The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery
Abstract
:1. Introduction
2. Brazilian Snakes: An Overview of Species, Medical Significance, and Envenomation
2.1. Bothrops Snakes, a Widely Distributed and Medically Important Genus
2.2. Bothrops-Induced Clinical Manifestations
2.2.1. Local Envenomation Effects
2.2.2. Systemic Effects
2.3. Biochemistry of Bothrops Venoms
3. Introduction to Snake Venom Serine Proteases: From Catalysis to Functions
4. Bothrops Venoms: A Rich Source of Serine Proteases
5. Unveiling the Enzymatic Nature of Serine Proteinases
6. Serine Proteases: From Toxic Effects to Drug Templates and Clinical Use
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mackessy, S.P. (Ed.) Handbook of Venoms and Toxins of Reptiles, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-0-367-14974-1. [Google Scholar]
- Tan, C.H. Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins 2022, 14, 247. [Google Scholar] [CrossRef]
- Sanchez, G.M.; Meltzer, E.S.; Wüster, W.; Casewell, N.R.; Schuett, G.W. Snake Identification in the Ancient Egyptian Brooklyn Medical Papyrus: A New Study of the Twenty-Four Extant Registers of the “Snakebite Papyrus”; Lockwood Press: Columbus, GA, USA, 2024; ISBN 978-1-957454-04-7. [Google Scholar]
- Da Silva Aguiar, W.; Da Costa Galizio, N.; Sant’Anna, S.S.; Silveira, G.P.M.; De Souza Rodrigues, F.; Grego, K.F.; De Morais-Zani, K.; Tanaka-Azevedo, A.M. Ontogenetic Study of Bothrops jararacussu Venom Composition Reveals Distinct Profiles. Toxicon 2020, 186, 67–77. [Google Scholar] [CrossRef]
- Amorim, F.G.; Menaldo, D.L.; Carone, S.E.I.; Silva, T.A.; Sartim, M.A.; De Pauw, E.; Quinton, L.; Sampaio, S.V. New Insights on Moojase, a Thrombin-Like Serine Protease from Bothrops moojeni Snake Venom. Toxins 2018, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Amorim, F.G.; Costa, T.R.; Baiwir, D.; De Pauw, E.; Quinton, L.; Sampaio, S.V. Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition. Toxins 2018, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; Viegas, M.F.; Da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Ananias, C.B.; Medeiros, J.M.; Franco, M.V.S.; Ferreira, I.G.; Cerni, F.A.; Sandri, E.A.; Monteiro, W.M.; Pucca, M.B. Medical Management after Lancehead Snakebite in North Amazon: A Case Report of Long-Term Disability. Toxins 2022, 14, 494. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Resende, L.M.; Watanabe, R.K.; Carregari, V.C.; Huancahuire-Vega, S.; Da S. Caldeira, C.A.; Coutinho-Neto, A.; Soares, A.M.; Vale, N.; De C. Gomes, P.A.; et al. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents. CMC 2017, 24, 3254–3282. [Google Scholar] [CrossRef]
- Chérifi, F.; Laraba-Djebari, F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J. 2021, 40, 799–841. [Google Scholar] [CrossRef]
- Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic Insights of Snake Venom Disintegrins in Cancer Treatment. Eur. J. Pharmacol. 2021, 899, 174022. [Google Scholar] [CrossRef] [PubMed]
- Hedstrom, L. An Overview of Serine Proteases. CP Protein Sci. 2001, 26, 21.10.1–21.10.8. [Google Scholar] [CrossRef]
- Hasson, S.S.; Mothana, R.A.; Sallam, T.A.; Al-balushi, M.S.; Rahman, M.T.; Al-Jabri, A.A. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis. J. Biomed. Biotechnol. 2010, 2010, 134232. [Google Scholar] [CrossRef] [PubMed]
- Sukkapan, P.; Jia, Y.; Nuchprayoon, I.; Pérez, J.C. Phylogenetic Analysis of Serine Proteases from Russell’s Viper (Daboia russelli Siamensis) and Agkistrodon piscivorus leucostoma Venom. Toxicon 2011, 58, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coral Snakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon 2016, 122, 7–25. [Google Scholar] [CrossRef]
- Tasoulis, T.; Pukala, T.L.; Isbister, G.K. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes. Front. Pharmacol. 2022, 12, 768015. [Google Scholar] [CrossRef] [PubMed]
- Manuiama, A. A Biodiversidade E O Conhecimento Etnoherpetológico de Uma População Ribeirinha em Atalaia do Norte, Amazônia, Brasil. Master’s Thesis, Universidade Federal do Amazonas, Humaitá, Brazil, 2022. [Google Scholar]
- Costa, H.; Bérnils, R. Herpetologia Brasileira; Brazilian Herpetology Society, 2018; Volume 7, Available online: https://www.researchgate.net/publication/324452315_Repteis_do_Brasil_e_suas_Unidades_Federativas_Lista_de_especies (accessed on 10 May 2024).
- Guedes, T.B.; Entiauspe-Neto, O.M.; Costa, H.C. Lista de Répteis Do Brasil: Atualização de 2022. 2023. Available online: https://zenodo.org/records/7829013 (accessed on 21 April 2024).
- DATASUS ACIDENTE POR ANIMAIS PEÇONHENTOS—Notificações Registradas No Sistema de Informação de Agravos de Notificação—Sinan Net. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/animaisp/bases/animaisbrnet.def (accessed on 8 July 2024).
- Nogueira, C.C.; Argôlo, A.J.S.; Arzamendia, V.; Azevedo, J.A.; Barbo, F.E.; Bérnils, R.S.; Bolochio, B.E.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; et al. Atlas of Brazilian Snakes: Verified Point-Locality Maps to Mitigate the Wallacean Shortfall in a Megadiverse Snake Fauna. S. Am. J. Herpetol. 2019, 14, 1–274. [Google Scholar] [CrossRef]
- Fraga, R.; Lima, A.; Prudente, A.L.; Magnusson, W. Guide to the Snakes of the Manaus Region Central Amazon; Editora Inpa: Manaus, Brazil, 2013. [Google Scholar]
- Matos, R.R.; Ignotti, E. Incidência de Acidentes Ofídicos Por Gêneros de Serpentes Nos Biomas Brasileiros. Ciênc. Saúde Coletiva 2020, 25, 2837–2846. [Google Scholar] [CrossRef]
- Aspectos Epidemiológicos Do Ofidismo No Brasil Em 2022; 11; Ministério da Saúde–Secretaria de Vigilância em Saúde e Ambiente: Brasilia, Brazil, 2023.
