Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications
Abstract
:1. Introduction
1.1. Structure and Composition
1.2. Localization
2. Biological Functions of MPC
2.1. Pyruvate Transport and Mitochondrial Respiration
2.2. Metabolic Flux Regulation
3. The Role of MPC in Metabolic Disorders, Neurodegenerative Diseases, and Clinical Significance
3.1. MPC in Type 2 Diabetes
3.2. MPC in Obesity
3.3. MPC in Non-Alcoholic Fatty Liver Disease
3.4. MPC in Neurodegenerative Diseases
3.5. Clinical Significance and Therapeutic Potential
4. Medicinal Chemistry Approaches to MPC Inhibition
4.1. Structure-Based Drug Design and Ligand-Based Virtual Screening
4.2. SAR and QSAR Studies
4.3. Known MPC Inhibitors
5. Recent Advances in the Medicinal Chemistry of MPC Inhibitors
5.1. Small-Molecule MPC Inhibitors: Discovery and Development
5.2. UK-5099 (Cyano-Cinnamate) Derivatives
Entry | Name | Structure | IC50 | Bioassay | Ref. |
---|---|---|---|---|---|
1. | UK-5099 | 0.140 μM | Oxygen consumption rate | [88] | |
2. | α-Cyano-cinnamate | 200.0 nM | Oxygen uptake | [9] | |
3. | α-Cyano-4-hydroxycinnamate | 1.5 μM | Oxygen uptake | [9] | |
4. | α-Cyano-3-hydroxycinnamate | 1.5 μM | Oxygen uptake | [9] | |
5. | α-Cyano-5-phenyl-2,4-pentadienoate | 200 nM | Oxygen uptake | [9] | |
6. | α-Cyano-4-methyl-2-pentanoate | i.a. | Oxygen uptake | [9] | |
7. | α-Fluorocinnamate | i.a. | Oxygen uptake | [9] | |
8. | α-Thio-2-furanpyruvate | i.a. | Oxygen uptake | [9] | |
9. | JXL011 | Not Reported | N/A | [88] | |
10. | JXL020 | 16.6 nM | Oxygen consumption rate | [88] | |
11. | JXL069 | 42.8 nM | Oxygen consumption rate | [88] | |
12. | JXL050 | Not Reported | N/A | [88] | |
13. | JXL051 | Not Reported | N/A | [88] | |
14. | JXL052 | Not Reported | N/A | [88] | |
15. | JXL086 | Not Reported | N/A | [88] | |
16. | JXL094 | Not Reported | N/A | [88] | |
17. | JXL095 | Not Reported | N/A | [88] | |
18. | BE1976 | 33.0 nM | Pyruvate OCR | [4] | |
19. | BE1978 | 117 nM | Pyruvate OCR | [4] | |
20. | BE1980 | 162 nM | Pyruvate OCR | [4] | |
21. | BE1984 | 1.533 μM | Pyruvate OCR | [4] | |
22. | BE1985 | 638 nM | Pyruvate OCR | [4] | |
23. | BE1988 | i.a. | Pyruvate OCR | [4] | |
24. | BE2617 | 39 nM | Pyruvate OCR | [4] | |
25. | BE2623 | 731 nM | Pyruvate OCR | [4] | |
26. | BE1975 | i.a. | Pyruvate OCR | [4] | |
27. | Compound 2 | 12.4 nM | Pyruvate transport inhibition | [86] | |
28. | Compound 3 | Not Reported | N/A | [86] | |
29. | Compound 4 | Not Reported | N/A | [86] | |
30. | Compound 5 | Not Reported | N/A | [86] | |
31. | Compound 6 | Not Reported | N/A | [86] | |
32. | Compound 7 | 5.4 nM | Pyruvate transport inhibition | [86] | |
33. | Compound 8 | Not Reported | N/A | [86] | |
34. | Compound 9 | Not Reported | N/A | [86] | |
35. | BE2625 | 212.0 nM | Pyruvate OCR | [87] | |
36. | BE2639 | 107.0 nM | Pyruvate OCR | [87] | |
37. | BE2645 | 108.0 nM | Pyruvate OCR | [87] | |
38. | BE2647 | 70.0 nM | Pyruvate OCR | [87] | |
39. | BE2648 | 7.771 μM | Pyruvate OCR | [87] | |
40. | BE2650 | 18.26 μM | Pyruvate OCR | [87] | |
41. | BE2659 | 789 nM | Pyruvate OCR | [87] |
5.3. Thiazolidinediones
Entry | Name | Structure | IC50 | Bioassay | Ref. |
---|---|---|---|---|---|
1. | (E)-5-(4-Hydroxybenzylidene) thiazolidine-2,4-dione | 762.0 nM | Mitochondrial Respiration | [93] | |
2. | (E)-5-(3-Hydroxy-4-Methoxy benzylidene) thiazolidine-2,4-dione | Not reported | N/A | [93] | |
3. | PXL065 | Not reported | N/A | [94] | |
4. | Rosiglitazone | 1.18 μM | Binding affinity to mouse MPC | [81] | |
