Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems
Abstract
:1. Introduction
1.1. Literature Review
1.2. Methods
2. Techniques: A Brief Description and the Analysis of Their Accuracy
2.1. Mutual Diffusion
2.2. Conductivity Measurements
2.3. Densities and Viscosities
3. Biological Systems of Interest
4. Deliverables
Funding
Conflicts of Interest
References
- Ribeiro, A.C.F.; Natividade, J.J.S.; Esteso, M.A. Differential mutual diffusion coefficients of binary and ternary systems measured by the open-ended conductimetric capillary cell and by the Taylor technique. J. Mol. Liquids 2010, 156, 58–64. [Google Scholar] [CrossRef]
- Veríssimo, L.M.P.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Almeida, S.F.G.; Ramos, M.L.; Burrows, H.D.; Esteso, M.A.; Ribeiro, A.C.F. Transport properties in aqueous ethambutol dihydrochloride. Int. J. Pharm. 2015, 479, 306–311. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Albright, J.G.; Miller, D.G.; Mitchell, J. Diffusion Coefficients in Systems with inclusion-compounds 1 α-cyclodextrin-l-phenylalanine water at 25-degrees-C. J. Phys. Chem. 1990, 94, 6885–6888. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Costantino, L. Diffusion Coefficients of the System α-Cyclodextrin-n-ButylureaWater at 25 °C. J. Solut. Chem. 1995, 24, 1143–1153. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V. Diffusion Coefficients of the Ternary System α-Cyclodextrin Sodium Benzenesulfonate Water at 25 degrees C: The Effect of Chemical Equilibrium and Complex Formation on the Diffusion Coefficients of a Ternary System. J. Phys. Chem. B 1998, 102, 5023–5028. [Google Scholar] [CrossRef]
- Paduano, L.; Vergara, A.; Corradino, M.R.; Vitagliano, V.; Sartorio, R. Equilibrium Properties of the System (Dibutyl L-tartrate)-(α- Cyclodextrin)-(water) at 25 °C, A 1H NMR and UV Study. Phys. Chem. Chem. Phys. 1999, 1, 3627–3631. [Google Scholar] [CrossRef]
- Wesselingh, J.A. Controlling diffusion. J. Control Release 1993, 24, 47–60. [Google Scholar] [CrossRef]
- Zhang, H.; Annunziata, O. Modulation of drug transport properties by multicomponent diffusion in surfactant aqueous solutions. Langmuir 2008, 24, 10680–10687. [Google Scholar] [CrossRef]
- Zhang, H.; Annunziata, O. Diffusion of an Ionic Drug in Micellar Aqueous Solutions. Langmuir 2009, 25, 3425–3434. [Google Scholar] [CrossRef]
- Barros, M.C.; Ribeiro, A.C.; Valente, A.J.; Lobo, V.M.; Cabral, A.M.; Veiga, F.J.; Teijeiro, C.; Esteso, M.A. Mass transport techniques as a tool for a better understanding of the structure of l-dopa aqueous solutions. Int. J. Pharm. 2013, 447, 293–297. [Google Scholar] [CrossRef]
- Barros, M.C.F.; Ribeiro, A.C.F.; Esteso, M.A.; Lobo, V.M.M.; Leaist, D.G. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 degrees C. J. Chem. Thermodyn. 2014, 72, 44–47. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Lobo, V.M.M.; Esteso, M.A. Quaternary diffusion coefficients of β-cyclodextrin + kcl + caffeine + water at 298.15 K using a Taylor dispersion method. J. Chem. Eng. Data 2010, 55, 2610–2612. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Esteso, M.A.; Lobo, V.M.M.; Ribeiro, A.C.F. Multicomponent Diffusion in Cyclodextrin-Drug- Salt-water systems. 2-hydroxypropyl-β-cyclodextrin (HP-βCD) +KCl + theophylline + water, and β-cyclodextrin (βCD) + KCl + theophylline + water. J. Chem. Thermodyn. 2012, 59, 139–143. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Simões, S.M.N.; Lobo, V.M.M.; Valente, A.J.M.; Esteso, M.A. Interaction between copper chloride and caffeine as seen by diffusion at 25 °C and 37 °C. Food Chem. 2010, 118, 847–850. