Going Hands-Free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manipulation System and Suture Needle Magnetization
2.2. Experimental Setup and Sample Preparation
2.3. Modeling
3. Results and Discussion
3.1. Manipulation around Fixed Structures
3.2. Suturing Acrylic Sections
3.3. Penetrating Rat Intestine
3.4. Penetrating Human Tissue
4. Future Work
4.1. Needles in the MagnetoSuture™ System
4.2. The Significance of Lateral Magnetic Fields for Enhancing Translation through Biomaterials
4.3. Magnetic Manipulation Lacks Inherent Haptic Force Feedback
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gudger, E.W. Stitching Wounds with the Mandibles of Ants and Beetles. A Minor Contribution to the History of Surgery. JAMA 1925, 84, 1861–1864. [Google Scholar]
- Shademan, A.; Decker, R.S.; Opfermann, J.D.; Leonard, S.; Krieger, A.; Kim, P.C.W. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 2016, 8, 337ra64. [Google Scholar] [CrossRef]
- Antoniou, S.A.; Pointner, R.; Granderath, F.A. Single-incision laparoscopic cholecystectomy: A systematic review. Surg. Endos. 2011, 25, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.S.; Sakpal, S.V. A Comprehensive review of single-incision laparoscopic surgery (SILS) and natural orifice transluminal endoscopic surgery (NOTES) techniques for cholecystectomy. J. Gastrointest. Surg. 2009, 13, 1733–1740. [Google Scholar] [CrossRef]
- Gandaglia, G.; Ghani, K.R.; Sood, A.; Meyers, J.R.; Sammon, J.D.; Schmid, M.; Varda, B.; Briganti, A.; Montorsi, F.; Sun, M.; et al. Effect of Minimally Invasive Surgery on the Risk for Surgical Site Infections: Results From the National Surgical Quality Improvement Program (NSQIP) Database. JAMA Surg. 2014, 149, 1039–1044. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Gao, C.; Fan, X.; Pang, Y.; Li, T.; Wu, Z.; Xie, H.; He, Q. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 2021, 6, 9519eaaz. [Google Scholar] [CrossRef]
- Mair, L.O.; Nacev, A.; Hilaman, R.; Stepanov, P.Y.; Chowdhury, S.; Jafari, S.; Karlsson, A.J.; Shirtliff, M.E.; Shapiro, B.; Weinberg, I.N. Biofilm disruption with rotating microrods enhances antimicrobial efficacy. J. Magn. Magn. Mater. 2017, 427, 81–84. [Google Scholar] [CrossRef]
- Gultepe, E.; Randhawa, J.S.; Kadam, S.; Yamanaka, S.; Selaru, F.M.; Shin, E.J.; Kalloo, A.N.; Gracias, D.H. Biopsy with Thermally-Responsive Untethered Microtools. Adv. Mater. 2013, 25, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Mair, L.O.; Liu, X.; Dandamudi, B.; Jain, K.; Chowdhury, S.; Weed, J.; Diaz-Mercado, Y.; Weinberg, I.N.; Krieger, A. MagnetoSuture: Tetherless Manipulation of Suture Needles. IEEE Trans. Med. Robot. Bionics 2020, 2, 206–215. [Google Scholar] [CrossRef]
- Faddis, M.N.; Blume, W.; Finney, J.; Hall, A.; Rauch, J.; Sell, J.; Bae, K.T.; Talcott, M.; Lindsay, B. Novel, Magnetically Guided Catheter for Endocardial Mapping and Radiofrequency Catheter Ablation. Circulation 2002, 106, 2980–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, S.; Ouyang, F.; Linder, C. Initial experience with remote catheter ablation using a novel magnetic navigation system. Magnetic remote catheter ablation. ACC Curr. J. Rev. 2004, 13, 51–52. [Google Scholar] [CrossRef]
- Chautems, C.; Tonazzini, A.; Floreano, D.; Nelson, B.J. A variable stiffness catheter controlled with an external magnetic field. IEEE Int. Conf. Intell. Robots Sys. (IROS) 2017, 2017, 181–186. [Google Scholar] [CrossRef]