5. | MSDC-0602K | N/A | N/A | [92] | |
6. | Pioglitazone | 1.20 μM | Binding affinity to mouse MPC | [81] | |
7. | Mitoglitazone (MSDC-0160) | 1.20 μM | Displacement of photoprobe from MPC | [81] | |
8. | MSDC-1437 | i.a. | …… | [92] | |
9. | GW450863X | Not reported | N/A | [95] | |
10. | GW504714X | Not reported | N/A | [95] | |
11. | Nitrofurantoin | 3.3 μM | Pyruvate transport inhibition | [86] |
5.4. Miscellaneous MPC Inhibitors
Entry | Name | Structure | IC50 | Bioassay | Ref. |
---|---|---|---|---|---|
1. | Lonidamine | 4.6 μM | Pyruvate transport inhibition | [86,95] | |
2. | Zaprinast | 321 nM | Pyruvate transport inhibition | [86,98] | |
3. | 7ACC1 | Not reported | Oxygen consumption rate | [34] | |
4. | 7ACC2 | Not reported | Oxygen consumption rate | [34] | |
5. | FACC1 | >1 μM | Pyruvate-driven oxygen consumption | [97] | |
6. | FACC2 | 16.6 nM | Pyruvate-driven oxygen consumption | [97] | |
7. | FACC3 | 147.6 nM | Pyruvate-driven oxygen consumption | [97] | |
8. | Carsalam | Not reported | RESPYR | [34] | |
9. | Clinafloxacin | Not reported | RESPYR | [34] | |
10. | Sarafloxacin | Not reported | RESPYR | [34] | |
11. | Nadifloxacin | Not reported | RESPYR | [34] | |
12. | Pefloxacine | Not reported | RESPYR | [34] | |
13. | Nalidixic Acid | Not reported | RESPYR | [34] | |
14. | Moxifloxican | Not reported | RESPYR | [34] | |
15. | Entacapone | 630.0 nM | Puruvate transport inhibition | [86] | |
16. | MITO-66 | Not Reported | 119 nM | Oxygen | [99] |
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADME | absorption, distribution, metabolism, and excretion |
ALS | amyotrophic lateral sclerosis |
ATP | adenosine triphosphate |
HbA1c | hemoglobin A1c |
HD | Huntington’s disease |
PD | Parkinson’s disease |
PDC | pyruvate dehydrogenase complex |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
IFD | induced fit docking |
OMM | outer mitochondrial membrane |
IMS | inner mitochondrial space |
IMM | inner mitochondrial matrix |
α-KG | α-ketoglutarate |
FAO | fatty acid oxidation |
OAA | oxaloacetate |
ETC | electron transport chain |
GGAA | glucogenic amino acid |
KGAA | ketogenic amino acid |
MCT | monocarboxylate transporter |
MPC | mitochondrial pyruvate carrier |
mTOR | mechanistic target of rapamycin |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
QSAR | quantitative structure–activity relationship |
SAR | structure–activity relationship |
TZD | thiazolidinedione |
VDAC | voltage-dependent anion channel |
References
- Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.-L.; Zamboni, N.; Westermann, B.; Kunji, E.R.; Martinou, J.-C. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Bricker, D.K.; Taylor, E.B.; Schell, J.C.; Orsak, T.; Boutron, A.; Chen, Y.-C.; Cox, J.E.; Cardon, C.M.; Van Vranken, J.G.; Dephoure, N.; et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, drosophila, and humans. Science 2012, 337, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Tavoulari, S.; Thangaratnarajah, C.; Mavridou, V.; Harbour, M.E.; Martinou, J.C.; Kunji, E.R.S. The yeast mitochondrial pyruvate carrier is a hetero dimer in its functional state. EMBO J. 2019, 38, e100785. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, L.; Gill, L.E.; Pyles, K.D.; Kaiho, C.; Kchouk, S.; Finck, B.N.; McCommis, K.S.; Elgendy, B. Identification of novel mitochondrial pyruvate carrier inhibitors by homology modeling and pharmacophore-based Virtual Screening. Biomedicines 2022, 10, 365. [Google Scholar] [CrossRef]
