang, F.H.-C.; Ng, I.O.-L. Non-Coding RNAs in Hepatocellular Carcinoma: Molecular Functions and Pathological Implications. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 137–151. [Google Scholar] [CrossRef]
- Mahboobnia, K.; Beveridge, D.J.; Yeoh, G.C.; Kabir, T.D.; Leedman, P.J. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int. J. Mol. Sci. 2024, 25, 9393. [Google Scholar] [CrossRef]
- Zappavigna, S.; Vanacore, D.; Lama, S.; Potenza, N.; Russo, A.; Ferranti, P.; Dallio, M.; Federico, A.; Loguercio, C.; Sperlongano, P.; et al. Silybin-Induced Apoptosis Occurs in Parallel to the Increase of Ceramides Synthesis and miRNAs Secretion in Human Hepatocarcinoma Cells. Int. J. Mol. Sci. 2019, 20, 2190. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Chan, J.J.; Tay, Y. Noncoding RNA:RNA Regulatory Networks in Cancer. Int. J. Mol. Sci. 2018, 19, 1310. [Google Scholar] [CrossRef]
- Tay, Y.; Rinn, J.; Pandolfi, P.P. The Multilayered Complexity of ceRNA Crosstalk and Competition. Nature 2014, 505, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Mosca, N.; Alessio, N.; Di Paola, A.; Marrapodi, M.M.; Galderisi, U.; Russo, A.; Rossi, F.; Potenza, N. Osteosarcoma in a ceRNET Perspective. J. Biomed. Sci. 2024, 31, 59. [Google Scholar] [CrossRef] [PubMed]
- Potenza, N.; Russo, A. Biogenesis, Evolution and Functional Targets of microRNA-125a. Mol. Genet. Genom. 2013, 288, 381–389. [Google Scholar] [CrossRef]
- Wang, J.K.; Wang, Z.; Li, G. MicroRNA-125 in Immunity and Cancer. Cancer Lett. 2019, 454, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tao, Y.; Niu, Y.; Wang, Z.; Zhang, C.; Yu, Y.; Ma, L. miR-125a-5p Inhibits Tumorigenesis in Hepatocellular Carcinoma. Aging 2019, 11, 7639–7662. [Google Scholar] [CrossRef]
- Bi, Q.; Tang, S.; Xia, L.; Du, R.; Fan, R.; Gao, L.; Jin, J.; Liang, S.; Chen, Z.; Xu, G.; et al. Ectopic Expression of MiR-125a Inhibits the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting MMP11 and VEGF. PLoS ONE 2012, 7, e40169. [Google Scholar] [CrossRef]
- Lu, G.; Ma, Y.; Jia, C.; Yang, H.; Xie, R.; Luo, P.; Chai, L.; Cai, H.; Cai, M.; Lv, Z.; et al. Reduced miR-125a Levels Associated with Poor Survival of Patients with Hepatocellular Cancer. Oncol. Lett. 2017, 14, 5952–5958. [Google Scholar] [CrossRef]
- Coppola, N.; De Stefano, G.; Panella, M.; Onorato, L.; Iodice, V.; Minichini, C.; Mosca, N.; Desiato, L.; Farella, N.; Starace, M.; et al. Lowered Expression of microRNA-125a-5p in Human Hepatocellular Carcinoma and up-Regulation of Its Oncogenic Targets Sirtuin-7, Matrix Metalloproteinase-11, and c-Raf. Oncotarget 2017, 8, 25289–25299. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Xiao, S.; Li, Y.; Chen, Q. miR-125a/b Inhibits Tumor-associated Macrophages Mediated in Cancer Stem Cells of Hepatocellular Carcinoma by Targeting CD90. J. Cell. Biochem. 2019, 120, 3046–3055. [Google Scholar] [CrossRef]
- Potenza, N.; Mosca, N.; Zappavigna, S.; Castiello, F.; Panella, M.; Ferri, C.; Vanacore, D.; Giordano, A.; Stiuso, P.; Caraglia, M.; et al. MicroRNA-125a-5p Is a Downstream Effector of Sorafenib in Its Antiproliferative Activity Toward Human Hepatocellular Carcinoma Cells. J. Cell. Physiol. 2017, 232, 1907–1913. [Google Scholar] [CrossRef]
