Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics
Abstract
:1. Introduction
2. Related Work
2.1. The Software-Hardware Synergy Balance
2.2. The Heterogenous Reality Gap
2.3. The Continuous Production of Robots
2.4. Summary
3. Framework for the Hardware-Software Integration in Evolutionary Robotics
3.1. The Software-Hardware Synergy Balance
- The physical robot is evaluated 10 times using the controller from its digital twin; this is referred to as sim-to-real.
- Next, 80 controllers are sampled locally around the controller from the digital twin, a step known as local random sampling (LRS). LRS uses a multivariate normal distribution centred on the controller from the digital twin, with a variance of 0.1.
- Finally, the best controller from the LRS is re-evaluated 10 times. The fitness of the physical robot is the average fitness value of these 10 re-evaluations.
3.2. Autonomous Fabrication of Robots
3.3. The Heterogeneous Reality Gap
4. Discussion
4.1. Software-Hardware Synergy
- Fitness in hardware score without learning: the same copy of the controller of the digital twin is used with the physical twin and the fitness from the physical twin is used as a score during selection.
- Transferability score: The difference between digital twin fitness and physical twin fitness (or the reality gap) is used as a score.
- Fitness post-learning: the controller from the digital twin goes through a learning process in the physical twin to adapt the controller to the physical environment. Then the fitness post-learning is used as a score.
- Learnability score: The difference between the physical twin fitness pre-learning and the physical fitness post-learning is used as a score.
4.2. Autonomous Fabrication of Robots
- Further parallelisation: experiments can be run on more platforms across different institutions.
- Platform design: the robot platform can be redesigned; for example, by reducing the robot’s size.
- Manufacturing process: while 3D printing is time-consuming, alternative manufacturing processes can reduce fabrication time, though each introduces trade-offs. For instance, using a laser cutter increases the complexity of autonomous robot assembly. Resin casting requires mould changes, and CNC machining generates more material waste and limits design flexibility due to the constraints of cutting tools.
- Reused pre-printed parts: the main body of the robot can be 3D printed into multiple parts instead of a single piece. If the same piece is needed for a second robot then this piece can reused.
4.3. The Heterogeneous Reality Gap
5. Conclusions
- Autonomous Fabrication of Robots: To increase the throughput of robot production, autonomous fabrication is essential, as ER typically requires large robot populations. However, it is crucial to consider the time required for fabrication and the system’s ability to reliably produce robots with diverse shapes, while minimizing faults during assembly.
- Soft-Hardware synergy: Effective integration of software and hardware is vital to leverage the advantages of both simulated and physical evolution. Careful consideration must be given to parameter design, as selection parameters will significantly influence the evolutionary process. Therefore, understanding and choosing the appropriate metrics is critical.
- The heterogenous reality gap: The reality gap—differences between simulated and physical environments—will vary from robot to robot due to differences in body design and behaviour. As a result, a learning mechanism is needed to adapt each robot’s controller to its new environment. The downside is that this will increase the number of evaluations across populations, leading to longer overall evaluation times.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARE | The Autonomous Robot Evolution project |
ER | Evolutionary Robotics |
LRS | Local random sampling |
STR | Sim-to-real |
References
- Eiben, A.E.; Hart, E.; Timmis, J.; Tyrrell, A.M.; Winfield, A.F. Towards autonomous robot evolution. In Software Engineering for Robotics; Springer: Cham, Switzerland, 2021; pp. 29–51. [Google Scholar]
- Lund, H.H.; Hallam, J. Evolving sufficient robot controllers. In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 495–499. [Google Scholar]
- Nolfi, S.; Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Walker, J.; Garrett, S.; Wilson, M. Evolving controllers for real robots: A survey of the literature. Adapt. Behav. 2003, 11, 179–203. [Google Scholar] [CrossRef]
- Bongard, J. Evolutionary Robotics. Commun. ACM 2013, 56, 74–85. [Google Scholar] [CrossRef]