- Xu, L.; Phelix, C.F.; Chen, L.Y. Structural insights into the human mitochondrial pyruvate carrier complexes. J. Chem. Inf. Model. 2021, 61, 5614–5625. [Google Scholar] [CrossRef]
- Le, X.H.; Lee, C.P.; Millar, A.H. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. Plant Cell 2021, 33, 2776–2793. [Google Scholar] [CrossRef]
- Bender, T.; Pena, G.; Martinou, J.C. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J. 2015, 34, 911–924. [Google Scholar] [CrossRef]
- Kühlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015, 13, 89. [Google Scholar] [CrossRef]
- Halestrap, A.P.; Denton, R.M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate (short communication). Biochem. J. 1974, 138, 313–316. [Google Scholar] [CrossRef]
- Gyimesi, G.; Hediger, M.A. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020, 10, 1611. [Google Scholar] [CrossRef]
- Tavoulari, S.; Sichrovsky, M.; Kunji, E.R. Fifty Years of the Mitochondrial Pyruvate Carrier: New Insights into Its Structure, Function, and Inhibition. Acta Physiol. 2023, 238, e14016. [Google Scholar] [CrossRef] [PubMed]
- Papa, S.; Francavilla, A.; Paradies, G.; Meduri, B. The transport of pyruvate in rat liver mitochondria. FEBS Lett. 1971, 12, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Cappel, D.A.; Deja, S.; Duarte JA, G.; Kucejova, B.; Iñigo, M.; Fletcher, J.A.; Fu, X.; Berglund, E.D.; Liu, T.; Elmquist, J.K.; et al. Pyruvate-Carboxylase-Mediated Anaplerosis Promotes Antioxidant Capacity by Sustaining TCA Cycle and Redox Metabolism in Liver. Cell Metab. 2019, 29, 1291–1305.e8. [Google Scholar] [CrossRef]
- Vanderperre, B.; Bender, T.; Kunji ER, S.; Martinou, J.-C. Mitochondrial pyruvate imports and its effects on homeostasis. Curr. Opin. Cell Biol. 2015, 33, 35–41. [Google Scholar] [CrossRef]
- Zangari, J.; Petrelli, F.; Maillot, B.; Martinou, J.C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020, 10, 1068. [Google Scholar] [CrossRef]
- Gray, L.R.; Sultana, M.R.; Rauckhorst, A.J.; Oonthonpan, L.; Tompkins, S.C.; Sharma, A.; Fu, X.; Miao, R.; Pewa, A.D.; Brown, K.S.; et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab. 2015, 22, 669–681. [Google Scholar] [CrossRef]
- Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. CMLS 2014, 71, 2577–2604. [Google Scholar] [CrossRef]
- Arnold, P.K.; Finley LW, S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef]
- Vacanti, N.M.; Divakaruni, A.S.; Green, C.R.; Parker, S.J.; Henry, R.R.; Ciaraldi, T.P.; Murphy, A.N.; Metallo, C.M. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 2014, 56, 425–435. [Google Scholar] [CrossRef]
- Ricci, L.; Stanley, F.U.; Eberhart, T.; Mainini, F.; Sumpton, D.; Cardaci, S. Pyruvate Transamination and Nad Biosynthesis Enable Proliferation of Succinate Dehydrogenase-Deficient Cells by Supporting Aerobic Glycolysis. Cell Death Dis. 2023, 14, 403. [Google Scholar] [CrossRef]
- Zou, S.; Lang, T.; Zhang, B.; Huang, K.; Gong, L.; Luo, H.; Xu, W.; He, X. Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MPC1+/− mice. Biochem. Biophys. Res. Commun. 2018, 495, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Salas-Lloret, D.; González-Prieto, R. Insights in Post-Translational Modifica-tions: Ubiquitin and SUMO. Int. J. Mol. Sci. 2022, 23, 3281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, J.; Zheng, Q. Chemical Proteomics Approaches for Protein Post-Translational Modification Studies. BBA-Proteins Proteom. 2024, 1872, 141017. [Google Scholar] [CrossRef]