- Kim, J.K.; Noh, J.H.; Jung, K.H.; Eun, J.W.; Bae, H.J.; Kim, M.G.; Chang, Y.G.; Shen, Q.; Park, W.S.; Lee, J.Y.; et al. Sirtuin7 Oncogenic Potential in Human Hepatocellular Carcinoma and Its Regulation by the Tumor Suppressors MiR-125a-5p and MiR-125b. Hepatology 2013, 57, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Hojo, N.; Tatsumi, N.; Moriguchi, N.; Matsumura, A.; Morimoto, S.; Nakata, J.; Fujiki, F.; Nishida, S.; Nakajima, H.; Tsuboi, A.; et al. A Zbtb7a Proto-oncogene as a Novel Target for miR-125a. Mol. Carcinog. 2016, 55, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Di Palo, A.; Siniscalchi, C.; Mosca, N.; Russo, A.; Potenza, N. Proto-Oncogene Zbtb7a Represses miR-125a-5p Transcription in Hepatocellular Carcinoma Cells. Mol. Biol. Rep. 2020, 47, 4875–4878. [Google Scholar] [CrossRef] [PubMed]
- Panella, M.; Mosca, N.; Di Palo, A.; Potenza, N.; Russo, A. Mutual Suppression of miR-125a and Lin28b in Human Hepatocellular Carcinoma Cells. Biochem. Biophys. Res. Commun. 2018, 500, 824–827. [Google Scholar] [CrossRef]
- Takashima, Y.; Terada, M.; Udono, M.; Miura, S.; Yamamoto, J.; Suzuki, A. Suppression of Lethal-7b and miR-125a/b Maturation by Lin28b Enables Maintenance of Stem Cell Properties in Hepatoblasts. Hepatology 2016, 64, 245–260. [Google Scholar] [CrossRef]
- Di Palo, A.; Siniscalchi, C.; Mosca, N.; Russo, A.; Potenza, N. A Novel ceRNA Regulatory Network Involving the Long Non-Coding Antisense RNA SPACA6P-AS, miR-125a and Its mRNA Targets in Hepatocarcinoma Cells. Int. J. Mol. Sci. 2020, 21, 5068. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, Q.; Fang, Y.; Liao, J.; Zhang, Z. Long Non-Coding RNA NEAT1 Promotes Angiogenesis in Hepatoma Carcinoma via the miR-125a-5p/VEGF Pathway. Open Life Sci. 2022, 17, 1229–1239. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, X. Long Non-Coding RNA (lncRNA) CYTOR Promotes Hepatocellular Carcinoma Proliferation by Targeting the microRNA-125a-5p/LASP1 Axis. Bioengineered 2022, 13, 3666–3679. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.; Li, J.; Du, Y.; Bai, F.; Yang, L.; Li, X.; Jin, X.; Wang, T. ARID3A Promotes the Chemosensitivity of Colon Cancer by Inhibiting AKR1C3. Cell Biol. Int. 2022, 46, 965–975. [Google Scholar] [CrossRef]
- Venturutti, L.; Cordo Russo, R.I.; Rivas, M.A.; Mercogliano, M.F.; Izzo, F.; Oakley, R.H.; Pereyra, M.G.; De Martino, M.; Proietti, C.J.; Yankilevich, P.; et al. MiR-16 Mediates Trastuzumab and Lapatinib Response in ErbB-2-Positive Breast and Gastric Cancer via Its Novel Targets CCNJ and FUBP1. Oncogene 2016, 35, 6189–6202. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Z.; Li, Y.; Li, Z.; Zhou, Z.; Yu, X.; Wan, J.; Min, Z.; Yang, L.; Li, D. microRNA-196a-5p Inhibits Testicular Germ Cell Tumor Progression via NR6A1/E-cadherin Axis. Cancer Med. 2020, 9, 9107–9122. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Hou, W.; Liu, H.; Shi, L.; Zhu, Z.; Ye, W.; Ni, X. NUP210 and MicroRNA-22 Modulate Fas to Elicit HeLa Cell Cycle Arrest. Yonsei Med. J. 2020, 61, 371. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef]
- Mosca, N.; Castiello, F.; Coppola, N.; Trotta, M.C.; Sagnelli, C.; Pisaturo, M.; Sagnelli, E.; Russo, A.; Potenza, N. Functional Interplay between Hepatitis B Virus X Protein and Human miR-125a in HBV Infection. Biochem. Biophys. Res. Commun. 2014, 449, 141–145. [Google Scholar] [CrossRef]
- Ozakyol, A. Global Epidemiology of Hepatocellular Carcinoma (HCC Epidemiology). J. Gastrointest. Cancer 2017, 48, 238–240. [Google Scholar] [CrossRef]