- Rahmer, J.; Stehning, C.; Gleich, B. Remote Magnetic Actuation Using a Clinical Scale System. PLoS ONE 2018, 3, e0193546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onaizah, O.; Diller, E. Tetherless mobile micro-surgical scissors using magnetic actuation. IEEE Int. Conf. Robot. Autom. (ICRA) 2019, 2019, 894–899. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007–E6015. [Google Scholar] [CrossRef] [Green Version]
- Ilami, M.; Ahmed, R.J.; Petras, A.; Beigzadeh, B.; Marvi, H. Magnetic Needle Steering in Soft Phantom Tissue. Sci. Rep. 2020, 10, 2500. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.J.; Diller, E.; Petruska, A.J. Magnetic methods in robotics. Annu. Rev. Control 2020, 3, 57–90. [Google Scholar] [CrossRef]
- Rivas, H.; Robles, I.; Riquelme, F.; Vivanco, M.; Jiménez, J.; Marinkovic, B.; Uribe, M. Magnetic surgery: Results from first prospective clinical trial in 50 patients. Ann. Surg. 2018, 267, 88. [Google Scholar] [CrossRef]
- Garbin, N.; Di Natali, C.; Buzzi, J.; De Momi, E.; Valdastri, P. Laparoscopic tissue retractor based on local magnetic actuation. J. Med. Devices 2015, 9, 011005. [Google Scholar] [CrossRef] [Green Version]
- Simi, M.; Silvestri, M.; Cavallotti, C.; Vatteroni, M.; Valdastri, P.; Menciassi, A.; Dario, P. Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery. IEEE ASME Trans. Mechatron. 2012, 18, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Mancini, G.J.; Tan, J. Design of a unified active locomotion mechanism for a capsule-shaped laparoscopic camera system. IEEE Int. Conf. Robot. Autom. (ICRA) 2014, 2014, 2449–2456. [Google Scholar] [CrossRef]
- Liu, X.; Mancini, G.J.; Guan, Y.; Tan, J. Design of a magnetic actuated fully insertable robotic camera system for single-incision laparoscopic surgery. IEEE ASME Trans. Mechatron. 2015, 21, 1966–1976. [Google Scholar] [CrossRef]
- Muller, L.; Saeed, M.; Wilson, M.W.; Hetts, S.W. Remote control catheter navigation: Options for guidance under MRI. J. Cardiovasc. Magn. Reson. 2012, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruska, A.J.; Ruetz, F.; Hong, A.; Regli, L.; Sürücü, O.; Zemmar, A.; Nelson, B.J. Magnetic needle guidance for neurosurgery: Initial design and proof of concept. IEEE Int. Conf. Robot. Autom. (ICRA) 2016, 2016, 4392–4397. [Google Scholar] [CrossRef]
- Sitti, M.; Ceylan, H.; Hu, W.; Giltinan, J.; Turan, M.; Yim, S.; Diller, E. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proc. IEEE 2015, 103, 205–224. [Google Scholar] [CrossRef]
- Leong, F.; Garbin, N.; Di Natali, C.; Mohammadi, A.; Thiruchelvam, D.; Oetomo, D.; Valdastri, P. Magnetic surgical instruments for robotic abdominal surgery. IEEE Rev. Biomed. Eng. 2016, 9, 66–78. [Google Scholar] [CrossRef]
- Ishiyama, K.; Sendoh, M.; Yamazaki, A.; Arai, K. Swimming micro-machine driven by magnetic torque. Sens. Actuator A Phys. 2001, 91, 141–144. [Google Scholar] [CrossRef]
- Becker, A.T.; Felfoul, O.; Dupont, P.E. Toward Tissue Penetration by MRI-powered Millirobots Using a Self-Assembled Gauss Gun. IEEE Int. Conf. Robot. Autom. (ICRA) 2015, 2015, 1184–1189. [Google Scholar] [CrossRef]
- Leclerc, J.; Ramakrishnan, A.; Tsekos, N.V.; Becker, A.T. Magnetic Hammer Actuation for Tissue Penetration Using a Millirobot. IEEE Robot. Autom. Lett. 2018, 3, 403–410. [Google Scholar] [CrossRef]
- Erin, O.; Liu, X.; Ge, J.; Mair, L.; Barnoy, Y.; Diaz-Mercado, Y.; Krieger, A. Overcoming the Force Limitations of Magnetic Robotic Surgery: Impact-based Tetherless Suturing. arXiv 2021, arXiv:abs/2107.01504. [Google Scholar]