- Vargas, P.; Paolo, E.D.; Harvey, I.; Husbands, P. (Eds.) The Horizons of Evolutionary Robotics; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Cheney, N.; Bongard, J.; Lipson, H. Evolving soft robots in tight spaces. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; pp. 935–942. [Google Scholar]
- Brodbeck, L.; Hauser, S.; Iida, F. Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 2015, 10, e0128444. [Google Scholar] [CrossRef] [PubMed]
- Jelisavcic, M.; De Carlo, M.; Hupkes, E.; Eustratiadis, P.; Orlowski, J.; Haasdijk, E.; Auerbach, J.E.; Eiben, A.E. Real-world evolution of robot morphologies: A proof of concept. Artif. Life 2017, 23, 206–235. [Google Scholar] [CrossRef] [PubMed]
- Kriegman, S.; Blackiston, D.; Levin, M.; Bongard, J. A scalable pipeline for designing reconfigurable organisms. Proc. Natl. Acad. Sci. USA 2020, 117, 1853–1859. [Google Scholar] [CrossRef]
- Nordmoen, J.; Veenstra, F.; Ellefsen, K.O.; Glette, K. Quality and diversity in evolutionary modular robotics. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 2109–2116. [Google Scholar]
- Cully, A.; Clune, J.; Tarapore, D.; Mouret, J.B. Robots that can adapt like animals. Nature 2015, 521, 503–507. [Google Scholar] [CrossRef]
- Lipson, H.; Pollack, J.B. Automatic design and manufacture of robotic lifeforms. Nature 2000, 406, 974–978. [Google Scholar] [CrossRef]
- Hiller, J.; Lipson, H. Automatic design and manufacture of soft robots. IEEE Trans. Robot. 2011, 28, 457–466. [Google Scholar] [CrossRef]
- Auerbach, J.; Aydin, D.; Maesani, A.; Kornatowski, P.; Cieslewski, T.; Heitz, G.; Fernando, P.; Loshchilov, I.; Daler, L.; Floreano, D. Robogen: Robot generation through artificial evolution. In Artificial Life Conference Proceedings 14; MIT Press: Cambridge, MA, USA, 2014; pp. 136–137. [Google Scholar]
- Samuelsen, E.; Glette, K. Real-world reproduction of evolved robot morphologies: Automated categorization and evaluation. In Applications of Evolutionary Computation, Proceedings of the 18th European Conference, EvoApplications 2015, Copenhagen, Denmark, 8–10 April 2015; Proceedings 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 771–782. [Google Scholar]
- Kriegman, S.; Walker, S.; Shah, D.; Levin, M.; Kramer-Bottiglio, R.; Bongard, J. Automated shapeshifting for function recovery in damaged robots. In Proceedings of the Robotics: Science and Systems (2019), Freiburg im Breisgau, Germany, 22–26 June 2019. [Google Scholar]
- Moreno, R.; Faiña, A. EMERGE modular robot: A tool for fast deployment of evolved robots. Front. Robot. AI 2021, 8, 699814. [Google Scholar] [CrossRef]
- Matarić, M.; Cliff, D. Challenges in evolving controllers for physical robots. Robot. Auton. Syst. 1996, 19, 67–83. [Google Scholar] [CrossRef]
- Sofge, D.; Potter, M.A.; Bugajska, M.D.; Schultz, A.C. Challenges and opportunities of evolutionary robotics. arXiv 2007, arXiv:0706.0457. [Google Scholar]
- Silva, F.; Duarte, M.; Correia, L.; Oliveira, S.M.; Christensen, A.L. Open issues in evolutionary robotics. Evol. Comput. 2016, 24, 205–236. [Google Scholar] [CrossRef] [PubMed]
- Jakobi, N.; Husbands, P.; Harvey, I. Noise and the reality gap: The use of simulation in evolutionary robotics. In Advances in Artificial Life, Proceedings of the Third European Conference on Artificial Life, Granada, Spain, 4–6 June 1995; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 1995; pp. 704–720. [Google Scholar]
- Mouret, J.B.; Chatzilygeroudis, K. 20 Years of reality gap: A few thoughts about simulators in evolutionary robotics. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; pp. 1121–1124. [Google Scholar]
- Hale, M.F.; Buchanan, E.; Winfield, A.F.; Timmis, J.; Hart, E.; Eiben, A.E.; Angus, M.; Veenstra, F.; Li, W.; Woolley, R.; et al. The ARE robot fabricator: How to (re)produce robots that can evolve in the real world. In Proceedings of the ALIFE 2019: The 2019 Conference on Artificial Life, Online, 29 July–2 August 2019; pp. 95–102. [Google Scholar]
- Groover, M.P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Angus, M.; Buchanan, E.; Le Goff, L.K.; Hart, E.; Eiben, A.E.; De Carlo, M.; Winfield, A.F.; Hale, M.F.; Woolley, R.; Timmis, J.; et al. Practical hardware for evolvable robots. Front. Robot. AI 2023, 10, 1206055. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zong, C.; Pancheri, F.; Chen, T.; Lueth, T.C. Design of topology optimized compliant legs for bio-inspired quadruped robots. Sci. Rep. 2023, 13, 4875. [Google Scholar] [CrossRef] [PubMed]