- Fernandez-Caggiano, M.; Eaton, P. Heart Failure—Emerging Roles for the Mi-tochondrial Pyruvate Carrier. Cell Death Differ. 2021, 28, 1149–1158. [Google Scholar] [CrossRef]
- Tiwari, A.; Myeong, J.; Hashemiaghdam, A.; Stunault, M.I.; Zhang, H.; Niu, X.; Laramie, M.A.; Sponagel, J.; Shriver, L.P.; Patti, G.J.; et al. Mitochondrial Pyruvate Transport Regulates Presynaptic Metabolism and Neurotransmission. Sci. Adv. 2024, 10, eadp7423. [Google Scholar] [CrossRef]
- Tiwari, A.; Hashemiaghdam, A.; Laramie, M.A.; Maschi, D.; Haddad, T.; Stunault, M.I.; Bergom, C.; Javaheri, A.; Klyachko, V.; Ashrafi, G. Sirtuin3 Ensures the Metabolic Plasticity of Neurotransmission during Glucose Deprivation. J. Cell Biol. 2024, 223, e202305048. [Google Scholar] [CrossRef]
- Hebert, A.S.; Dittenhafer-Reed, K.E.; Yu, W.; Bailey, D.J.; Selen, E.S.; Boersma, M.D.; Carson, J.J.; Tonelli, M.; Balloon, A.J.; Higbee, A.J.; et al. Calorie Restriction and SIRT3 Trigger Global Reprogramming of the Mitochondrial Protein Acetylome. Mol. Cell 2013, 49, 186–199. [Google Scholar] [CrossRef]
- Vadvalkar, S.S.; Matsuzaki, S.; Eyster, C.A.; Giorgione, J.R.; Bockus, L.B.; Kinter, C.S.; Kinter, M.; Humphries, K.M. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: Role of Mitochondrial Pyruvate Carrier 2 (MPC2) Acetylation. J. Biol. Chem. 2017, 292, 4423–4433. [Google Scholar] [CrossRef]
- Bender, T.; Martinou, J.-C. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 2436–2442. [Google Scholar] [CrossRef]
- Ferguson, D.; Eichler, S.J.; Yiew NK, H.; Colca, J.R.; Cho, K.; Patti, G.J.; Shew, T.M.; Lutkewitte, A.J.; Mukherjee, S.; McCommis, K.S.; et al. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol. Metab. 2023, 70, 101694. [Google Scholar] [CrossRef]
- Harrison, S.A.; Alkhouri, N.; Davison, B.A.; Sanyal, A.; Edwards, C.; Colca, J.R.; Lee, B.H.; Loomba, R.; Cusi, K.; Kolterman, O.; et al. Insulin Sensitizer MSDC-0602K in Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled Phase Iib Study. J. Hepatol. 2020, 72, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wan, H.; Wu, L.; Li, Q.; Liu, S.; Duan, S.; Huang, Z.; Zhang, C.; Zhang, B.; Xing, C.; et al. Mitochondrial pyruvate carrier: A potential target for diabetic nephropathy. BMC Nephrol. 2020, 21, 274. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.F.; Dufour, S.; Befroy, D.; Garcia, R.; Shulman, G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004, 350, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Hodges, W.T.; Jarasvaraparn, C.; Ferguson, D.; Griffett, K.; Gill, L.E.; Chen, Y.; Ilagan MX, G.; Hegazy, L.; Elgendy, B.; Cho, K.; et al. Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced obese mice. J. Biol. Chem. 2022, 298, 101554. [Google Scholar] [CrossRef]
- McCommis, K.S.; Hodges, W.T.; Brunt, E.M.; Nalbantoglu, I.; McDonald, W.G.; Holley, C.; Fujiwara, H.; Schaffer, J.E.; Colca, J.R.; Finck, B.N. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 2017, 65, 1543–1556. [Google Scholar] [CrossRef]
- Esler, W.P.; Bence, K.K. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 247–267. [Google Scholar] [CrossRef]
- Gao, R.; Li, Y.; Xu, Z.; Zhang, F.; Xu, J.; Hu, Y.; Yin, J.; Yang, K.; Sun, L.; Wang, Q.; et al. Mitochondrial Pyruvate Carrier 1 Regulates Fatty Acid Synthase Lactylation and Mediates Treatment of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 78, 1800–1815. [Google Scholar] [CrossRef]
