In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Propolis Samples
2.3. Propolis Phenolic Compounds Extraction
2.4. Chemical Characterization of the Samples by LC/DAD/ESI-MSn
2.5. Cytotoxic Activity
2.6. Anti-Inflammatory Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Moroccan Propolis Chemical Characterization
3.2. Cytotoxicity and Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carocho, M.; Ferreira, I. The Role of Phenolic Compounds in the Fight against Cancer—A Review. Anticancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef]
- Watanabe, M.A.E.; Amarante, M.K.; Conti, B.J.; Sforcin, J.M. Cytotoxic constituents of propolis inducing anticancer effects: A review. J. Pharm. Pharmacol. 2011, 63, 1378–1386. [Google Scholar] [CrossRef]
- Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Dis. Today 2012, 17, 1044–1052. [Google Scholar] [CrossRef]
- Karikas, G.A. Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects. J. BUON 2010, 15, 627–638. [Google Scholar]
- Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L.F. Propolis research and the chemistry of plant products. Nat. Prod. Rep. 2011, 28, 925–936. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2016, 8839, 1–49. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Phytochemistry The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef]
- Falcão, S.I.; Tomás, A.; Vale, N.; Gomes, P.; Freire, C.; Vilas-Boas, M. Phenolic quantification and botanical origin of Portuguese propolis. Ind. Crops Prod. 2013, 49, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Burdock, G.A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological Properties and Therapeutic Applications of Propolis. Phytother. Res. 2016, 905, 894–905. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.M.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef]
- Maurício, J.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar]
- Patel, S. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. J. Diet. Suppl. 2015, 13, 1–24. [Google Scholar] [CrossRef]
- Mouse, H.A.; Tilaoui, M.; Jaafari, A.; Aboufatima, R.; Zyad, A. Anticancer properties of Moroccan propolis extracts. Rev. Bras. Farmacogn. 2012, 22, 558–567. [Google Scholar] [CrossRef]
- Touzani, S.; Al-waili, N.; Menyiy, N.E.; Filipic, B.; Pereyra, A.; Arabi, I.E.L.; Al-waili, W.; Lyoussi, B. Chemical analysis and antioxidant content of various propolis samples collected from different regions and their impact on antimicrobial activities. Asian Pac. J. Trop. Med. 2018, 11, 436–442. [Google Scholar]
- Miguel, G.; Doughmi, O.; Aazza, S.; Antunes, D.; Lyoussi, B. Antioxidant, Anti-inflammatory and Acetylcholinesterase Inhibitory Activities of Propolis from Different Regions of Morocco. Food Sci. Biotechnol. 2014, 23, 313–322. [Google Scholar] [CrossRef]
- Alonso-esteban, J.I.; Pinela, J.; Barros, L.; Ana, Ć.; Sokovi, M.; Calhelha, R.C.; Torija-isasa, E.; Sánchez-mata, M.D.C.; Ferreira, I.C.F.R. Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Ind. Crops Prod. 2019, 134, 154–159. [Google Scholar] [CrossRef]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. (Calluna vulgaris L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef]
- Popova, M.; Smail, A.; Bankova, V. Plant sources of propolis: An update from a chemist’s point of view. Nat Prod Commun. 2015, 28–29. [Google Scholar]