- Rimassa, L.; Danesi, R.; Pressiani, T.; Merle, P. Management of Adverse Events Associated with Tyrosine Kinase Inhibitors: Improving Outcomes for Patients with Hepatocellular Carcinoma. Cancer Treat. Rev. 2019, 77, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Negrini, M.; Gramantieri, L.; Sabbioni, S.; Croce, C.M. microRNA Involvement in Hepatocellular Carcinoma. Anti-Cancer Agents Med. Chem. 2011, 11, 500–521. [Google Scholar] [CrossRef]
- Erstad, D.J.; Fuchs, B.C.; Tanabe, K.K. Molecular Signatures in Hepatocellular Carcinoma: A Step toward Rationally Designed Cancer Therapy. Cancer 2018, 124, 3084–3104. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, E.; Fasil, A.; Ebrahim, H.; Mulatie, Z.; Bambo, G.M.; Gedefie, A.; Teshome, M.; Worede, A.; Belete, M.A. Circulating microRNAs as Promising Diagnostic Biomarkers for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front. Mol. Biosci. 2024, 11, 1353547. [Google Scholar] [CrossRef]
- Moss, E.G.; Lee, R.C.; Ambros, V. The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. Elegans and Is Regulated by the Lin-4 RNA. Cell 1997, 88, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Li, S.; Zhao, Y.; Liu, Y.; Liu, Z.; Huan, L.; Qiao, Y.; Wang, L.; Han, L.; Chen, Z.; et al. Hepatic ARID3A Facilitates Liver Cancer Malignancy by Cooperating with CEP131 to Regulate an Embryonic Stem Cell-like Gene Signature. Cell Death Dis. 2022, 13, 732. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cheng, N. Comprehensive Landscape of ARID Family Members and Their Association with Prognosis and Tumor Microenvironment in Hepatocellular Carcinoma. J. Immunol. Res. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Qian, Z.; Li, F.; Li, J.; Lu, Y. Integrative Analysis of Microarray Data to Reveal Regulation Patterns in the Pathogenesis of Hepatocellular Carcinoma. Gut Liver 2017, 11, 112–120. [Google Scholar] [CrossRef]
- Li, S.; Wu, Z.; Li, Q.; Liang, Q.; Zhou, H.; Shi, Y.; Zhang, R.; Pan, H. The Prognostic Value of AT-Rich Interaction Domain (ARID) Family Members in Patients with Hepatocellular Carcinoma. Evid.-Based Complement. Altern. Med. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Ali, A.; Bouma, G.J.; Anthony, R.V.; Winger, Q.A. The Role of LIN28-Let-7-ARID3B Pathway in Placental Development. Int. J. Mol. Sci. 2020, 21, 3637. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.-S.; Bandi, S.R.; Tang, L.; Shinton, S.A.; Hayakawa, K.; Hardy, R.R. Lin28b Promotes Fetal B Lymphopoiesis through the Transcription Factor Arid3a. J. Exp. Med. 2015, 212, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Xu, H.E.; Ma, X. ARID3a from the ARID Family: Structure, Role in Autoimmune Diseases and Drug Discovery. Acta Pharmacol. Sin. 2023, 44, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhan, Y.; Xu, Z.; Li, Y.; Luo, A.; Ding, F.; Cao, X.; Chen, H.; Liu, Z. ZEB1 Induced miR-99b/Let-7e/miR-125a Cluster Promotes Invasion and Metastasis in Esophageal Squamous Cell Carcinoma. Cancer Lett. 2017, 398, 37–45. [Google Scholar] [CrossRef]
- Hong, Z.; Wei, S.; Bi, X.; Zhao, J.; Huang, Z.; Li, Z.; Zhou, J.; Cai, J.; Chen, L. Recent Advances in the ARID Family: Focusing on Roles in Human Cancer. OncoTargets Ther. 2014, 7, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, A.; Castellvi, J.; Artero-Castro, A.; Leal, J.A.; Romagosa, C.; Hernández-Losa, J.; Peg, V.; Fabra, A.; Vidal, F.; Kondoh, H.; et al. miR-125b Acts as a Tumor Suppressor in Breast Tumorigenesis via Its Novel Direct Targets ENPEP, CK2-α, CCNJ, and MEGF9. PLoS ONE 2013, 8, e76247. [Google Scholar] [CrossRef]