- Jacques, V.; Bolze, S.; Hallakou-Bozec, S.; Czarnik, A.W.; Divakaruni, A.S.; Fouqueray, P.; Murphy, A.N.; Van der Ploeg LH, T.; DeWitt, S. Deuterium-Stabilized (R)-Pioglitazone (PXL065) Is Responsible for Pioglitazone Efficacy in NASH yet Exhibits Little to No PPARγ Activity. Hepatol. Commun. 2021, 5, 1412–1425. [Google Scholar] [CrossRef]
- McCommis, K.S.; Finck, B.N. Treating hepatic steatosis and fibrosis by modulating mitochondrial pyruvate metabolism. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 275–284. [Google Scholar] [CrossRef]
- Yin, F.; Sancheti, H.; Patil, I.; Cadenas, E. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease. Free Radic. Biol. Med. 2016, 100, 108–122. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ko, B.; Hensley, C.T.; Jiang, L.; Wasti, A.T.; Kim, J.; Sudderth, J.; Calvaruso, M.A.; Lumata, L.; Mitsche, M.; et al. Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial Pyruvate Transport. Mol. Cell 2014, 56, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sudderth, J.; Dang, T.; Bachoo, R.G.; McDonald, J.G.; DeBerardinis, R.J. Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism or Akt Signaling. Cancer Res. 2009, 69, 7986–7993. [Google Scholar] [CrossRef]
- Tang, B.L. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci. 2019, 9, 238. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Jiang, W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol. Neurobiol. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Colca, J.R.; Finck, B.N. Metabolic Mechanisms Connecting Alzheimer’s and Parkinson’s Diseases: Potential Avenues for Novel Therapeutic Approaches. Front. Mol. Biosci. 2022, 9, 929328. [Google Scholar] [CrossRef]
- Rossi, A.; Rigotto, G.; Valente, G.; Giorgio, V.; Basso, E.; Filadi, R.; Pizzo, P. Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer’s Disease-Related Models. Cell Rep. 2020, 30, 2332–2348.e10. [Google Scholar] [CrossRef]
- Mallet, D.; Goutaudier, R.; Barbier, E.L.; Carnicella, S.; Colca, J.R.; Fauvelle, F.; Boulet, S. Re-Routing Metabolism by the Mitochondrial Pyruvate Carrier Inhibitor MSDC-0160 Attenuates Neurodegeneration in a Rat Model of Parkinson’s Disease. Mol. Neurobiol. 2022, 59, 6170–6182. [Google Scholar] [CrossRef]
- Mansour, H.M.; Fawzy, H.M.; El-Khatib, A.S.; Khattab, M.M. Inhibition of Mitochondrial Pyruvate Carrier 1 by Lapatinib Ditosylate Mitigates Alzheimer’s-like Disease in D-Galactose/Ovariectomized Rats. Neurochem. Int. 2021, 150, 105178. [Google Scholar] [CrossRef]
- Quansah, E.; Peelaerts, W.; Langston, J.W.; Simon, D.K.; Colca, J.; Brundin, P. Targeting Energy Metabolism via the Mitochondrial Pyruvate Carrier as a Novel Approach to Attenuate Neurodegeneration. Mol. Neurodegener. 2018, 13, 28. [Google Scholar] [CrossRef]
- Ceyzériat, K.; Badina, A.M.; Petrelli, F.; Montessuit, S.; Nicolaides, A.; Millet, P.; Savioz, A.; Martinou, J.-C.; Tournier, B.B. Inhibition of the mitochondrial pyruvate carrier in astrocytes reduces amyloid and tau accumulation in the 3xtgad mouse model of alzheimer’s disease. Neurobiol. Dis. 2024, 200, 106623. [Google Scholar] [CrossRef]
- Ghosh, A.; Tyson, T.; George, S.; Hildebrandt, E.N.; Steiner, J.A.; Madaj, Z.; Schulz, E.; Machiela, E.; McDonald, W.G.; Escobar Galvis, M.L.; et al. Mitochondrial Pyruvate Carrier Regulates Autophagy, Inflammation, and Neurodegeneration in Experimental Models of Parkinson’s Disease. Sci. Transl. Med. 2016, 8, 368ra174. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. MTOR Signaling in Aging and Neurodegeneration: At the Crossroad between Metabolism Dysfunction and Impairment of Autophagy. Neurobiol. Dis. 2015, 84, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, J.; Laberge, R.-M. Age-Related Neurodegeneration Prevention through Mtor Inhibition: Potential Mechanisms and Remaining Questions. Curr. Top. Med. Chem. 2015, 15, 2139–2151. [Google Scholar] [CrossRef]