- Rocha, G.D.S.; Farias, A.S.; Alcântara, J.A.; Machado, V.A.; Murta, F.; Val, F.; Cristino, J.S.; Santos, A.C.; Ferreira, M.B.; Marques, L.; et al. Validation of a Culturally Relevant Snakebite Envenomation Clinical Practice Guideline in Brazil. Toxins 2022, 14, 376. [Google Scholar] [CrossRef]
- Mamede, C.C.N.; De Sousa Simamoto, B.B.; Da Cunha Pereira, D.F.; De Oliveira Costa, J.; Ribeiro, M.S.M.; De Oliveira, F. Edema, Hyperalgesia and Myonecrosis Induced by Brazilian Bothropic Venoms: Overview of the Last Decade. Toxicon 2020, 187, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Pucca, M.B.; Franco, M.V.S.; Medeiros, J.M.; Oliveira, I.S.; Ahmadi, S.; Cerni, F.A.; Zottich, U.; Bassoli, B.K.; Monteiro, W.M.; Laustsen, A.H. Chronic Kidney Failure Following Lancehead Bite Envenoming: A Clinical Report from the Amazon Region. J. Venom. Anim. Toxins incl. Trop. Dis. 2020, 26, e20200083. [Google Scholar] [CrossRef]
- Da Silva, W.R.G.B.; De Siqueira Santos, L.; Lira, D.; De Oliveira Luna, K.P.; Fook, S.M.L.; Alves, R.R.N. Who Are the Most Affected by Bothrops Snakebite Envenoming in Brazil? A Clinical-Epidemiological Profile Study among the Regions of the Country. PLoS Negl. Trop. Dis. 2023, 17, e0011708. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.S.; De Almeida, D.E.G.; Santos-Filho, N.A.; Sartim, M.A.; De Almeida Baldo, A.; Brasileiro, L.; Albuquerque, P.L.; Oliveira, S.S.; Sachett, J.A.G.; Monteiro, W.M.; et al. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int. J. Mol. Sci. 2023, 24, 11508. [Google Scholar] [CrossRef] [PubMed]
- Abad Ribeiro, A.B.; Santoro, M.L.; Duarte, M.R.; Virgulino, C.C.; De Oliveira, G.S.S.; França, F.O.D.S. Hemoperitoneum after a Bothrops Snakebite: Case Report. Toxicon 2024, 237, 107350. [Google Scholar] [CrossRef]
- Feitosa, E.S.; Sampaio, V.; Sachett, J.; Castro, D.B.D.; Noronha, M.D.D.N.; Lozano, J.L.L.; Muniz, E.; Ferreira, L.C.D.L.; Lacerda, M.V.G.D.; Monteiro, W.M. Snakebites as a Largely Neglected Problem in the Brazilian Amazon: Highlights of the Epidemiological Trends in the State of Amazonas. Rev. Soc. Bras. Med. Trop. 2015, 48, 34–41. [Google Scholar] [CrossRef]
- Schneider, M.C.; Min, K.; Hamrick, P.N.; Montebello, L.R.; Ranieri, T.M.; Mardini, L.; Camara, V.M.; Raggio Luiz, R.; Liese, B.; Vuckovic, M.; et al. Overview of Snakebite in Brazil: Possible Drivers and a Tool for Risk Mapping. PLoS Negl. Trop. Dis. 2021, 15, e0009044. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.P.; Tupetz, A.; Farias, A.S.; Silva-Neto, A.; Rocha, T.; Smith, E.R.; Murta, F.; Dourado, F.S.; Cardoso, D.; Ramos, T.A.; et al. Mapping of Clinical Management Resources for Snakebites and Other Animal Envenomings in the Brazilian Amazon. Toxicon X 2022, 16, 100137. [Google Scholar] [CrossRef]
- Bezerra da Silva Junior, G. Tropical Nephrology; Springer International Publishing AG: Cham, Switzerland, 2020; ISBN 978-3-030-44500-3. [Google Scholar]
- Costa, K.C.T.; De Sousa, B.B.; Dias, E.H.V.; Pereira, D.F.D.C.; Matias, M.S.; Oliveira, W.J.; Mundim, A.V.; Mamede, C.C.N.; Izidoro, L.F.M.; Costa, J.D.O.; et al. Systemic Alterations Induced by Phospholipase A2, Bmoo
TX-I, Isolated from Bothrops moojeni Snake Venom. Int. J. Exp. Pathol. 2018, 99, 226–235. [Google Scholar] [CrossRef] - Rodrigues, P.S.D.M.; Cirqueira Martins, H.; Falcão, M.S.; Trevisan, M.; Portaro, F.C.V.; Da Silva, L.G.; Sano-Martins, I.S.; Gonçalves, L.R.D.C.; Seibert, C.S. Effects of Mauritia flexuosa L. f. Buriti Oil on Symptoms Induced by Bothrops moojeni Snake Envenomation. J. Ethnopharmacol. 2023, 313, 116612. [Google Scholar] [CrossRef] [PubMed]
- Takayasu, B.S.; Rodrigues, S.S.; Madureira Trufen, C.E.; Machado-Santelli, G.M.; Onuki, J. Effects on Cell Cycle Progression and Cytoskeleton Organization of Five Bothrops spp. Venoms in Cell Culture-Based Assays. Heliyon 2023, 9, e18317. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.F.V.; Peixoto, H.M.; Moura, N.; Monteiro, W.M.; De Oliveira, M.R.F. Snakebite Envenomation in the Brazilian Amazon: A Descriptive Study. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Cristino, J.S.; Salazar, G.M.; Machado, V.A.; Honorato, E.; Farias, A.S.; Vissoci, J.R.N.; Silva Neto, A.V.; Lacerda, M.; Wen, F.H.; Monteiro, W.M.; et al. A Painful Journey to Antivenom: The Therapeutic Itinerary of Snakebite Patients in the Brazilian Amazon (The QUALISnake Study). PLoS Negl. Trop. Dis. 2021, 15, e0009245. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, W.M.; Contreras-Bernal, J.C.; Bisneto, P.F.; Sachett, J.; Mendonça Da Silva, I.; Lacerda, M.; Guimarães Da Costa, A.; Val, F.; Brasileiro, L.; Sartim, M.A.; et al. Bothrops atrox, the Most Important Snake Involved in Human Envenomings in the Amazon: How Venomics Contributes to the Knowledge of Snake Biology and Clinical Toxinology. Toxicon X 2020, 6, 100037. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.K.; Joshi, M.B.; Vasishta, S.; Jagadale, R.N.; Biligiri, S.G.; Coronado, M.A.; Arni, R.K.; Satyamoorthy, K. P-I Metalloproteinases and L-Amino Acid Oxidases from Bothrops Species Inhibit Angiogenesis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200180. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Galan, L.E.B.; Silva, V.S.; Silva, V.S.; Monte, R.C.; Jati, S.R.; Oliveira, I.S.; Cerni, F.A.; Monteiro, W.M.; Sachett, J.; Dantas, D.S.M.; et al. Acute Mesenteric Ischemia Following Lancehead Snakebite: An Unusual Case Report in the Northernmost Brazilian Amazon. Front. Med. 2023, 10, 1197446. [Google Scholar] [CrossRef] [PubMed]
