Methodology for Integrated Design Optimization of Actuation Systems for Exoskeletons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Example
2.2. Modeling
2.2.1. Human Body Model
2.2.2. Ground Reaction Forces and Torques
2.2.3. External Loads
2.2.4. Exoskeleton Model
2.2.5. Parametric Formulation of the Actuation System
2.2.6. Electromagnetic Actuator Model
2.2.7. Actuator Operating Limits
2.2.8. Mechanical Actuator Model
2.2.9. Cable Routing
2.2.10. Direct Actuator Coupling
2.2.11. Battery
2.2.12. Model Coupling
2.2.13. Models in Methodology
2.3. Control
Integration of Control in the Model
2.4. Optimization
2.5. Specific Actuator Model
2.5.1. Cable Length
2.5.2. Actuation System Parameter Vector
2.5.3. Constraints
2.5.4. Numerical Implementation
3. Results
3.1. First Phase: Determination of Support Torques
3.2. Second Phase: Actuation System Optimization
3.3. Third Phase: Actuation System Validation
4. Discussion and Conclusions
4.1. Comparison with an Approach Derived from Previous Studies
- A description of coupling between human and exoskeleton models based on rigid coupling assumption [10]. For this, the coupling description in Equation (27) is reduced, such that
- An actuator model based on force constant and simplified voltage equation [14]. The electromechanical model in Equation (9) is replaced with a generalized force:Based on this and Equation (16), the maximum current is calculated.
- Neglect of dynamic influences from exoskeleton on the human body in the control approach [10]. The calculation of the desired generalized actuator forces is simplified asWhen an actuator is at its stroke limit, i.e., when Formula (36) is true,
- Constraints in the minimization problem in Formula (39) change. Due to the simplified definition of the electromechanical model in Equation (69), it must now be constrained that the mover fully covers the active section of the stator, i.e.,Further, it is necessary to adapt the generalized force constraint, i.e., the last line of Formula (39) is changed toTo find a solution for the modified minimization problem, it is required to reduce the support torque requirement:
4.2. Assumptions
4.3. Conclusion and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOF | degree of freedom |
RMS | root mean square |
No. | number |
BLDC | brushless direct-current machine |
GRF&T | ground reaction force and torque |
References
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Ferris, D.P. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Fathy, H.K.; Reyer, J.A.; Papalambros, P.Y.; Ulsov, A.G. On the coupling between the plant and controller optimization problems. In Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148). IEEE, Arlington, VA, USA, 25–27 June 2001; Volume 3, pp. 1864–1869. [Google Scholar]
- Seifried, R. Dynamics of Underactuated Multibody Systems; Springer International Publishing: Cham, Switzerland, 2014; Volume 205. [Google Scholar]
- Geijtenbeek, T.; van de Panne, M.; van der Stappen, A.F. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 2013, 32, 1–11. [Google Scholar] [CrossRef]
- Bergonti, F.; Nava, G.; Wüest, V.; Paolino, A.; L’Erario, G.; Pucci, D.; Floreano, D. Co-Design Optimisation of Morphing Topology and Control of Winged Drones. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Yokohama, Japan, 13–17 May 2024; pp. 8679–8685. [Google Scholar]
- Roos, F. Towards a Methodology for Integrated Design of Mechatronic Servo Systems. Ph.D. Thesis, KTH, Stockholm, Sweden, 2007. [Google Scholar]
- Sposito, M.; Di Natali, C.; Toxiri, S.; Caldwell, D.G.; de Momi, E.; Ortiz, J. Exoskeleton kinematic design robustness: An assessment method to account for human variability. Wearable Technol. 2020, 1, e7. [Google Scholar] [CrossRef] [PubMed]
- Villotti, S.; Ralfs, L.; Weidner, R. Biomechanische Simulation zur Auslegung von Exoskeletten. Z. Wirtsch. Fabr. 2023, 118, 406–411. [Google Scholar] [CrossRef]
- Waldhof, M.; Wochner, I.; Stollenmaier, K.; Parspour, N.; Schmitt, S. Design and Scaling of Exoskeleton Power Units Considering Load Cycles of Humans. Robotics 2022, 11, 107. [Google Scholar] [CrossRef]
- Kavalieros, D.; Kapothanasis, E.; Kakarountas, A.; Loukopoulos, T. Methodology for Selecting the Appropriate Electric Motor for Robotic Modular Systems for Lower Extremities. Healthcare 2022, 10, 2054. [Google Scholar] [CrossRef] [PubMed]