- Divakaruni, A.S.; Wallace, M.; Buren, C.; Martyniuk, K.; Andreyev, A.Y.; Li, E.; Fields, J.A.; Cordes, T.; Reynolds, I.J.; Bloodgood, B.L.; et al. Inhibition of the Mitochondrial Pyruvate Carrier Protects from Excitotoxic Neuronal Death. J. Cell Biol. 2017, 216, 1091–1105. [Google Scholar] [CrossRef]
- Tauffenberger, A.; Fiumelli, H.; Almustafa, S.; Magistretti, P.J. Lactate and Py-ruvate Promote Oxidative Stress Resistance through Hormetic ROS Signaling. Cell Death Dis. 2019, 10, 653. [Google Scholar] [CrossRef]
- Vinokurov, A.Y.; Stelmashuk, O.A.; Ukolova, P.A.; Zherebtsov, E.A.; Abramov, A.Y. Brain Region Specificity in Reactive Oxygen Species Production and Maintenance of Redox Balance. Free Radic. Biol. Med. 2021, 174, 195–201. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Parkinson’s Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Tai, Y.Y.; Cao, F.; Li, M.; Li, P.; Xu, T.; Wang, X.; Yu, Y.; Gu, B.; Yu, X.; Cai, X.; et al. Enhanced Mitochondrial Pyruvate Transport Elicits a Robust ROS Production to Sensi-tize the Antitumor Efficacy of Interferon-γ in Colon Cancer. Redox Biol. 2019, 20, 451–457. [Google Scholar] [CrossRef]
- Feng, J.; Ma, Y.; Chen, Z.; Hu, J.; Yang, Q.; Ding, G. Mitochondrial pyruvate carrier 2 mediates mitochondrial dysfunction and apoptosis in high glucose-treated po-docytes. Life Sci. 2019, 237, 116941. [Google Scholar] [CrossRef]
- Patterson, J.N.; Cousteils, K.; Lou, J.W.; Manning Fox, J.E.; MacDonald, P.E.; Joseph, J.W. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion. J. Biol. Chem. 2014, 289, 13335–13346. [Google Scholar] [CrossRef]
- Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.; Taylor, E. Mitochondrial pyruvate carrier function in health and disease across the lifespan. Biomolecules 2020, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Iglesias, A.; Mañes, S. The importance of mitochondrial pyruvate carrier in cancer cell metabolism and tumorigenesis. Cancers 2021, 13, 1488. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, G.; Bao, Z.; Zhou, Z.; Li, L. Mitochondrial pyruvate carrier 1: A novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell Int. 2021, 21, 288. [Google Scholar] [CrossRef]
- Anderson, A.C. The process of structure-based drug design. Chem. Biol. 2003, 10, 787–797. [Google Scholar] [CrossRef]
- Vyas, V.K.; Ukawala, R.D.; Ghate, M.; Chintha, C. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci. 2012, 74, 1–17. [Google Scholar] [CrossRef]
- Lyu, J.; Kapolka, N.; Gumpper, R.; Alon, A.; Wang, L.; Jain, M.K.; Barros-Álvarez, X.; Sakamoto, K.; Kim, Y.; DiBerto, J.; et al. Alphafold2 Structures Guide Prospective Ligand Discovery. Science 2024, 370, 861–865. [Google Scholar] [CrossRef]
- Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art ligand-based virtual screening. Drug Discov. Today 2011, 16, 372–376. [Google Scholar] [CrossRef]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Guha, R. On exploring structure-activity relationships. Methods Mol. Biol. 2013, 993, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Dudek, A.; Arodz, T.; Galvez, J. Computational methods in developing quantitative structure-activity relationships (QSAR): A Review. Comb. Chem. High Throughput Screen. 2006, 9, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci. 2009, 10, 1978–1998. [Google Scholar] [CrossRef]