- Baudou, F.G.; Rodriguez, J.P.; Fusco, L.; De Roodt, A.R.; De Marzi, M.C.; Leiva, L. South American Snake Venoms with Abundant Neurotoxic Components. Composition and Toxicological Properties. A Literature Review. Acta Trop. 2021, 224, 106119. [Google Scholar] [CrossRef] [PubMed]
- Hemajha, L.; Singh, S.; Biji, C.A.; Balde, A.; Benjakul, S.; Nazeer, R.A. A Review on Inflammation Modulating Venom Proteins/Peptide Therapeutics and Their Delivery Strategies: A Review. Int. Immunopharmacol. 2024, 142, 113130. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, R.M.; Caldas, A.S.; Rodriguez, T.T.; Casais-e-Silva, L.L. Influence of Thyroid States on the Local Effects Induced by Bothrops Envenoming. Toxicon 2015, 102, 25–31. [Google Scholar] [CrossRef]
- Mamede, C.C.N.; De Sousa, B.B.; Pereira, D.F.D.C.; Matias, M.S.; De Queiroz, M.R.; De Morais, N.C.G.; Vieira, S.A.P.B.; Stanziola, L.; De Oliveira, F. Comparative Analysis of Local Effects Caused by Bothrops alternatus and Bothrops moojeni Snake Venoms: Enzymatic Contributions and Inflammatory Modulations. Toxicon 2016, 117, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage Induced by Snake Venom Metalloproteinases: Biochemical and Biophysical Mechanisms Involved in Microvessel Damage. Toxicon 2005, 45, 997–1011. [Google Scholar] [CrossRef]
- Escalante, T.; Rucavado, A.; Fox, J.W.; Gutiérrez, J.M. Key Events in Microvascular Damage Induced by Snake Venom Hemorrhagic Metalloproteinases. J. Proteom. 2011, 74, 1781–1794. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins 2016, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.D.F.P.; Fernandes, C.M.; Zuliani, J.P.; Zamuner, S.F. Inflammatory Effects of Snake Venom Metalloproteinases. Mem. Inst. Oswaldo Cruz 2005, 100, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Larréché, S.; Chevillard, L.; Jourdi, G.; Mathé, S.; Servonnet, A.; Joly, B.S.; Siguret, V.; Chippaux, J.-P.; Mégarbane, B. Bothrops Venom-Induced Hemostasis Disorders in the Rat: Between Scylla and Charybdis. PLoS Negl. Trop. Dis. 2023, 17, e0011786. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Mehdaoui, H.; Neviere, R. Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief Descriptive Review and Clinical Implications. Toxins 2022, 14, 802. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.P.D.; Ferreira, S.D.S.; Torres-Rêgo, M.; Furtado, A.A.; Yamashita, F.D.O.; Diniz, E.A.D.S.; Vieira, D.S.; Ururahy, M.A.G.; Silva-Júnior, A.A.D.; Luna, K.P.D.O.; et al. Antiophidic Potential of Chlorogenic Acid and Rosmarinic Acid against Bothrops Leucurus Snake Venom. Biomed. Pharmacother. 2022, 148, 112766. [Google Scholar] [CrossRef]
- Rodrigues Sgrignolli, L.; Florido Mendes, G.E.; Carlos, C.P.; Burdmann, E.A. Acute Kidney Injury Caused by Bothrops Snake Venom. Nephron Clin. Pract. 2011, 119, c131–c137. [Google Scholar] [CrossRef]
- Albuquerque, P.L.M.M.; Jacinto, C.N.; Silva Junior, G.B.; Lima, J.B.; Veras, M.D.S.B.; Daher, E.F. Acute Kidney Injury Caused by Crotalus and Bothrops Snake Venom: A Review of Epidemiology, Clinical Manifestations and Treatment. Rev. Inst. Med. trop. São Paulo 2013, 55, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.L.M.M.; Da Silva Junior, G.B.; Meneses, G.C.; Martins, A.M.C.; Lima, D.B.; Raubenheimer, J.; Fathima, S.; Buckley, N.; Daher, E.D.F. Acute Kidney Injury Induced by Bothrops Venom: Insights into the Pathogenic Mechanisms. Toxins 2019, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.V.S.; Alexandre-Silva, G.M.; Oliveira, I.S.; Santos, P.L.; Sandri, E.A.; Cerni, F.A.; Pucca, M.B. Physical and Social Consequences of Snakebites in the Yanomami Indigenous Community, Brazil: Report of Two Cases. Toxicon 2022, 214, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, D.; Arni, R.K.; Betzel, C. Proteome Analysis of Snake Venom Toxins: Pharmacological Insights. Expert Rev. Proteom. 2008, 5, 787–797. [Google Scholar] [CrossRef]
- Correa-Netto, C.; Teixeira-Araujo, R.; Aguiar, A.S.; Melgarejo, A.R.; De-Simone, S.G.; Soares, M.R.; Foguel, D.; Zingali, R.B. Immunome and Venome of Bothrops jararacussu: A Proteomic Approach to Study the Molecular Immunology of Snake Toxins. Toxicon 2010, 55, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Damm, M.; Hempel, B.-F.; Süssmuth, R.D. Old World Vipers—A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins 2021, 13, 427. [Google Scholar] [CrossRef]
- Mohamed Abd El-Aziz, T.; Soares, A.G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef]
- Sousa, L.F.; Zdenek, C.N.; Dobson, J.S.; Op Den Brouw, B.; Coimbra, F.C.P.; Gillett, A.; Del-Rei, T.H.M.; Chalkidis, H.D.M.; Sant’Anna, S.; Teixeira-da-Rocha, M.M.; et al. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy Resulting from Prey-Driven Venom Variation. Toxins 2018, 10, 411. [Google Scholar] [CrossRef]
- Bourke, L.A.; Zdenek, C.N.; Neri-Castro, E.; Bénard-Valle, M.; Alagón, A.; Gutiérrez, J.M.; Sanchez, E.F.; Aldridge, M.; Fry, B.G. Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins 2021, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Winkel, K.D.; Wickramaratna, J.C.; Hodgson, W.C.; Wüster, W. Effectiveness of Snake Antivenom: Species and Regional Venom Variation and Its Clinical Impact. J. Toxicol. Toxin Rev. 2003, 22, 23–34. [Google Scholar] [CrossRef]
- Sousa, L.F.; Nicolau, C.A.; Peixoto, P.S.; Bernardoni, J.L.; Oliveira, S.S.; Portes-Junior, J.A.; Mourão, R.H.V.; Lima-dos-Santos, I.; Sano-Martins, I.S.; Chalkidis, H.M.; et al. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex. PLoS Negl. Trop. Dis. 2013, 7, e2442. [Google Scholar] [CrossRef]
