Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robotic Cell Setup
2.2. Specimen
2.3. Process
2.4. Reference Geometry Measurement System
2.5. Angle Measurement Data
2.6. Force Measurement Data
3. Results
3.1. Repeatability
3.2. Model Selection
4. Discussion and Outlook
5. Conclusions and Future Work
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
iRoRoFo | Intelligent robotic rollforming |
MAE | Mean absolute error |
ML | Machine learning |
MSE | Mean squared error |
RoRoFo | Robotic rollforming |
RSI | (KUKA) Robot sensor interface |
SVM | Support vector machine |
TPE | Tree-structured Parzen estimator |
References
- Guo, X. (Ed.) Flexible Metal Forming Technologies. Principles, Process and Equipment; Springer: Singapore, 2022. [Google Scholar]
- DIN 8580:2022-12; Manufacturing Processe-Terms and Definitions, Division. Deutsches Institut fuer Normung: Berlin, Germany, 2022. [CrossRef]
- Halmos, G.T. Roll Forming Handbook, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Flexible Rollforming (3D Rollforming). Available online: https://www.datam.de/en/products/automation-division/flexible-rollforming (accessed on 3 January 2022).
- Sedlmaier, A.; Dietl, T. Recent Advances in the Industrial Application of Flexible (3D) Roll Forming for Automotive Parts by the Use of Modern CAE Tools. In Proceedings of the 34th International Deep Drawing Research Group, Shanghai, China, 31 May–3 June 2015; pp. 633–640. [Google Scholar]
- Sedlmaier, A.; Dietl, T. 3D roll forming center for automotive applications. Procedia Manuf. 2018, 15, 767–774. [Google Scholar] [CrossRef]
- Your Partner in Advanced Roll Forming, Both Traditional and Flexible 3D. Available online: https://www.ortic.se/ (accessed on 3 January 2022).
- Abeyrathna, B.; Rolfe, B.; Harrasser, J.; Sedlmaier, A.; Ge, R.; Pan, L.; Weiss, M. Prototyping of automotive components with variable width and depth. J. Phys. Conf. Ser. 2017, 896, 012092. [Google Scholar] [CrossRef] [Green Version]
- Richter, K.; Gerstmann, T.; Richter-Trummer, V.; Ahrens, A.; Abdolmohammadi, T.; Werner, M.; Kräusel, V. Flexible production of profile components from batch size 1-Robotic rollforming. WT Werkstattstechn. 2021, 10, 709–711. [Google Scholar] [CrossRef]
- Dixit, P.; Dixit, U.S. (Eds.) Metal Forming and Machining Processes. In Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes; Springer: London, UK, 2008; pp. 1–32. [Google Scholar] [CrossRef]
- Moreira, P.M.G.P.; Richter-Trummer, V.; de Castro, P.M.S.T. Lightweight Stiffened Panels Fabricated Using Emerging Fabrication Technologies: Fatigue Behaviour. In Structural Connections for Lightweight Metallic Structures. Advanced Structural Materials; Moreira, P., da Silva, L., de Castro, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 8. [Google Scholar] [CrossRef]
- Kasaei, M.M.; Naeini, H.M.; Liaghat, G.H.; Silva, C.M.A.; Silva, M.B.; Martins, P.A.F. Revisiting the wrinkling limits in flexible roll forming. J. Strain Anal. Eng. Des. 2015, 7, 528–541. [Google Scholar] [CrossRef]
- Rezaei, R.; Naeini, H.M.; Tafti, R.A.; Kasaei, M.M.; Mohammadi, M.; Abbaszadeh, B. Effect of bend curve on web warping in flexible roll formed profiles. Int. J. Adv. Manuf. Technol. 2017, 93, 3625–3636. [Google Scholar] [CrossRef]
- Abeyrathna, B.; Ghanei, S.; Rolfe, B.; Taube, R.; Weiss, M. Optimising part quality in the flexible roll forming of an automotive component. Int. J. Adv. Manuf. Technol. 2022, 118, 3361–3373. [Google Scholar] [CrossRef]
- Abeyrathna, B.; Rolfe, B.; Hodgson, P.; Weiss, M. A first step towards a simple in-line shape compensation routine for the roll forming of high strength steel. Int. J. Mater. Form. 2016, 3, 423–434. [Google Scholar] [CrossRef]
- Abeyrathna, B.; Rolfe, B.; Weiss, M. A first step towards an in-line shape compensation for UHSS roll forming. IOP Conf. Ser. Mater. Sci. Eng. 2019, 651, 012063. [Google Scholar] [CrossRef]
- Richter-Trummer, V.; Koch, D.; Witte, A.; dos Santos, J.; de Castro, P. Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination. J. Adv. Manuf. Technol. 2013, 68, 2271–2281. [Google Scholar] [CrossRef]
- Henkelmann, M. Entwicklung Einer Innovativen Kalbrierstrecke zur Erhöhung der Profilgenauigkeit bei der Verarbeitung von Höher-und Höchstfesten Stählen. Ph.D. Thesis, Technical University Darmstadt, Darmstadt, Germany, 2008. [Google Scholar]
- Groche, P.; Beiter, P.; Henkelmann, M. Prediction and inline compensation of springback in roll forming of high and ultra-high stength steels. Prod. Eng. Res. Dev. 2008, 4, 401–407. [Google Scholar] [CrossRef]
- Profilrichten–Profilrichten beim Rollformen durch Partielles Auswalzen. Available online: https://www.ptu.tu-darmstadt.de/mu_forschung/mu_verfahrensentwicklung_1/menu_ve_aktuelleforschungsprojekte_1/profilrichten_beim_rollformen_durch_partielles_auswalzen/index.de.jsp (accessed on 13 February 2023).