- Sun, X.; Du, P.; Yuan, W.; Du, Z.; Yu, M.; Yu, X.; Hu, T. Long Non-Coding RNA HOTAIR Regulates Cyclin J via Inhibition of microRNA-205 Expression in Bladder Cancer. Cell Death Dis. 2015, 6, e1907. [Google Scholar] [CrossRef]
- Shi, L.; Xu, Z.; Wu, G.; Chen, X.; Huang, Y.; Wang, Y.; Jiang, W.; Ke, B. Up-Regulation of miR-146a Increases the Sensitivity of Non-Small Cell Lung Cancer to DDP by Downregulating Cyclin J. BMC Cancer 2017, 17, 138. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H. Lysosomal Acid Lipase in Lipid Metabolism and Beyond. Arter. Thromb. Vasc. Biol. 2019, 39, 850–856. [Google Scholar] [CrossRef]
- Liu, X.; Viswanadhapalli, S.; Kumar, S.; Lee, T.-K.; Moore, A.; Ma, S.; Chen, L.; Hsieh, M.; Li, M.; Sareddy, G.R.; et al. Targeting LIPA Independent of Its Lipase Activity Is a Therapeutic Strategy in Solid Tumors via Induction of Endoplasmic Reticulum Stress. Nat. Cancer 2022, 3, 866–884. [Google Scholar] [CrossRef]
- Collier, A.B.; Viswanadhapalli, S.; Gopalam, R.; Lee, T.-K.; Kassees, K.; Parra, K.; Sharma, G.; Reese, T.C.; Liu, X.; Yang, X.; et al. Novel LIPA-Targeted Therapy for Treating Ovarian Cancer. Cancers 2024, 16, 500. [Google Scholar] [CrossRef]
- Wang, J.; Tan, M.; Ge, J.; Zhang, P.; Zhong, J.; Tao, L.; Wang, Q.; Tong, X.; Qiu, J. Lysosomal Acid Lipase Promotes Cholesterol Ester Metabolism and Drives Clear Cell Renal Cell Carcinoma Progression. Cell Prolif. 2018, 51, e12452. [Google Scholar] [CrossRef]
- Wang, Q.; Cooney, A.J. Revisiting the Role of GCNF in Embryonic Development. Semin. Cell Dev. Biol. 2013, 24, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jiang, R.; Wang, Y.; Li, Y.; Sun, Z.; Zhao, H. Hsa_circ_001653 Up-regulates NR6A1 Expression and Elicits Gastric Cancer Progression by Binding to microRNA-377. Exp. Physiol. 2020, 105, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wang, S.; Li, X.; Li, S.; Zheng, Y.; Zhang, L.; Bao, M.; Liang, C.; Huang, Z.; Liu, Y.; et al. Positive Expression of NR6A1/CT150 as a Predictor of Biochemical Recurrence-Free Survival in Prostate Cancer Patients. Oncotarget 2017, 8, 64427–64439. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, J.; Lu, X.; Liu, L.; Chen, L.; Zhao, W.; Zhou, B. Let-7a-5p Abrogates Progression of Papillary Thyroid Carcinoma Cells by Decreasing Nuclear Receptor Subfamily 6 Group a Member 1-mediated Lipogenesis. J. Biochem. Mol. Toxicol. 2024, 38, e23572. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Zhang, J.; Zhuang, L.-K.; Xin, Y.-N.; Xuan, S.-Y. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Bioinformatics and the Role of NR6A1 in the Progression of HCC. J. Clin. Transl. Hepatol. 2022, 10, 901–912. [Google Scholar] [CrossRef]
- Sun, G.; Sun, K.; Shen, C. Human Nuclear Receptors (NRs) Genes Have Prognostic Significance in Hepatocellular Carcinoma Patients. World J. Surg. Oncol. 2021, 19, 137. [Google Scholar] [CrossRef]
- Wu, Q.; Li, X.; Long, M.; Xie, X.; Liu, Q. Integrated Analysis of Histone Lysine Lactylation (Kla)-Specific Genes Suggests That NR6A1, OSBP2 and UNC119B Are Novel Therapeutic Targets for Hepatocellular Carcinoma. Sci. Rep. 2023, 13, 18642. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, M.; Li, W.; Li, M.; Chen, S.; Chen, B. Identification, Verification and Pathway Enrichment Analysis of Prognosis-Related Immune Genes in Patients with Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 695001. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhang, D.-Y.; Lin, X.-H.; Sun, J.-L.; Abuduwaili, W.; Zhang, G.-C.; Xu, R.-C.; Wang, F.; Yu, X.-N.; Shi, X.; et al. Nalidixic Acid Potentiates the Antitumor Activity in Sorafenib-Resistant Hepatocellular Carcinoma via the Tumor Immune Microenvironment Analysis. Front. Pharmacol. 2022, 13, 952482. [Google Scholar] [CrossRef]