- Schendel, V.; Rash, L.D.; Jenner, R.A.; Undheim, E.A.B. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins 2019, 11, 666. [Google Scholar] [CrossRef] [PubMed]
- Megale, Â.A.A.; Magnoli, F.C.; Kuniyoshi, A.K.; Iwai, L.K.; Tambourgi, D.V.; Portaro, F.C.V.; Da Silva, W.D. Kn-Ba: A Novel Serine Protease Isolated from Bitis Arietans Snake Venom with Fibrinogenolytic and Kinin-Releasing Activities. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- D’Amélio, F.; Vigerelli, H.; de Brandão Prieto da Silva, Á.R.; Kerkis, I. Bothrops moojeni Venom and Its Components—An Overview. J. Venom. Res. 2021, 11, 26–33. [Google Scholar]
- Zelanis, A.; Huesgen, P.F.; Oliveira, A.K.; Tashima, A.K.; Serrano, S.M.T.; Overall, C.M. Snake Venom Serine Proteinases Specificity Mapping by Proteomic Identification of Cleavage Sites. J. Proteom. 2015, 113, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Péterfi, O.; Boda, F.; Szabó, Z.; Ferencz, E.; Bába, L. Hypotensive Snake Venom Components—A Mini-Review. Molecules 2019, 24, 2778. [Google Scholar] [CrossRef]
- Vivas-Ruiz, D.E.; Sandoval, G.A.; Mendoza, J.; Inga, R.R.; Gontijo, S.; Richardson, M.; Eble, J.A.; Yarleque, A.; Sanchez, E.F. Coagulant Thrombin-like Enzyme (Barnettobin) from Bothrops barnetti Venom: Molecular Sequence Analysis of Its cDNA and Biochemical Properties. Biochimie 2013, 95, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Vilca-Quispe, A.; Alvarez-Risco, A.; Gomes Heleno, M.A.; Ponce-Fuentes, E.A.; Vera-Gonzales, C.; Zegarra-Aragon, H.F.E.; Aquino-Puma, J.L.; Talavera-Núñez, M.E.; Del-Aguila-Arcentales, S.; Yáñez, J.A.; et al. Biochemical and Hemostatic Description of a Thrombin-like Enzyme TLBro from Bothrops roedingeri Snake Venom. Front. Chem. 2023, 11, 1217329. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.M.T. The Long Road of Research on Snake Venom Serine Proteinases. Toxicon 2013, 62, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sajevic, T.; Leonardi, A.; Križaj, I. Haemostatically Active Proteins in Snake Venoms. Toxicon 2011, 57, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Marceau, F.; Regoli, D. Bradykinin Receptor Ligands: Therapeutic Perspectives. Nat. Rev. Drug Discov. 2004, 3, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Rádis Baptista, G. (Ed.) An Integrated View of the Molecular Recognition and Toxinology: From Analytical Procedures to Biomedical Applications; IntechOpen: Rijeka, Croatia, 2013; ISBN 978-953-51-1151-1. [Google Scholar]
- Saguchi, K.; Hagiwara-Saguchi, Y.; Murayama, N.; Ohi, H.; Fujita, Y.; Camargo, A.C.M.; Serrano, S.M.T.; Higuchi, S. Molecular Cloning of Serine Proteinases from Bothrops jararaca Venom Gland. Toxicon 2005, 46, 72–83. [Google Scholar] [CrossRef]
- Galizio, N.D.C.; Serino-Silva, C.; Stuginski, D.R.; Abreu, P.A.E.; Sant’Anna, S.S.; Grego, K.F.; Tashima, A.K.; Tanaka-Azevedo, A.M.; Morais-Zani, K.D. Compositional and Functional Investigation of Individual and Pooled Venoms from Long-Term Captive and Recently Wild-Caught Bothrops jararaca Snakes. J. Proteom. 2018, 186, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.M.T.; Hagiwara, Y.; Murayama, N.; Higuchi, S.; Mentele, R.; Sampaio, C.A.M.; Camargo, A.C.M.; Fink, E. Purification and Characterization of a Kinin-releasing and Fibrinogen-clotting Serine Proteinase (KN-BJ) from the Venom of Bothrops jararaca, and Molecular Cloning and Sequence Analysis of Its cDNA. Eur. J. Biochem. 1998, 251, 845–853. [Google Scholar] [CrossRef]
- Zaqueo, K.D.; Kayano, A.M.; Simões-Silva, R.; Moreira-Dill, L.S.; Fernandes, C.F.C.; Fuly, A.L.; Maltarollo, V.G.; Honório, K.M.; Da Silva, S.L.; Acosta, G.; et al. Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom. BioMed Res. Int. 2014, 2014, 595186. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Soto, L.A.; Bonfim, V.L.; Novello, J.C.; Navarro Oviedo, R.; Yarlequé Chocas, A.; Marangoni, S. Isolation and Characterization of a Serine Protease, Ba III-4, from Peruvian Bothrops atrox Venom. Protein J. 2007, 26, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.F.D.; Schwartz, M.F.; Garay, A.V.; Valadares, N.F.; Bueno, R.V.; Monteiro, A.C.L.; Freitas, S.M.D.; Barbosa, J.A.R.G. Exploring the Diversity and Function of Serine Proteases in Toxicofera Reptile Venoms: A Comprehensive Overview. Toxins 2024, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Vilca Quispe, A. Estudos Comparativos Da Atividade Cinética e Trobina-Símile de Serinoproteases Isoladas a Partir Dos Venenos de Bothrops Brazili e Bothrops Roedingeri. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2013. [Google Scholar]
- Carneiro, A.C.V. Expressão de Uma Serinoprotease de Bothrops Pauloensis Em Pichia Pastoris e Avaliação Da Sua Atividade Citotóxica Sobre Diferentes Linhagens Tumorais. Bachelor’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2018. [Google Scholar]
- Clement, H.; Corrales-García, L.L.; Bolaños, D.; Corzo, G.; Villegas, E. Immunogenic Properties of Recombinant Enzymes from Bothrops ammodytoides towards the Generation of Neutralizing Antibodies against Its Own Venom. Toxins 2019, 11, 702. [Google Scholar] [CrossRef]
- Zaqueo, K.D.; Kayano, A.M.; Domingos, T.F.S.; Moura, L.A.; Fuly, A.L.; Da Silva, S.L.; Acosta, G.; Oliveira, E.; Albericio, F.; Zanchi, F.B.; et al. BbrzSP-32, the First Serine Protease Isolated from Bothrops brazili Venom: Purification and Characterization. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 195, 15–25. [Google Scholar] [CrossRef]
