Intrinsically Disordered Proteins and the Janus Challenge
Abstract
:1. Presentation of the Janus Challenge
2. Sciforum Discussion Group
3. Selection Criteria of the Award
- The work needs to meet the standards to be considered as an original research article. Other types of papers (e.g., short communications, commentaries, hypothesis, etc.) will be excluded from the selection process.
- The article needs to be submitted to Biomolecules using the online submission system. The authors will have to include a cover letter indicating that their work aims to be considered for the Janus Challenge Award. A pre-submission may be sent to the Biomolecules Editorial Office or to the corresponding authors of this Editorial.
- The paper will be submitted to peer-review, which will meet the requirements established by the journal Biomolecules.
- The ‘first position’ will be defined on the basis of the submission date of the manuscript reporting the aforementioned results to the journal Biomolecules. If the manuscript is not accepted for publication or is withdrawn, the position ‘first’ will remain available for future submission.
- The IDP or the protein containing intrinsically disordered regions with catalytic activity should have been obtained experimentally, either isolated or synthetized. Theoretical but not experimentally confirmed proteins are not eligible for the award.
- The ‘active site’ (region where the substrate bind and undergo the chemical reaction) of such a primordial protein must be disordered or must have a transient ‘structure’ at the best.
Author Contributions
Conflicts of Interest
References
- Kulkarni, P.; Uversky, V.N. Intrinsically disordered proteins: The dark horse of the dark proteome. Proteomics 2018, 18, e1800061. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, F.; Wickramasinghe, C.; Watkins, J. Viruses from Space and Related Matters; University College Cardiff Press: Cardiff, UK; Dover, NH, USA, 1986; 118p. [Google Scholar]
- Gesteland, R.F.; Cech, T.R.; Atkins, J.F.E. The RNA World, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1999; 709p. [Google Scholar]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Guseva, E.; Zuckermann, R.N.; Dill, K.A. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. Proc. Natl. Acad. Sci. USA 2017, 114, E7460–E7468. [Google Scholar] [CrossRef] [PubMed]
- Ganti, T. Chemoton Theory: Theory of Living System; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Miller, S.L. A production of amino acids under possible primitive earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Urey, H.C. Organic compound synthesis on the primitive earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Crick, F.H. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Wong, J.T. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 1975, 72, 1909–1912. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N. Consensus temporal order of amino acids and evolution of the triplet code. Gene 2000, 261, 139–151. [Google Scholar] [CrossRef]
- Uversky, V.N. A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci. 2013, 22, 693–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mauro, E.; Dunker, A.K.; Trifonov, E.N. Disorder to order, nonlife to life: In the beginning there was a mistake. In Genesis—In the Beginning: Precursors of Life, Chemical Models and Early Biological Evolution; Seekbach, J., Ed.; Springer Science + Business Media: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2012; pp. 415–435. [Google Scholar]
- Payne, J.A.; Schoppet, M.; Hansen, M.H.; Cryle, M.J. Diversity of nature’s assembly lines—Recent discoveries in non-ribosomal peptide synthesis. Mol. Biosyst. 2016, 13, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Rui, Z.; Zhang, W. Engineering biosynthesis of non-ribosomal peptides and polyketides by directed evolution. Curr. Top. Med. Chem. 2016, 16, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, M.; Karimi, A.; Fallah, F.; Akhavan, M.M. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by gram positive bacteria. Cell. Mol. Biol. (Noisy-le-Grand) 2017, 63, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M. A history of poly a sequences: From formation to factors to function. Prog. Nucleic Acid. Res. Mol. Biol. 2002, 71, 285–389. [Google Scholar] [PubMed]
- Takeshita, D.; Yamashita, S.; Tomita, K. Mechanism for template-independent terminal adenylation activity of qbeta replicase. Structure 2012, 20, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, T.; Carmichael, G.G. RNA replication: Function and structure of qbeta-replicase. Annu. Rev. Biochem. 1979, 48, 525–548. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, D.; Tomita, K. Molecular basis for RNA polymerization by qbeta replicase. Nat. Struct. Mol. Biol. 2012, 19, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Schulenburg, C.; Hilvert, D. Protein conformational disorder and enzyme catalysis. Top. Curr. Chem. 2013, 337, 41–67. [Google Scholar] [PubMed]
- Protasova, N.; Kireeva, M.L.; Murzina, N.V.; Murzin, A.G.; Uversky, V.N.; Gryaznova, O.I.; Gudkov, A.T. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure. Protein Eng. 1994, 7, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Kutyshenko, V.P.; Protasova, N.; Rogov, V.V.; Vassilenko, K.S.; Gudkov, A.T. Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci. 1996, 5, 1844–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervushin, K.; Vamvaca, K.; Vogeli, B.; Hilvert, D. Structure and dynamics of a molten globular enzyme. Nat. Struct. Mol. Biol. 2007, 14, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Woycechowsky, K.J.; Choutko, A.; Vamvaca, K.; Hilvert, D. Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 2008, 47, 13489–13496. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, B.; Cremades, N.; Neyroz, P.; Turano, P.; Uversky, V.N.; Ciurli, S. Insights in the (un)structural organization of bacillus pasteurii ureg, an intrinsically disordered GTPase enzyme. Mol. Biosyst. 2012, 8, 220–228. [Google Scholar] [PubMed]
- Palombo, M.; Bonucci, A.; Etienne, E.; Ciurli, S.; Uversky, V.N.; Guigliarelli, B.; Belle, V.; Mileo, E.; Zambelli, B. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci. Rep. 2017, 7, 5977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgia, A.; Borgia, M.B.; Bugge, K.; Kissling, V.M.; Heidarsson, P.O.; Fernandes, C.B.; Sottini, A.; Soranno, A.; Buholzer, K.J.; Nettels, D.; et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 2018, 555, 61–66. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, P.; Uversky, V.N. Intrinsically Disordered Proteins and the Janus Challenge. Biomolecules 2018, 8, 179. https://doi.org/10.3390/biom8040179
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins and the Janus Challenge. Biomolecules. 2018; 8(4):179. https://doi.org/10.3390/biom8040179
Chicago/Turabian StyleKulkarni, Prakash, and Vladimir N. Uversky. 2018. "Intrinsically Disordered Proteins and the Janus Challenge" Biomolecules 8, no. 4: 179. https://doi.org/10.3390/biom8040179
APA StyleKulkarni, P., & Uversky, V. N. (2018). Intrinsically Disordered Proteins and the Janus Challenge. Biomolecules, 8(4), 179. https://doi.org/10.3390/biom8040179