- Li, Y. miR-99b/Let-7e/miR-125a Cluster Suppresses Pancreatic Cancer through Regulation of NR6A1. Am. J. Cancer Res. 2024, 14, 114–129. [Google Scholar] [CrossRef]
- Hong, S.H.; Son, K.H.; Ha, S.Y.; Wee, T.I.; Choi, S.K.; Won, J.E.; Han, H.D.; Ro, Y.; Park, Y.-M.; Eun, J.W.; et al. Nucleoporin 210 Serves a Key Scaffold for SMARCB1 in Liver Cancer. Cancer Res. 2021, 81, 356–370. [Google Scholar] [CrossRef]
- Amin, R.; Shukla, A.; Zhu, J.J.; Kim, S.; Wang, P.; Tian, S.Z.; Tran, A.D.; Paul, D.; Cappell, S.D.; Burkett, S.; et al. Nuclear Pore Protein NUP210 Depletion Suppresses Metastasis through Heterochromatin-Mediated Disruption of Tumor Cell Mechanical Response. Nat. Commun. 2021, 12, 7216. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Mishiro, K.; Iwashima, Y.; Qiu, Y.; Kobayashi, A.; Lim, K.; Domoto, T.; Minamoto, T.; Ogawa, K.; Kunishima, M.; et al. Discovery of a Novel Aminocyclopropenone Compound That Inhibits BRD4-Driven Nucleoporin NUP210 Expression and Attenuates Colorectal Cancer Growth. Cells 2022, 11, 317. [Google Scholar] [CrossRef]
- Sang, K.; Yi, T.; Pan, C.; Zhou, J.; Yu, L. Long Non-Coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol. Biotechnol. 2022, 65, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, H. Bioinformatics Analysis of the Expression and Clinical Significance of the NUP210 Gene in Acute Myeloid Leukaemia. Hematology 2022, 27, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Gurtan, A.M.; Ravi, A.; Rahl, P.B.; Bosson, A.D.; JnBaptiste, C.K.; Bhutkar, A.; Whittaker, C.A.; Young, R.A.; Sharp, P.A. Let-7 Represses Nr6a1 and a Mid-Gestation Developmental Program in Adult Fibroblasts. Genes Dev. 2013, 27, 941–954. [Google Scholar] [CrossRef]
- Nimmo, R.A.; Slack, F.J. An Elegant miRror: MicroRNAs in Stem Cells, Developmental Timing and Cancer. Chromosoma 2009, 118, 405–418. [Google Scholar] [CrossRef]
- Zhong, X.; Li, N.; Liang, S.; Huang, Q.; Coukos, G.; Zhang, L. Identification of MicroRNAs Regulating Reprogramming Factor LIN28 in Embryonic Stem Cells and Cancer Cells. J. Biol. Chem. 2010, 285, 41961–41971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Leo, I.; Mosca, N.; Pezzullo, M.; Valletta, D.; Manfrevola, F.; Mele, V.G.; Chianese, R.; Russo, A.; Potenza, N. Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells. Biomolecules 2025, 15, 144. https://doi.org/10.3390/biom15010144
De Leo I, Mosca N, Pezzullo M, Valletta D, Manfrevola F, Mele VG, Chianese R, Russo A, Potenza N. Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells. Biomolecules. 2025; 15(1):144. https://doi.org/10.3390/biom15010144
Chicago/Turabian StyleDe Leo, Ilenia, Nicola Mosca, Mariaceleste Pezzullo, Danila Valletta, Francesco Manfrevola, Vincenza Grazia Mele, Rosanna Chianese, Aniello Russo, and Nicoletta Potenza. 2025. "Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells" Biomolecules 15, no. 1: 144. https://doi.org/10.3390/biom15010144
APA StyleDe Leo, I., Mosca, N., Pezzullo, M., Valletta, D., Manfrevola, F., Mele, V. G., Chianese, R., Russo, A., & Potenza, N. (2025). Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells. Biomolecules, 15(1), 144. https://doi.org/10.3390/biom15010144