- Valeriano-Zapana, J.A.; Segovia-Cruz, F.S.; Rojas-Hualpa, J.M.; Martins-de-Souza, D.; Ponce-Soto, L.A.; Marangoni, S. Functional and Structural Characterization of a New Serine Protease with Thrombin-like Activity TLBan from Bothrops andianus (Andean Lancehead) Snake Venom. Toxicon 2012, 59, 231–240. [Google Scholar] [CrossRef]
- Halfon, S.; Craik, C.S. Regulation of Proteolytic Activity by Engineered Tridentate Metal Binding Loops. J. Am. Chem. Soc. 1996, 118, 1227–1228. [Google Scholar] [CrossRef]
- Kisiel, W.; Kondo, S.; Smith, K.J.; McMullen, B.A.; Smith, L.F. Characterization of a Protein C Activator from Agkistrodon Contortrix Contortrix Venom. J. Biol. Chem. 1987, 262, 12607–12613. [Google Scholar] [CrossRef]
- Zhang, Y.; Wisner, A.; Xiong, Y.; Bon, C. A Novel Plasminogen Activator from Snake Venom. J. Biol. Chem. 1995, 270, 10246–10255. [Google Scholar] [CrossRef]
- Nishida, S.; Fujimura, Y.; Miura, S.; Yoshida, E.; Sugimoto, M.; Yoshioka, A.; Fukui, H.; Ozaki, Y.; Usami, Y. Purification and Characterization of Bothrombin, a Fibrinogen-Clotting Serine Protease from the Venom of Bothrops jararaca. Biochemistry 1994, 33, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.R. Defibrinogenating Enzymes. Drugs 1997, 54, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Petretski, J.H.; Kanashiro, M.; Silva, C.P.; Alves, E.W.; Kipnis, T.L. Two Related Thrombin-like Enzymes Present in Bothrops atrox Venom. Braz. J. Med. Biol. Res. 2000, 33, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Suntravat, M.; Yusuksawad, M.; Sereemaspun, A.; Pérez, J.C.; Nuchprayoon, I. Effect of Purified Russell’s Viper Venom-Factor X Activator (RVV-X) on Renal Hemodynamics, Renal Functions, and Coagulopathy in Rats. Toxicon 2011, 58, 230–238. [Google Scholar] [CrossRef]
- Carone, S.E.I.; Menaldo, D.L.; Sartim, M.A.; Bernardes, C.P.; Caetano, R.C.; Da Silva, R.R.; Cabral, H.; Barraviera, B.; Ferreira Junior, R.S.; Sampaio, S.V. BjSP, a Novel Serine Protease from Bothrops jararaca Snake Venom That Degrades Fibrinogen without Forming Fibrin Clots. Toxicol. Appl. Pharmacol. 2018, 357, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.S.; Georgieva, D.; Genov, N.; Murakami, M.T.; Sinha, M.; Kumar, R.P.; Kaur, P.; Kumar, S.; Dey, S.; Sharma, S.; et al. Enzymatic Toxins from Snake Venom: Structural Characterization and Mechanism of Catalysis. FEBS J. 2011, 278, 4544–4576. [Google Scholar] [CrossRef] [PubMed]
- Böhm, B.; Aigner, T.; Kinne, R.; Burkhardt, H. The Serine-protease Inhibitor of Cartilage Matrix Is Not a Chondrocytic Gene Product. Eur. J. Biochem. 1992, 207, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.A.; Jacob, U.; Huber, R.; Wisner, A.; Bon, C.; Bode, W. The Crystal Structure of the Novel Snake Venom Plasminogen Activator TSV-PA: A Prototype Structure for Snake Venom Serine Proteinases. Structure 1998, 6, 1195–1206. [Google Scholar] [CrossRef]
- Murakami, M.T.; Arni, R.K. Thrombomodulin-Independent Activation of Protein C and Specificity of Hemostatically Active Snake Venom Serine Proteinases. J. Biol. Chem. 2005, 280, 39309–39315. [Google Scholar] [CrossRef]
- Vitorino-Cardoso, A.F.; Pereira Ramos, O.H.; Homsi-Brandeburgo, M.I.; Selistre-de-Araujo, H.S. Insights into the Substrate Specificity of a Novel Snake Venom Serine Peptidase by Molecular Modeling. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 144, 334–342. [Google Scholar] [CrossRef]
- Schechter, I.; Berger, A. On the Size of the Active Site in Proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162. [Google Scholar] [CrossRef]
- Samel, M.; Subbi, J.; Siigur, J.; Siigur, E. Biochemical Characterization of Fibrinogenolytic Serine Proteinases from Vipera Lebetina Snake Venom. Toxicon 2002, 40, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Dekhil, H.; Wisner, A.; Marrakchi, N.; El Ayeb, M.; Bon, C.; Karoui, H. Molecular Cloning and Expression of a Functional Snake Venom Serine Proteinase, with Platelet Aggregating Activity, from the Cerastes cerastes Viper. Biochemistry 2003, 42, 10609–10618. [Google Scholar] [CrossRef]
- Silva, F.P.; De-Simone, S.G. S1 Subsite in Snake Venom Thrombin-like Enzymes: Can S1 Subsite Lipophilicity Be Used to Sort Binding Affinities of Trypsin-like Enzymes to Small-Molecule Inhibitors? Bioorganic Med. Chem. 2004, 12, 2571–2587. [Google Scholar] [CrossRef] [PubMed]
- Hedstrom, L.; Lin, T.-Y.; Fast, W. Hydrophobic Interactions Control Zymogen Activation in the Trypsin Family of Serine Proteases. Biochemistry 1996, 35, 4515–4523. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Mendes, B.; Patiño, R.S.P.; Pico, J.; Laines, J.; Terán, M.; Mogollón, N.G.S.; Zaruma-Torres, F.; Caldeira, C.A.D.S.; Da Silva, S.L. Assessing the Stability of Historical and Desiccated Snake Venoms from a Medically Important Ecuadorian Collection. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 230, 108702. [Google Scholar] [CrossRef] [PubMed]
- Patiño, R.S.P.; Salazar-Valenzuela, D.; Medina-Villamizar, E.; Mendes, B.; Proaño-Bolaños, C.; Da Silva, S.L.; Almeida, J.R. Bothrops atrox from Ecuadorian Amazon: Initial Analyses of Venoms from Individuals. Toxicon 2021, 193, 63–72. [Google Scholar] [CrossRef]