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Esteso, M.A. Diffusion coefficients of the ternary system β-cyclodextrin + caffeine + water at 298.15 K. J. Chem. Eng. Data 2009, 54, 115–117. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Esteso, M.A. Diffusion coefficients of the ternary system (2-hydroxypropyl-β-cyclodextrin plus caffeine plus water) at T = 298.15 K. J. Chem. Thermodyn. 2009, 41, 1324–1328. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Esteso, M.A.; Sartorio, R.; Ortona, O.; Sobral, A.J.N.; Arranja, C.T.; Lobo, V.M.M.; Ribeiro, A.C.F. A comparison between the diffusion properties of theophylline/β-cyclodextrin and theophylline/2- hydroxypropyl-β–cyclodextrin in aqueous systems. J. Chem. Eng. Data 2012, 57, 1881–1886. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Leaist, D.G.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Santos, C.I.A.V.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary diffusion coefficients for aqueous solutions of β-cyclodextrin at temperatures from 298.15 k and 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, A.C.G.; Lobo, V.M.M.; Veiga, F.J.B.; Cabral, A.M.T.D.P.V.; Esteso, M.A.; Ortona, O. Binary mutual diffusion coefficients of isoniazid aqueous solutions at 298.15 and 310.15 K. J. Chem. Eng. Data 2009, 54, 3235–3237. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Valente, A.J.M.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Lobo, V.M.M.; Burrows, H.D.; Esteso, M.A.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin, 2-hydroxypropyl-α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin at temperatures from 298.15K to 312.15 K. J. Chem. Eng. Data 2007, 52, 586–590. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Esteso, M.A.; Lobo, V.M.M.; Burrows, H.D.; Valente, A.J.M.; Santos, C.I.A.V.; Ascenso, O.S.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Some transport properties of γ cyclodextrin aqueous solutions at 298.15 K and 310.15 K. J. Chem. Eng. Data 2008, 53, 755–759. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Barros, M.C.F.; Veríssimo, L.M.P.; Santos, C.I.A.V.; Cabral, A.M.T.D.P.V.; Gaspar, G.D.; Esteso, M.A. Diffusion coefficients of paracetamol in aqueous solutions. J. Chem. Thermodyn. 2012, 54, 97–99. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Azevedo, E.F.G.; Miguel, M.G.; Burrows, H.D. Diffusion coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of sucrose. J. Mol. Liquids 2001, 94, 193–201. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Azevedo, E.F.G.; Miguel, M.G.; Burrows, H.D. Diffusion Coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of b-cyclodextrin. J. Mol. Liquids 2003, 102, 285–292. [Google Scholar] [CrossRef]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids, 2nd ed.; Butterworths: London, UK, 1984. [Google Scholar]
- Chen, L.; Leaist, D.G. Multicomponent Taylor Dispersion Coefficients. J. Solut. Chem. 2014, 43, 2224–2237. [Google Scholar] [CrossRef]
- Wygnal, E.; MacNeil, J.A.; Bowles, J.; Leaist, D.G. Mutual diffusion with equal eigenvalues in solutions of strongly associated surfactants. A new kind of multicomponent diffusion. J. Mol. Liquids 2010, 156, 95–102. [Google Scholar] [CrossRef]
- Ray, G.B.; Leaist, D.G. Measurement of Ternary Mutual Diffusion Coefficients from Ill-Conditioned Taylor Dispersion Profiles in Cases of Identical or Nearly Identical Eigenvalues of the Diffusion Coefficient Matrix. J. Chem. Eng. Data 2010, 55, 1814–1820. [Google Scholar] [CrossRef]
- Everist, M.; MAcNeil, J.A.; Moulins, J.R.; Jonathan, R.; Leaist, D.G. Coupled mutual diffusion in solutions of micelles and solubilizates. Phys. Chem. Chem. Phys. 2019, 11, 8173–8182. [Google Scholar] [CrossRef]