- Koos, S.; Mouret, J.B.; Doncieux, S. The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 2012, 17, 122–145. [Google Scholar] [CrossRef]
- Glette, K.; Johnsen, A.L.; Samuelsen, E. Filling the reality gap: Using obstacles to promote robust gaits in evolutionary robotics. In Proceedings of the 2014 IEEE International Conference on Evolvable Systems, Orlando, FL, USA, 9–12 December 2014; pp. 181–186. [Google Scholar]
- Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real loop: Adapting simulation randomization with real world experience. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8973–8979. [Google Scholar]
- Salvato, E.; Fenu, G.; Medvet, E.; Pellegrino, F.A. Crossing the reality gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access 2021, 9, 153171–153187. [Google Scholar] [CrossRef]
- Cellucci, D.; MacCurdy, R.; Lipson, H.; Risi, S. 1D printing of recyclable robots. IEEE Robot. Autom. Lett. 2017, 2, 1964–1971. [Google Scholar] [CrossRef]
- Liao, T.; Wang, G.; Yang, B.; Lee, R.; Pister, K.; Levine, S.; Calandra, R. Data-efficient learning of morphology and controller for a microrobot. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2488–2494. [Google Scholar]
- Vujovic, V.; Rosendo, A.; Brodbeck, L.; Iida, F. Evolutionary developmental robotics: Improving morphology and control of physical robots. Artif. Life 2017, 23, 169–185. [Google Scholar] [CrossRef]
- Moreno, R.; Liu, C.; Faina, A.; Hernandez, H.; Gomez, J. The EMeRGE modular robot, an open platform for quick testing of evolved robot morphologies. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; pp. 71–72. [Google Scholar]
- Alba, E.; Tomassini, M. Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 2002, 6, 443–462. [Google Scholar] [CrossRef]
- Le Goff, L.K.; Buchanan, E.; Hart, E.; Eiben, A.E.; Li, W.; De Carlo, M.; Winfield, A.F.; Hale, M.F.; Woolley, R.; Angus, M.; et al. Morpho evolution with learning using a controller archive as an inheritance mechanism. IEEE Trans. Cogn. Dev. Syst. 2022, 15, 507–517. [Google Scholar] [CrossRef]
- Luo, J.; Stuurman, A.C.; Tomczak, J.M.; Ellers, J.; Eiben, A.E. The effects of learning in morphologically evolving robot systems. Front. Robot. AI 2022, 9, 797393. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yao, W.; Wang, H.; Peng, W.; Yang, Y. Rapidly evolving soft robots via action inheritance. IEEE Trans. Evol. Comput. 2023. [Google Scholar] [CrossRef]
- Holzinger, A.; Blanchard, D.; Bloice, M.; Holzinger, K.; Palade, V.; Rabadan, R. Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learning techniques. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, 11–14 August 2014; Volume 2, pp. 449–453. [Google Scholar]
- Harada, K.; Iba, H. Lamarckian Co-design of Soft Robots via Transfer Learning. In Proceedings of the Genetic and Evolutionary Computation Conference, Melbourne, Australia, 14–18 July 2024; pp. 832–840. [Google Scholar]
1 RoboFab | 1 RoboFab | 2 RoboFabs | |
---|---|---|---|
1 3D Printer | 3 3D Printer | 3 3D Printer | |
Robots per Day | 2 | 6 | 12 |
20 | 2 weeks | 1 week | 4 days |
100 | 10 weeks | 4 weeks | 2 weeks |
200 | 5 months | 7 weeks | 4 weeks |
1000 | 23 months | 9 months | 4 months |
Success or Error Fault Type | Number of Robots |
---|---|
Success | 11/20 |
Cable fault | 3/20 |
Gripping fault | 4/20 |
Assembly fixture fault | 1/20 |
Communication fault | 1/20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchanan, E.; Le Goff, L.K.; Hale, M.F.; Hart, E.; Eiben, A.E.; De Carlo, M.; Angus, M.; Woolley, R.; Timmis, J.; Winfield, A.F.; et al. Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics. Robotics 2024, 13, 157. https://doi.org/10.3390/robotics13110157
Buchanan E, Le Goff LK, Hale MF, Hart E, Eiben AE, De Carlo M, Angus M, Woolley R, Timmis J, Winfield AF, et al. Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics. Robotics. 2024; 13(11):157. https://doi.org/10.3390/robotics13110157
Chicago/Turabian StyleBuchanan, Edgar, Léni K. Le Goff, Matthew F. Hale, Emma Hart, Agoston E. Eiben, Matteo De Carlo, Mike Angus, Robert Woolley, Jon Timmis, Alan F. Winfield, and et al. 2024. "Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics" Robotics 13, no. 11: 157. https://doi.org/10.3390/robotics13110157
APA StyleBuchanan, E., Le Goff, L. K., Hale, M. F., Hart, E., Eiben, A. E., De Carlo, M., Angus, M., Woolley, R., Timmis, J., Winfield, A. F., & Tyrrell, A. M. (2024). Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics. Robotics, 13(11), 157. https://doi.org/10.3390/robotics13110157