- Darnag, R.; Minaoui, B.; Fakir, M. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression. Arab. J. Chem. 2017, 10, S600–S608. [Google Scholar] [CrossRef]
- Yoshimori, A.; Tanoue, T.; Bajorath, J. Integrating the structure–activity relationship matrix method with molecular grid maps and activity landscape models for medicinal chemistry applications. ACS Omega 2019, 4, 7061–7069. [Google Scholar] [CrossRef]
- Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design—A review. Curr. Top. Med. Chem. 2010, 10, 95–115. [Google Scholar] [CrossRef]
- Cheng-Lai, A.; Levine, A. Rosiglitazone: An agent from the thiazolidinedione class for the treatment of type 2 diabetes. Heart Dis. 2000, 2, 326–333. [Google Scholar]
- Hildyard, J.C.W.; Ämmälä, C.; Dukes, I.D.; Thomson, S.A.; Halestrap, A.P. Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier. Biochim. Biophys. Acta (BBA)-Bioenerg. 2005, 1707, 221–230. [Google Scholar] [CrossRef]
- Bourdon, A.K.; Villareal, G.; Perry, G.; Phelix, C.F. Alzheimer’s and parkinson’s disease novel therapeutic target. Int. J. Knowl. Discov. Bioinform. 2017, 7, 68–82. [Google Scholar] [CrossRef]
- Divakaruni, A.S.; Wiley, S.E.; Rogers, G.W.; Andreyev, A.Y.; Petrosyan, S.; Loviscach, M.; Wall, E.A.; Yadava, N.; Heuck, A.P.; Ferrick, D.A.; et al. Thiazolidinediones Are Acute, Specific Inhibitors of the Mitochondrial Pyruvate Carrier. Proc. Natl. Acad. Sci. USA 2013, 110, 5422–5427. [Google Scholar] [CrossRef]
- Wimer, E.A.; Michels, P.A.; Opperdoes, F.R. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. Biochem. J. 1995, 312 Pt 2, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Rauckhorst, A.J.; Pape, D.J.; Colca, J.R.; Taylor, E.B. 768-P: MSDC-0602 Is a Direct Mitochondrial Pyruvate Carrier Inhibitor That Modulates Central Carbon Metabolism in Mice and Humans. Diabetes 2021, 70 (Suppl. S1), 768-P. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Yu, D.; Li, X.; Li, Y.; Long, Y.; Yuan, Y.; Ji, Z.; Zhang, M.; Wen, J.-G.; et al. Application of Mitochondrial Pyruvate Carrier Blocker UK5099 Creates Metabolic Reprogram and Greater Stem-like Properties in LnCap Prostate Cancer Cells in Vitro. Oncotarget 2015, 6, 37758–37769. [Google Scholar] [CrossRef]
- Halestrap, A.P. The Mitochondrial Pyruvate Carrier. Kinetics and Specificity for Substrates and Inhibitors. Biochem. J. 1975, 148, 85–96. [Google Scholar] [CrossRef]
- Tavoulari, S.; Schirris, T.J.J.; Mavridou, V.; Thangaratnarajah, C.; King, M.S.; Jones, D.T.D.; Ding, S.; Fearnley, I.M.; Kunji, E.R.S. Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero dimer. Mol. Metab. 2022, 60, 101469. [Google Scholar] [CrossRef]
- Maram, L.; Michael, J.M.; Politte, H.; Srirama, V.S.; Hadji, A.; Habibi, M.; Kelly, M.O.; Brookheart, R.T.; Finck, B.N.; Hegazy, L.; et al. Advancing mitochondrial therapeutics: Synthesis and pharmacological evaluation of pyrazole-based inhibitors targeting the mitochondrial pyruvate carrier. Eur. J. Med. Chem. 2025, 283, 117150. [Google Scholar] [CrossRef]
- Liu, X.; Flores, A.; Situ, L.; Gu, W.; Ding, H.; Christofk, H.R.; Lowry, W.E.; Jung, M.E. Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss. J. Med. Chem. 2021, 64, 2046–2063. [Google Scholar] [CrossRef]
- Serafimova, I.M.; Pufall, M.A.; Krishnan, S.; Duda, K.; Cohen, M.S.; Maglathlin, R.L.; McFarland, J.M.; Miller, R.M.; Frödin, M.; Taunton, J. Reversible Targeting of Noncatalytic Cysteines with Chemically Tuned Electrophiles. Nat. Chem. Biol. 2012, 8, 471–476. [Google Scholar] [CrossRef]
- Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metab. 2014, 20, 573–591. [Google Scholar] [CrossRef]
- Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as Antidiabetic Agents: A Critical Review. Bioorganic Chem. 2018, 77, 548–567. [Google Scholar] [CrossRef]
- Chen, Z.; Vigueira, P.A.; Chambers, K.T.; Hall, A.M.; Mitra, M.S.; Qi, N.; McDonald, W.G.; Colca, J.R.; Kletzien, R.F.; Finck, B.N. Insulin Resistance and Metabolic Derangements in Obese Mice Are Ameliorated by a Novel Peroxisome Proliferator-Activated Receptor γ-Sparing Thiazolidinedione. J. Biol. Chem. 2012, 287, 23537–23548. [Google Scholar] [CrossRef] [PubMed]
- Touaibia, M.; St-Coeur, P.-D.; Duff, P.; Faye, D.C.; Pichaud, N. 5-Benzylidene, 5-Benzyl, and 3-Benzylthiazolidine-2,4-Diones as Potential Inhibitors of the Mitochondrial Pyruvate Carrier: Effects on Mitochondrial Functions and Survival in Drosophila Melanogaster. Eur. J. Pharmacol. 2021, 913, 174627. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Thang, C.; Bolze, S.; Dewitt, S.; Hallakou-Bozec, S.; Dubourg, J.; Bedossa, P.; Cusi, K.; Ratziu, V.; Grouin, J.-M.; et al. Evaluation of PXL065–Deuterium-Stabilized (r)-Pioglitazone in Patients with Nash: A Phase II Randomized Placebo-Controlled Trial (Destiny-1). J. Hepatol. 2023, 78, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Nancolas, B.; Guo, L.; Zhou, R.; Nath, K.; Nelson, D.S.; Leeper, D.B.; Blair, I.A.; Glickson, J.D.; Halestrap, A.P. The Anti-Tumour Agent Lonidamine Is a Potent Inhibitor of the Mitochondrial Pyruvate Carrier and Plasma Membrane Monocarboxylate Transporters. Biochem. J. 2016, 473, 929–936. [Google Scholar] [CrossRef]
- Du, J.; Cleghorn, W.M.; Contreras, L.; Lindsay, K.; Rountree, A.M.; Chertov, A.O.; Turner, S.J.; Sahaboglu, A.; Linton, J.; Sadilek, M.; et al. Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J. Biol. Chem. 2013, 288, 36129–36140. [Google Scholar] [CrossRef]
- Linden, C.V.; Corbet, C. Killing two birds with one stone: Blocking the mitochondrial pyruvate carrier to inhibit lactate uptake by cancer cells and radiosensitize tumors. Mol. Cell. Oncol. 2018, 5, e1465016. [Google Scholar] [CrossRef]
- Schumacher, T.J.; Gardner, Z.S.; Rumbley, J.; Ronayne, C.T.; Mereddy, V.R. Development of fluoro-7-aminocarboxycoumarin-based mitochondrial pyruvate carrier inhibitors as anticancer agents. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wenes, M.; Lepez, A.; Arinkin, V.; Maundrell, K.; Barabas, O.; Simonetta, F.; Dutoit, V.; Romero, P.; Martinou, J.-C.; Migliorini, D. A Novel Mitochondrial Pyruvate Carrier Inhibitor Drives Stem Cell-like Memory Car T Cell Generation and Enhances Antitumor Efficacy. Mol. Ther. Oncol. 2024, 32, 200897. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politte, H.; Maram, L.; Elgendy, B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules 2025, 15, 223. https://doi.org/10.3390/biom15020223
Politte H, Maram L, Elgendy B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules. 2025; 15(2):223. https://doi.org/10.3390/biom15020223
Chicago/Turabian StylePolitte, Henry, Lingaiah Maram, and Bahaa Elgendy. 2025. "Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications" Biomolecules 15, no. 2: 223. https://doi.org/10.3390/biom15020223
APA StylePolitte, H., Maram, L., & Elgendy, B. (2025). Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules, 15(2), 223. https://doi.org/10.3390/biom15020223