- Callendar, R.; Leaist, D.G. Diffusion coefficients for binary, ternary, and polydisperse solutions from peak-width analysis of Taylor dispersion profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Moulins, J.R.; MacNeil, J.A.; Leaist, D.G. Thermodynamic Stability and the Origins of Incongruent and Strongly Coupled Diffusion in Solutions of Micelles, Solubilizates, and Microemulsions. J. Chem. Eng. Data 2009, 54, 2371–2380. [Google Scholar] [CrossRef]
- MacEwan, K.; Leaist, D.G. Incongruent diffusion (Negative main mutual diffusion coefficient) for a ternary mixed surfactant system. J. Phys. Chem. B 2002, 106, 10296–10300. [Google Scholar] [CrossRef]
- Justino, L.G.; Ramos, M.L.; Abreu, P.E.; Charas, A.; Moirgado, J.; Scherf, U.; Minaev, B.F.; Agren, H.; Burrows, H.D. Structural and Electronic Properties of Poly(9,9-dialkylfluorene)-Based Alternating Copolymers in Solution: An NMR Spectroscopy and Density Functional Theory Study. J. Phys. Chem. C 2013, 115, 17969–17982. [Google Scholar] [CrossRef]
- Ramos, M.L.; De Sousa, A.R.E.; Justino, L.G.; Fonseca, S.M.; Geraldes, C.F.G.C.; Burrows, H.D. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation? Dalton Trans. 2013, 42, 3682–3694. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Valente, A.J.M.; Simões, S.M.N.; Sobral, A.J.F.N.; Ramos, M.L.; Burrows, H.D. Association between ammonium monovanadate and β cyclodextrin as seen by NMR and transport techniques. Polyhedron 2006, 25, 3581–3587. [Google Scholar] [CrossRef]
- Nilsson, M.; Valente, AJ.M.; Olofsson, G.; Soderman, O.; Bonini, M. Thermodynamic and kinetic characterization of host-guest association between bolaform surfactants and α- and β-cyclodextrins. J. Phys. Chem. B 2008, 112, 11310–11316. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.F.; Valente, A.J.M.; Lobo, V.M.M. Transport properties of cyclodextrins. Intermolecular diffusion coefficients. J. Balkan Tribol. Assoc. 2008, 14, 396–404. [Google Scholar]
- Kobayashi, K.; Yamanaka, M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev. 2015, 44, 449–466. [Google Scholar] [CrossRef]
- Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102. [Google Scholar] [CrossRef]
- Iwanek, W.; Wzorek, A. Introduction to the Chirality of Resorcinarenes. Mini Rev. Org. Chem. 2009, 6, 398–411. [Google Scholar] [CrossRef]
- Atwood, J.L.; Szumna, A. Cation-pi interactions in neutral calix[4]resorcinarenes. J. Supramol. Chem. 2003, 2, 479–482. [Google Scholar] [CrossRef]
- Han, X.; Park, J.; Wu, W.; Malagon, A.; Wang, L.; Vargas, E.; Wikramanayake, A.; Houk, K.N.; Leblanc, R.M. A resorcinarene for inhibition of Aβ fibrillation. Chem. Sci. 2017, 8, 2003–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedro-Hernández, L.D.; Martínez-Klimova, E.; Cortez-Maya, S.; Mendonza, S.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and Ibuprofen. Nanomaterials 2017, 7, 163. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.C.F.; Esteso, M.A. Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems. Biomolecules 2018, 8, 178. https://doi.org/10.3390/biom8040178
Ribeiro ACF, Esteso MA. Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems. Biomolecules. 2018; 8(4):178. https://doi.org/10.3390/biom8040178
Chicago/Turabian StyleRibeiro, Ana C. F., and Miguel A. Esteso. 2018. "Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems" Biomolecules 8, no. 4: 178. https://doi.org/10.3390/biom8040178
APA StyleRibeiro, A. C. F., & Esteso, M. A. (2018). Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems. Biomolecules, 8(4), 178. https://doi.org/10.3390/biom8040178