- Meléndez-Martínez, D.; Plenge-Tellechea, L.F.; Gatica-Colima, A.; Cruz-Pérez, M.S.; Aguilar-Yáñez, J.M.; Licona-Cassani, C. Functional Mining of the Crotalus spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules 2020, 25, 3401. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, H.A.; Alabbas, L.M.; Sumnudi, R.I.; Felemban, S.; Alhindi, Y. A Review on Anti-Thrombotic Agents Derived from Snake Venom Protein. PJMHS 2022, 16, 948–952. [Google Scholar] [CrossRef]
- Van Hinsbergh, V.W.M.; Engelse, M.A.; Quax, P.H.A. Pericellular Proteases in Angiogenesis and Vasculogenesis. ATVB 2006, 26, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Paes Leme, A.F.; Prezoto, B.C.; Yamashiro, E.T.; Bertholim, L.; Tashima, A.K.; Klitzke, C.F.; Camargo, A.C.M.; Serrano, S.M.T. Protease A, a Unique Highly Glycosylated Serine Proteinase, Is a Potent, Specific Fibrinogenolytic Agent. J. Thromb. Haemost. 2008, 6, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.; Sampaio, C.; Mentele, R.; Camargo, A.; Fink, E. A Novel Fibrinogen-Clotting Enzyme, TL-BJ, from the Venom of the Snake Bothrops jararaca: Purification and Characterization. Thromb. Haemost. 2000, 83, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, E.T.; Oliveira, A.K.; Kitano, E.S.; Menezes, M.C.; Junqueira-de-Azevedo, I.L.; Paes Leme, A.F.; Serrano, S.M.T. Proteoforms of the Platelet-Aggregating Enzyme PA-BJ, a Serine Proteinase from Bothrops jararaca Venom. Biochim. Biophys. Acta (BBA)–Proteins Proteom. 2014, 1844, 2068–2076. [Google Scholar] [CrossRef]
- Serrano, S.M.D.T. The Isolation and Structural and Functional Characterization of Serine Proteinases in the Venom of Bothrops jararaca. J. Venom. Anim. Toxins 1999, 5, 226. [Google Scholar] [CrossRef]
- Serrano, S.M.T.; Oliveira, A.K.; Menezes, M.C.; Zelanis, A. The Proteinase-Rich Proteome of Bothrops jararaca Venom. Toxin Rev. 2014, 33, 169–184. [Google Scholar] [CrossRef]
- Menaldo, D.L.; Bernardes, C.P.; Santos-Filho, N.A.; Moura, L.D.A.; Fuly, A.L.; Arantes, E.C.; Sampaio, S.V. Biochemical Characterization and Comparative Analysis of Two Distinct Serine Proteases from Bothrops pirajai Snake Venom. Biochimie 2012, 94, 2545–2558. [Google Scholar] [CrossRef]
- Silva, N.B.; Dias, E.H.V.; Costa, J.D.O.; Mamede, C.C.N. Bothrops moojeni Snake Venom: A Source of Potential Therapeutic Agents Against Hemostatic Disorders. Int. J. Cardiovasc. Sci. 2024, 37, e20220075. [Google Scholar] [CrossRef]
- Zaqueo, K.D. Caracterização Estrutural da BpirSP-39 e Isolamento e Caracterização da Primeira Serinoprotease do Veneno da Serpente Bothrops Brazili. Ph.D. Thesis, Universidade Federal de Rondônia, Porto Velho, Brazil, 2015. [Google Scholar]
- Kini, R.M. Toxins and Hemostasis: From Bench to Bedside; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-9295-3. [Google Scholar]
- Bhat, S.K.; Joshi, M.B.; Ullah, A.; Masood, R.; Biligiri, S.G.; Arni, R.K.; Satyamoorthy, K. Serine Proteinases from Bothrops Snake Venom Activates PI3K/Akt Mediated Angiogenesis. Toxicon 2016, 124, 63–72. [Google Scholar] [CrossRef]
- Kadi-Saci, A.; Laraba-Djebari, F. Purification and Characterization of a Thrombin-like Enzyme Isolated from Vipera Lebetina Venom: Its Interaction with Platelet Receptor. Blood Coagul. Fibrinolysis 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Zaganelli, G.L.; Zaganelli, M.G.M.; Magalhães, A.; Diniz, C.R.; De Lima, M.E. Purification and Characterization of a Fibrinogen-Clotting Enzyme from the Venom of Jararacuçu (Bothrops jararacussu). Toxicon 1996, 34, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Moura-da-Silva, A.M.; Baldo, C. Jararhagin, a Hemorrhagic Snake Venom Metalloproteinase from Bothrops jararaca. Toxicon 2012, 60, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Rucavado, A.; Chaves, F.; Díaz, C.; Escalante, T. Experimental Pathology of Local Tissue Damage Induced by Bothrops asper Snake Venom. Toxicon 2009, 54, 958–975. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.L.S.; Rodrigues, R.S.; Izidoro, L.F.M.; Menaldo, D.L.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Fuly, A.L.; Soares, S.G.; Selistre-de-Araújo, H.S.; Barraviera, B.; et al. Biochemical and Functional Properties of a Thrombin-like Enzyme Isolated from Bothrops pauloensis Snake Venom. Toxicon 2009, 54, 725–735. [Google Scholar] [CrossRef] [PubMed]
Snake | Geographical Distribution | Region of Brazil | States of Brazil |
---|---|---|---|
B. alcatraz | Brazil | Southeast | SP |
B. alternatus | Argentina, Brazil, and Uruguay | South, Southeast, And Midwest | MS, GO, MG, RJ, SP, PR, SC, and RS |
B. atrox | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, Peru, Suriname, Trinidad, and Venezuela | North, Midwest, and Northeast | RR, AP, AC, RO, AM, PA, TO, MT, and MA |
B. bilineatus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Suriname | North, Northeast, Southeast, and Midwest | RR, AP, RO, AM, PA, MT, CE, PE, AL, BA, ES, MG, and RJ |
B. brazili | Bolivia, Brazil, Colombia, English Guiana, French Guiana, Peru, Venezuela, and Suriname | North, Northeast, and Midwest | AC, RO, AM, PA, MT, and MA |
B. cotiara | Argentina and Brazil | Southeast and South | SP, PR, SC, and RS |
B. diporus | Argentina, Bolivia, Brazil, and Paraguay | Southeast and South | SP, PR, SC, and RS |
B. erythromelas | Brazil | Northeast and Southeast | PI, CE, RN, PB, PE, AL, SE, and BA |
B. fonsecai | Brazil | na | MG, RJ, and SP |
B. germanoi | Brazil | Southeast | SP |
B. insularis | Brazil | Southeast | SP |
B. itapetiningae | Brazil | Midwest, Southeast, and South | MS, GO, DF, MG, SP, and PR |
B. jabrensis | Brazil | Northeast | PB |
B. jararaca | Argentina, Brazil, and Paraguay | Midwest, Southeast, and South | GO, BA, ES, MG, RJ, SP, PR, SC, and RS |