- Fan, M.; Liu, X.; Jain, K.; Lerner, D.; Mair, L.; Weinberg, I.; Diaz-Mercado, Y.; Krieger, A. Towards Autonomous Control of Magnetic Suture Needles. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 2935–2942. [Google Scholar] [CrossRef]
- Pryor, W.; Barnoy, Y.; Raval, S.; Liu, X.; Mair, L.; Lerner, D.; Erin, O.; Hager, G.D.; Diaz-Mercado, Y.; Krieger, A. Localization and Control of Magnetic Suture Needles in Cluttered Surgical Site with Blood and Tissue. arXiv 2021, arXiv:abs/2105.09481. [Google Scholar]
- Osborn, J.A. Demagnetizing Factors of the General Ellipsoid. Phys. Rev. 1945, 67, 351–357. [Google Scholar] [CrossRef]
- Johnson, R.E. An improved slender-body theory for Stokes flow. J. Fluid Mech. 1980, 99, 411–431. [Google Scholar] [CrossRef]
- Qiu, T.; Gibbs, J.G.; Schamel, D.; Mark, A.G.; Choudhury, U.; Fischer, P. From Nanohelices to Magnetically Actuated Microdrills: A Universal Platform for Some of the Smallest Untethered Microrobotic Systems for Low Reynolds Number and Biological Environments. In Workshop at the IEEE International Conference on Robotics and Automation; Springer: Berlin, Germany, 2013; pp. 53–65. [Google Scholar] [CrossRef]
- Guimaraes, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020, 5, 351–370. [Google Scholar] [CrossRef]
- MacDonald, C.; Friedman, G.; Alamia, J.; Kenneth, B.; Polyak, B. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel. Nanomedicine 2010, 5, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Soheilian, R.; Choi, Y.S.; David, A.E.; Abdi, H.; Maloney, C.E.; Erb, R.M. Toward Accumulation of Magnetic Nanoparticles into Tissues of Small Porosity. Langmuir 2015, 31, 8267–8274. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Mair, L.O.; Weinberg, I.N.; Baker-McKee, J.; Hale, O.; Watson-Daniels, J.; English, B.; Stepanov, P.Y.; Ropp, C.; Atoyebi, O.F.; et al. Magnetic drilling enhances intra-nasal transport of particles into rodent brain. J. Magn. Magn. Mater. 2019, 469, 302–305. [Google Scholar] [CrossRef]
- Badaan, S.; Petrisor, D.; Kim, C.; Mozer, P.; Mazilu, D.; Gruionu, L.; Patriciu, A.; Cleary, K.; Stoianovici, D. Does needle rotation improve lesion targeting? Int. J. Med. Robot. Comput. Assist. Surg. 2011, 7, 138–147. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mair, L.O.; Chowdhury, S.; Liu, X.; Erin, O.; Udalov, O.; Raval, S.; Johnson, B.; Jafari, S.; Cappelleri, D.J.; Diaz-Mercado, Y.; et al. Going Hands-Free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo. Robotics 2021, 10, 129. https://doi.org/10.3390/robotics10040129
Mair LO, Chowdhury S, Liu X, Erin O, Udalov O, Raval S, Johnson B, Jafari S, Cappelleri DJ, Diaz-Mercado Y, et al. Going Hands-Free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo. Robotics. 2021; 10(4):129. https://doi.org/10.3390/robotics10040129
Chicago/Turabian StyleMair, Lamar O., Sagar Chowdhury, Xiaolong Liu, Onder Erin, Oleg Udalov, Suraj Raval, Benjamin Johnson, Sahar Jafari, David J. Cappelleri, Yancy Diaz-Mercado, and et al. 2021. "Going Hands-Free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo" Robotics 10, no. 4: 129. https://doi.org/10.3390/robotics10040129
APA StyleMair, L. O., Chowdhury, S., Liu, X., Erin, O., Udalov, O., Raval, S., Johnson, B., Jafari, S., Cappelleri, D. J., Diaz-Mercado, Y., Krieger, A., & Weinberg, I. N. (2021). Going Hands-Free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo. Robotics, 10(4), 129. https://doi.org/10.3390/robotics10040129