- Yang, J.; Liang, Q.; Wang, M.; Je, C.; Smithson, D.; Tu, Y.; Boulos, N.; Jacob, M.R.; Shelat, A.A.; Wu, Y.; et al. UPLC-MS-ELSD-PDA as a Powerful Dereplication Tool to Facilitate Compound Identi fi cation from Small-Molecule Natural Product Libraries. J. Nat. Prod. 2014, 77, 902–909. [Google Scholar] [CrossRef]
- Coelho, J.; Falcão, S.I.; Vale, N.; Almeida-Muradian, L.B.; Vilas-Boas, M. Phenolic composition and antioxidant activity assessment of southeastern and south Brazilian propolis. J. Apic. Res. 2017, 56, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Saleh, K.; Zhang, T.; Fearnley, J.; Watson, D.G. A Comparison of the Constituents of Propolis from Different Regions of the United Kingdom by Liquid Chromatography-high Resolution MassSpectrometry Using a Metabolomics Approach A Comparison of the Constituents of Propolis from Different Regions of the Un. Curr. Metabol. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Andrade, A.; Finger, D.; Schinieder, C.; Morgado, E.; Marçal, P.; Paula, A.; Nunes, N.; Maria, T.; Morais, F.; Goretti, M.; et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. Food Chem. 2011, 126, 1239–1245. [Google Scholar]
- Calhelha, R.C.; Falcão, S.; Queiroz, M.J.R.P.; Vilas-Boas, M.; Ferreira, I.C.F.R. Cytotoxicity of portuguese propolis: The proximity of the in vitro doses for tumor and normal cell lines. BioMed Res. Int. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Premratanachai, P.; Chanchao, C. R eview of the anticancer activities of bee products. Asian Pac. J. Trop. Biomed. 2014, 4, 337–344. [Google Scholar] [CrossRef]
- Alday, E.; Valencia, D.; Carreño, A.L.; Picerno, P.; Lisa, A.; Rastrelli, L.; Robles-zepeda, R.; Hernandez, J. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem. Biol. Interact. 2015, 242, 35–44. [Google Scholar] [CrossRef]
Peak | Proposed Compound | RT (min) | λmax (nm) | [M − H]− m/z | MSn (% Base Peak) | MP1 mg/g Extract | MP2 mg/g Extract | MP3 mg/g Extract | MP4 mg/g Extract |
---|---|---|---|---|---|---|---|---|---|
1 | Caffeic acid a,b | 10.9 | 322 | 179 | MS2 [179]: 135 | 0.31 ± 0.00 | 0.50 ± 0.00 | 0.31 ± 0.00 | 0.30 ± 0.00 |
2 | p-Coumaric acid a,b | 15.8 | 310 | 163 | MS2 [163]: 119 | 0.22 ± 0.00 | 0.21 ± 0.00 | 0.16 ± 0.00 | 0.50 ± 0.00 |
3 | Pinobanksin-5-methyl-ether b,c | 36.9 | 286 | 285 | MS2 [285]: 267 (100), 253 (13), 239 (27) | 0.77 ± 0.01 | |||
4 | Sterubin b,d | 47.3 | 284 | 301 | MS2 [301]: 286 (100), 165 (8); MS3 [286]: 258 (37), 195 (17), 165 (100) | 0.83 ± 0.01 | |||
5 | Pinobanksin b,c | 47.3 | 292 | 271 | MS2 [271]: 253 (100), 225 (26), 151 (10) | 0.83 ± 0.00 | 2.04 ± 0.00 | 1.14 ± 0.03 | 0.83 ± 0.01 |
6 | Dihydrokaempferide b,e | 50.4 | 291 | 301 | MS2 [301]: 283 (100), 151 (22); MS3 [283]: 268 (100), 255 (40), 227 (41) | 0.86 ± 0.01 | |||
7 | Apigenin a,b | 54.9 | 268, 337 | 269 | MS2 [269]: 225 (100), 151 (29) | 0.27 ± 0.00 | |||
8 | Kaempferol-methyl ether b,c | 57.7 | 265, 352 | 299 | MS2 [299]: 284 | 0.15 ± 0.01 | 0.26 ± 0.00 | ||
9 | 3-prenyl-p-coumaric acid b,e | 63.6 | 315 | 231 | MS2 [231]: 187; MS3 [187]: 132 | 0.71 ± 0.00 | |||
10 | Caffeic acid isoprenyl ester a,b | 65.2 | 325 | 247 | MS2 [247]: 179 (100), 135 (13) | 0.34 ± 0.00 | 1.73 ± 0.01 | 1.40 ± 0.00 | |
11 | Caffeic acid isoprenyl ester b,c | 66.3 | 325 | 247 | MS2 [247]: 179 (100), 135 (13) | 0.35 ± 0.01 | 3.00 ± 0.01 | 2.59 ± 0.00 | |
12 | Capillartimisin A b,e | 66.4 | 309 | 315 | MS2 [315]: 285 (60), 271 (100), 241 (67); MS3 [271]: 253 (41), 241 (100) | 0.21 ± 0.00 | |||
13 | Caffeic acid benzyl ester b,c | 66.7 | 325 | 269 | MS2 [269]: 178 (100), 161 (12), 134 (32) | 0.43 ± 0.01 | 1.18 ± 0.03 | 0.90 ± 0.02 | |