B. jararacussu | Argentina, Bolivia, Brazil, and Paraguay | Northeast, Southeast, and South | BA, ES, MG, RJ, SP, PR, SC, RS, and MS |
B. leucurus | Brazil | Northeast and Southeast | CE, RN, PB, PE, AL, SE, BA, ES, and MG |
B. lutzi | Brazil | North, Midwest, and Southeast | TO, GO, DF, MA, PI, CE, PE, BA, and MG |
B. marajoensis | Brazil | North and Northeast | AP, PA, and MA |
B. marmoratus | Brazil | North, Midwest, and Southeast | TO, GO, DF, and MG |
B. mattogrossensis | Bolivia and Brazil | North, Midwest, and Southeast | RO, AM, TO, MT, MS, GO, and SP |
B. moojeni | Argentina, Bolivia, Brazil, and Paraguay | North, Midwest, Southeast, and Northeast | TO, MT, MS, GO, DF, MA, PI, BA, MG, SP, and PR |
B. muriciensis | Brazil | Northeast | AL |
B. neuwiedi | Argentina and Brazil | Midwest, Southeast, and South | GO, DF, BA, MG, RJ, SP PR, SC, and RS |
B. oligobalius | Bolivia, Brazil, Colombia, English Guiana, French Guiana, Peru, Venezuela, and Suriname | North | AP, AM, and PA |
B. otavioi | Brazil | Southeast | SP |
B. pauloensis | Bolivia and Brazil | Midwest and Southeast | MT, MS, GO, DF, MG, SP, and PR |
B. pirajai | Brazil | Northeast | BA |
B. pubescens | Brazil and Uruguay | South | SC and RS |
B. sazimai | Brazil | Southeast | ES |
B. smaragdinus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Suriname | North | AC, RO, and AM |
B. taeniatus | Bolivia, Brazil, Colombia, Ecuador, English Guiana, French Guiana, and Peru | North, Midwest, and Northeast | RR, AP, AC, RO, AM, PA, MT, and MA |
Snake | Geographical Distribution |
---|---|
B. ammodytoides | Argentina |
B. asper | Belize, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Nicaragua, Mexico, Panama, Peru, and Venezuela |
B. ayerbei | Colombia |
B. barnetti | Peru |
B. caribbaeus | Saint Lucia and Antilles |
B. chloromelas | Peru |
B. jonathani | Argentina and Bolivia |
B. lanceolatus | Antilles |
B. medusa | Venezuela |
B. monsignifer | Bolivia |
B. oligolepis | Peru |
B. osbornei | Ecuador and Peru |
B. pictus | Peru |
B. pulcher | Colombia and Ecuador |
B. punctatus | Colombia, Ecuador, and Panama |
B. sanctaecrucis | Bolivia |
B. sonene | Peru |
B. venezuelensis | Venezuela |
Serine Protease | Snake | Geographical Location | Activities | Length (aa) | Molecular Weight (Da) | UniProt Number/Ref |
---|---|---|---|---|---|---|
BPA | Bothrops jararaca | Brazil (SP, RJ, BA, RS, SC, MG, GO, MT, ES, and PR) | Fibrinogenolytic, stereolytic, and amidolytic activities | 258 | ~28.38 | UniProt Q9PTU8 |
HS112 | It acts on the hemostasis system of the prey | 255 | ~28.05 | UniProt Q5W960 | ||
HS114 | Nonspecific action on fibrinogen; low fibrinolytic activity; high enzymatic activity when compared to plasmin | 259 | ~28.49 | UniProt Q5W959 | ||
SVSP like-HS120 | unknown | 253 | 28 | [78,79] | ||
Bothrombin | Similar to thrombin; induces platelet aggregation; activates factor VIII | 232 | ~25.52 | UniProt P81661 | ||
PA-BJ | Induces platelet aggregation; thrombin-like activity; amidolytic activity | 237 | ~26.07 | UniProt P81824 | ||
TL-BJ1 | Similar to thrombin; causes specific coagulation of fibrinogen (FGA) with the release of fibrinopeptide A | 19 * | not reported | UniProt P81882 | ||
TL-BJ2 | Similar to thrombin; causes specific coagulation of fibrinogen (FGA) with the release of fibrinopeptide A | 19 * | not reported | UniProt P81883 | ||
TL-BJ3 | Similar to thrombin; causes specific coagulation of fibrinogen (FGA) with the release of fibrinopeptide A | 19 * | not reported | UniProt P81884 | ||
KN-BJ1 | Kinin releasing; activity depends on kininogen source; coagulation activities; clotting and fibrin formation | 19 * | 38 | [80] | ||
KN-BJ2 | Kinin releasing; activity depends on kininogen source; coagulation activities; clotting and fibrin formation | 19 * | 39 | [80] | ||
Bhalternina | Bothrops alternatus | Argentina, Uruguay, and Brazil (RS, SP, RJ, MS, GO, MG, PR, and SC) | Similar to thrombin that induces blood coagulation coagulation in vitro; in vivo defibrinogenation; albuminolytic and fibrinogenolytic activities | 260 | ~28.6 | UniProt P0CG03 |
Balterina | unknown | not reported | not reported | (VILCA QUISPE, 2013) | ||
BthatL | It acts on the hemostasis system of the prey | 233 | ~25.63 | UniProt Q6IWF1 | ||
Barnettobina | Bothrops barnetti | Peru | Similar to thrombin; releases only fibrinopeptide A from the human alpha chain of fibrinogen; fibrinogenolytic and defibrinogenating activities | 249 | 39 | UniProt K4LLQ2 |
BpirSP41 | Bothrops pirajai | Brazil (BA) | Similar to thrombin; releases only fibrinopeptide A from the human alpha chain of fibrinogen; fibrinogenolytic and defibrinogenating activities | 50 * (~364) | 40 | UniProt P0DL27 |
BpirSP-39 | Coagulation activity; activation of factors XIIIa and III of the coagulation cascade; gelatinolytic activity; amidolytic activity | ~445 | 49 | [81] | ||
BpirSP27 | Preferably degrades the beta chain (FGB) of fibrinogen; promotes concentration-dependent platelet aggregation, in the presence or absence of calcium; hydrolyzes chromogenic substrates | 50 * (~245) | 27 | UniProt P0DL26 | ||
Asperase | Bothrops asper | Mexico, Guatemala, Honduras, Nicaragua, Costa Rica, Panama, Belize, Colombia, Ecuador, and Venezuela | Defibrillation; coagulation of human plasma and bovine fibrinogen; when administered intravenously induces effect similar to that of gyroxin | 259 | 27 | UniProt Q072L6 |