- Naieni, H.M.; Tafti, R.A.; Tajdari, M. Using Artificial Neural Networks for Estimation of Springback in Cold Roll Forming. Amirkabir J. Mech. Eng. 2011, 42, S29–S37. [Google Scholar] [CrossRef]
- Park, J.-W.; Kang, B.-S. Comparison between regression and artificial neural network for prediction model of flexibly reconfigurable roll forming process. Int. J. Adv. Manuf. Technol. 2019, 101, S3081–S3091. [Google Scholar] [CrossRef]
- Park, J.-W.; Yoon, J.; Lee, K.; Kim, J.; Kang, B.-S. Rapid prediction of longitudinal curvature obtained by flexibly reconfigurable roll forming using response surface methodology. Int. J. Adv. Manuf. Technol. 2017, 991, S3371–S3384. [Google Scholar] [CrossRef]
- KUKA KR 150 R2700 Extra. Available online: https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000182737_en.pdf (accessed on 6 December 2022).
- KUKA.RobotSensorInterface. Available online: https://www.kuka.com/en-at/products/robotics-systems/software/application-software/kuka_robotsensorinterface (accessed on 6 December 2022).
- Bilstein ZE 700. Available online: https://www.bilstein-gruppe.de/cms/wp-content/uploads/2016/12/4_BILSTEIN_ZE-700.pdf (accessed on 11 December 2022).
- ZE Steels Special Bilstein Grades. Available online: https://www.bilstein-gruppe.de/en/portfolio/bilstein-ze-sorten/ (accessed on 11 December 2022).
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv 2019, arXiv:1907.10902v1. [Google Scholar]
- Deng, J.; Deng, Y.; Cheong, K.H. Combining conflicting evidence based on Pearson correlation coefficient and weighted graph. Int. J. Intell. Syst. 2021, 36, S7443–S7460. [Google Scholar] [CrossRef]
- Abdolmohammadi, T.; Ahrens, A.; Richter-Trummer, V.; Todtermuschke, M. Data preparation for AI-based robot control. In Proceedings of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME’22 Virtual Conference, Naples, Italy, 13–15 July 2023. in print. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Curran Associates Inc.: Red Hook, NY, USA, 2011; pp. 2546–2554. [Google Scholar] [CrossRef]
Alloying element | C | Si | Mn | P | S | Al | Nb |
wt.-perc. | 0.06 | 0.27 | 0.81 | 0.011 | 0.004 | 0.062 | 0.029 |
Alloying element | Ti | Cr | Cu | Ni | Mo | N | Fe |
wt.-perc. | 0.072 | 0.05 | 0.03 | 0.05 | 0.01 | 0.006 | balance |
Hyperparameter | Search Space |
---|---|
Number of layers | 4–40 |
Number of neurons in each layer | 2–500 |
Activation function | relu, tanh, sigmoid, selu, elu |
Dropout | 0–1 |
Activation function of last layer | tanh, sigmoid, selu, elu |
Optimizer | sgd, RMSprop, Adam, Adadelta |
Adagrad, Adamax, Nadam, Ftrl | |
Learning rate | 0.00001–0.1 |
Batch size | 1–384 |
Epochs | 20–500 |
Algorithm | MAE | MSE |
---|---|---|
Random forest regression | 0.95 | 0.85 |
Support vector regression | 0.73 | 0.66 |
Neural network | 0.42 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdolmohammadi, T.; Richter-Trummer, V.; Ahrens, A.; Richter, K.; Alibrahim, A.; Werner, M. Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming. Robotics 2023, 12, 33. https://doi.org/10.3390/robotics12020033
Abdolmohammadi T, Richter-Trummer V, Ahrens A, Richter K, Alibrahim A, Werner M. Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming. Robotics. 2023; 12(2):33. https://doi.org/10.3390/robotics12020033
Chicago/Turabian StyleAbdolmohammadi, Tina, Valentin Richter-Trummer, Antje Ahrens, Karsten Richter, Alaa Alibrahim, and Markus Werner. 2023. "Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming" Robotics 12, no. 2: 33. https://doi.org/10.3390/robotics12020033
APA StyleAbdolmohammadi, T., Richter-Trummer, V., Ahrens, A., Richter, K., Alibrahim, A., & Werner, M. (2023). Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming. Robotics, 12(2), 33. https://doi.org/10.3390/robotics12020033