14 | Pinocembrin a,b | 67.6 | 289 | 255 | MS2 [255]: 213 (100), 211 (32), 151 (48) | 1.17 ± 0.04 | 3.91 ± 0.15 | 2.80 ± 0.03 | 1.81 ± 0.00 |
15 | Isosakuranetin b,f,g | 68.1 | 292 | 285 | MS2 [285]: 270 (100), 243 (25), 164 (17), 151 (4) MS3 [270]: 242 (41), 165 (100), 164 (70) | 0.92 ± 0.00 | |||
16 | Benzoyl hydroxyphenyl acetic acid b,f | 68.4 | 280 | 257 | MS2 [257]: 213; MS3 [213]: 169 (100), 122 (49) | 0.61 ± 0.02 | |||
17 | Chrysin a,b | 69.6 | 268, 313 | 253 | MS2 [253]: 225 (17), 209 (100), 151 (5) | 0.25 ± 0.08 | 1.99 ± 0.14 | 2.88 ± 0.01 | 0.27 ± 0.03 |
18 | Pinobanksin-3-O-acetate b,c | 69.6 | 292 | 313 | MS2 [313]: 271 (20), 253 (100) | 1.22 ± 0.02 | 6.82 ± 0.06 | 1.01 ± 0.00 | 0.96 ± 0.02 |
19 | Caffeic acid phenylethyl ester a,b | 69.9 | 325 | 283 | MS2 [283]: 179 (100), 135 (22) | 0.37 ± 0.02 | 1.24 ± 0.03 | 0.57 ± 0.00 | |
20 | Galangin a,b | 70.3 | 265, 300sh, 358 | 269 | MS2 [269]: 269 (100), 241 (61), 227 (20), 197 (22), 151 (20) | 1.04 ± 0.02 | 0.35 ± 0.00 | ||
21 | Caffeic acid pentyl ester b | 71.1 | 325 | 249 | MS2 [249]: 179 (100), 161 (47), 135 (32) | 0.62 ± 0.00 | |||
22 | 6-Methoxychrysin b,c | 72.3 | 265, 300sh, 350sh | 283 | MS2 [283]: 269 | 0.88 ± 0.05 | 0.48 ± 0.04 | ||
23 | Pinobanksin-3-O-propionate b,c | 75.2 | 289 | 327 | MS2 [327]: 271 (9), 253 (100) | 1.08 ± 0.01 | |||
24 | Unknown | 79.5 | 239 | 377 | MS2 [377]: 359 (100), 331 (84), 313 (8) | 2.76 ± 0.04 | 4.31 ± 0.03 | ||
25 | Pinobanksin-3-O-butyrate or isobutyrate b,c | 79.9 | 292 | 341 | MS2 [341]: 271 (2), 253 (100) | 2.66 ± 0.01 | |||
26 | Pinobanksin-3-O-pentanoate or 2-methylbutyrate b,c | 84.1 | 292 | 355 | MS2 [355]: 271 (3), 253 (100) | 0.80 ± 0.00 |
NCI-H460 | HeLa | HepG2 | MCF-7 | MM127 | PLP2 | RAW264.7 | |
---|---|---|---|---|---|---|---|
Phenolic acids | 0.786 a | 0.381 | 0.786 a | 0.452 | 0.357 | 0.881 a | 0.357 |
Phenolic acid derivatives | −0.810 a | −0.976 b | −0.762 a | −0.833 a | −0.952 b | −0.500 | −0.905 b |
Dihydroflavonols | 0.024 | −0.381 | 0.024 | −0.310 | −0.357 | 0.429 | −0.381 |
Dihydroflavonols derivatives | −0.405 | −0.810 a | −0.357 | −0.619 | −0.738 a | −0.310 | −0.857 b |
Flavonols | −0.710 a | −0.913 b | −0.710 a | −0.862 b | −0.888 b | −0.317 | −0.875 b |
Flavones | −0.881 b | −0.619 | −0.881 b | −0.690 | −0.690 | −0.548 | −0.500 |
Flavanones | −0.619 | −0.786 a | −0.571 | −0.643 | −0.762 a | −0.167 | −0.667 |
Total phenolics | −0.595 | −0.762 a | −0.548 | −0.667 | −0.786 a | −0.143 | −0.643 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcão, S.I.; Calhelha, R.C.; Touzani, S.; Lyoussi, B.; Ferreira, I.C.F.R.; Vilas-Boas, M. In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules 2019, 9, 315. https://doi.org/10.3390/biom9080315
Falcão SI, Calhelha RC, Touzani S, Lyoussi B, Ferreira ICFR, Vilas-Boas M. In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules. 2019; 9(8):315. https://doi.org/10.3390/biom9080315
Chicago/Turabian StyleFalcão, Soraia I., Ricardo C. Calhelha, Soumaya Touzani, Badiaâ Lyoussi, Isabel C. F. R. Ferreira, and Miguel Vilas-Boas. 2019. "In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties" Biomolecules 9, no. 8: 315. https://doi.org/10.3390/biom9080315
APA StyleFalcão, S. I., Calhelha, R. C., Touzani, S., Lyoussi, B., Ferreira, I. C. F. R., & Vilas-Boas, M. (2019). In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules, 9(8), 315. https://doi.org/10.3390/biom9080315