TLBm | Bothrops marajoensis | Brazil (AP and PA) | Similar to thrombin; induces platelet aggregation | 285 | 33 | UniProt P0DJE9 |
Batroxobina | Bothrops atrox | Brazil (RR, AM, AP, AC, PA, MA, RO, TO, and MT) | Similar to thrombin; cleaves Arg-Gly ligations in fibrinogen alpha chains (FGAs) | 255 | 28 | UniProt P04971 |
Ba III-4 | Similar to thrombin; coagulant activity; fibrinogenolytic activity; proteolytic activity; alkaline phosphatase | 293 | 34 | [82] | ||
Thrombocytin | Thrombin-like α-chain; fibrinogenolytic; platelet activator | ~327 | 36 | [83] | ||
Leuurobina | Bothrops leucurus | Brazil (BA, CE, RN, PB, PE, AL, SE, ES, and MG) | Similar to thrombin; induces temporary opisthotonos episodes; intravenous administration produces an effect similar to that of gyroxine | 231 | 30 | UniProt P0DJ86 |
Leucurobin | Thrombin-like α-chain; fibrinogenolytic | ~318 | 35 | [83] | ||
BJ-48 | Bothrops jararacussu | Brazil (MS, BA, ES, MG, RJ, SP, PR, SC, and RS) | Similar to thrombin; specifically cleaves the alpha chain of human fibrinogen (FGA); selective for Arg over Lys at position 1 of the tripeptide substrate | 22 * (~436) | 48 | UniProt P0DJF0 |
DV | Similar to thrombin; induces the rapid formation of fibrin clots | 10 * | not reported | [5] | ||
BjussusSP-1 | Similar to thrombin; fibrinogenolytic activity specific to alpha chain (FGA); hydrolyzes fibrin, BAPNA, TAME, and artificial chromogenic substrates of the coagulation cascade | 232 | ~25.52 | UniProt Q2PQJ3 | ||
FC-Bj | Thrombin-like α/β-chain; fibrinogenolytic | not reported | not reported | [83] | ||
Jararacussin-I | Thrombin-like α/β-chain; fibrinogenolytic | ~254 | 28 | [83] | ||
BJV-VIIIcp | Platelet activator | ~254 | 28 | [83] | ||
Moojase | Bothrops moojeni | Brazil (TO, MT, MS, GO, DF, MA, PI, BA, MG, SP, and PR) | Similar to thrombin; fibrinogenolytic activity; fibrinolytic activity; high cleavage effectiveness for chromogenic substrates | 50 * | 36 | [5] |
(~327) | ||||||
BMII32 | Plasma coagulant activity; fibrinogenolytic action without inducing fibrinolysis | ~290 | 32 | [5] | ||
BMII35 | Plasma coagulant activity; fibrinogenolytic action without inducing fibrinolysis | ~318 | 35 | [5] | ||
BmooSP | Coagulant activity; defibrinating activity; caseinolytic activity; fibrinogenolytic activity | ~327 | 36 | [5] | ||
MSP 1 | Platelet activator | ~309 | 34 | [83] | ||
TI-Bp | Bothrops pauloensis | Paraguay, Bolivia, and Brazil (MT, MS, GO, DF, MG, SP, and PR) | unknown | not reported | not reported | [84] |
rBpSP-I | Similar to thrombin; high coagulation activity in bovine and human plasma; high fibrinogenolytic activity on substrates such as TAME and specific substrates for thrombin; hydrolyzes substrates for kallikrein; intraperitoneal administration causes defibrinogenation | 15 * | not reported | UniProt P0DJF1 | ||
rBpSP-II | unknown | ~409 | 45 | [85] | ||
rBamSP_1 | Bothrops ammodytoides | Argentina | unknown | ~245 | 27 | [86] |
SVSP | Bothrops fonsecai | Brazil (MG, RJ, and SP) | It acts on the hemostasis system of the prey | 15 * | not reported | UniProt P0DMH6 |
BITS01A | Bothrops insularis | Brazil (SP) | It acts on the hemostasis system of the prey | 257 | ~28.27 | UniProt Q8QG86 |
Pictobin | Bothrops pictus | Peru | It acts on the hemostasis system of the prey | 250 | ~27.5 | UniProt U5YCR8 |
TLBro | Coagulant activity; catalytic activity; proteolytic activity; fibrinogenolytic activity; fibrinolytic activity | 183 | 20 | [84] | ||
SVSP | Bothrops cotiara | Argentina and Brazil (SP, PR, SC, and RS) | It acts on the hemostasis system of the prey | 15 * | not reported | UniProt P0DMH5 |
TLBbz | Bothrops brazili | Venezuela, Guyana, Suriname, French Guiana, Colombia, Peru, Ecuador, Bolivia, and Brazil (PR, AM, RO, and MT) | Coagulant activity; catalytic activity; proteolytic activity; fibrinogenolytic activity; fibrinolytic activity | 321 | 35 | [84] |
BbrzSP32 | Proteolytic activity; thrombolytic activity; procoagulant activity; hydrolytic activity | ~290 | 32 | [87] | ||
TL-Ban | Bothrocopias andianus | Peru and Bolivia | Coagulant activity; fibrinogenolytic activity; proteolytic activity | 269 | 25 | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanazzi, M.; Filardi, E.T.M.; Pires, G.M.M.; Cerveja, M.F.; Melo-dos-Santos, G.; Oliveira, I.S.; Ferreira, I.G.; Cerni, F.A.; Santos-Filho, N.A.; Monteiro, W.M.; et al. The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery. Biomolecules 2025, 15, 154. https://doi.org/10.3390/biom15020154
Romanazzi M, Filardi ETM, Pires GMM, Cerveja MF, Melo-dos-Santos G, Oliveira IS, Ferreira IG, Cerni FA, Santos-Filho NA, Monteiro WM, et al. The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery. Biomolecules. 2025; 15(2):154. https://doi.org/10.3390/biom15020154
Chicago/Turabian StyleRomanazzi, Marcela, Eloise T. M. Filardi, Geovanna M. M. Pires, Marcos F. Cerveja, Guilherme Melo-dos-Santos, Isadora S. Oliveira, Isabela G. Ferreira, Felipe A. Cerni, Norival Alves Santos-Filho, Wuelton M. Monteiro, and et al. 2025. "The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery" Biomolecules 15, no. 2: 154. https://doi.org/10.3390/biom15020154
APA StyleRomanazzi, M., Filardi, E. T. M., Pires, G. M. M., Cerveja, M. F., Melo-dos-Santos, G., Oliveira, I. S., Ferreira, I. G., Cerni, F. A., Santos-Filho, N. A., Monteiro, W. M., Almeida, J. R., Vaiyapuri, S., & Pucca, M. B. (2025). The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery. Biomolecules, 15(2), 154. https://doi.org/10.3390/biom15020154