- Aftab, Z.; Shafi, F.; Shad, R.; Inzimam-ul Haq, R.; Saeed, K. Systematic method for selection of motor-reducer units to power a lower-body robotic exoskeleton. J. Appl. Sci. Eng. 2021, 24, 457–465. [Google Scholar]
- Di Natali, C.; Toxiri, S.; Ioakeimidis, S.; Caldwell, D.G.; Ortiz, J. Systematic framework for performance evaluation of exoskeleton actuators. Wearable Technol. 2020, 1, e4. [Google Scholar] [CrossRef] [PubMed]
- Barjuei, E.S.; Ardakani, M.M.G.; Caldwell, D.G.; Sanguineti, M.; Ortiz, J. Optimal Selection of Motors and Transmissions in Back-Support Exoskeleton Applications. IEEE Trans. Med. Robot. Bionics 2020, 2, 320–330. [Google Scholar] [CrossRef]
- Muller, A.; Pontonnier, C.; Dumont, G. Motion-Based Prediction of Hands and Feet Contact Efforts During Asymmetric Handling Tasks. IEEE Trans. Biomed. Eng. 2020, 67, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Horton, M.J., Ed.; Pearson Education International, Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Schmitt, A.G. Real-Time Simulation of Flexible Multibody Systems in Vehicle Dynamics. Ph.D. Thesis, TUHH Universitätsbibliothek, Hamburg, Germany, 2019. [Google Scholar]
- Müller, B.; Wolf, S.I.; Brüggemann, G.P.; Deng, Z.; McIntosh, A.S.; Miller, F.; Selbie, W.S. (Eds.) Handbook of Human Motion, 1st ed.; Springer Reference; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Xsens Technologies B.V. MVN User Manual; Xsens Technologies B.V.: Enschede, The Netherlands, 2021. [Google Scholar]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Mecheri, H.; Corbeil, P.; Plamondon, A.; Robert-Lachaine, X. Inertial Motion Capture-Based Estimation of L5/S1 Moments during Manual Materials Handling. Sensors 2022, 22, 6454. [Google Scholar] [CrossRef] [PubMed]
- Demestre, L.; Morin, P.; May, F.; Bideau, N.; Nicolas, G.; Pontonnier, C.; Dumont, G. Motion-Based Ground Reaction Forces and Moments Prediction Method for Interaction With a Moving and/or Non-Horizontal Structure. J. Biomech. Eng. 2022, 144, 114504. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.C.; Wasynczuk, O.; Sudhoff, S.D. Analysis of Electric Machines: Power and Drive Systems, 2nd ed.; Wiley: New York, NY, USA; Chichester, UK, 2001. [Google Scholar]
- Dreishing, F.; Kreischer, C. Optimization of Force-to-Weight Ratio of Ironless Tubular Linear Motors Using an Analytical Field Calculation Approach. IEEE Trans. Magn. 2022, 58, 1–4. [Google Scholar] [CrossRef]
- Stemme, O.; Wolf, P. Wirkungsweise und Eigenschaften Hochdynamischer Gleichstrom-Kleinstmotoren; Maxon Motor AG: Sachseln, Switzerland, 1994. [Google Scholar]
- LG HB2 18650 1500mAh 30A Battery—ICR18650HB2. Available online: http://www.kinstarbattery.com/Product/32/397 (accessed on 24 October 2024).
- Scherb, D.; Wartzack, S.; Miehling, J. Modelling the interaction between wearable assistive devices and digital human models—A systematic review. Front. Bioeng. Biotechnol. 2023, 10, 1044275. [Google Scholar] [CrossRef] [PubMed]
- Greve, D.; Kreischer, C.; Schubert, T.; Weidner, R. Design Concept and Model-based Evaluation of an Exoskeleton for Low Back Support during Lifting Tasks. Dtec.Bw-BeiträGe Der-Helmut-Schmidt-Univ. Bundeswehr 2022, 1, 216–223. [Google Scholar]
- Dobroschke, A. Flexible Automatisierungslösungen für die Fertigung wickeltechnischer Produkte: Zugl.: Erlangen-Nürnberg, Univ., Diss., 2011; Bericht aus dem Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik; Meisenbach: Bamberg, Germany, 2011; Volume 219. [Google Scholar]
- Dreishing, F. Auslegung und Methodische Entwicklung von Biegeflexiblen Elektrischen Linearmotoren. Ph.D. Thesis, Helmut-Schmidt-Universität Hamburg, Hamburg, Germany, 2024. in press. [Google Scholar]
- Meeker, D. Finite Element Method Magnetics (FEMM) User’s Manual. Available online: https://www.femm.info/wiki/Files/files.xml?action=download&file=manual.pdf (accessed on 24 October 2024).
- Michel, M. Leistungselektronik: Einführung in Schaltungen und deren Verhalten; 5., bearb. und erg.; Aufl., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
No. | Human Body Segment | Tracking Segments [19] |
---|---|---|
1 | Hips | Pelvis |
2 | Spine | L5, L3, T12 |
9 | Hand right | RightHand |
13 | Hand left | LeftHand |
14 | Upper leg right | RightUpperLeg |
15 | Lower leg right | RightLowerLeg |
17 | Upper leg left | LeftUpperLeg |
16 | Foot right | RightFoot, RightToe |
19 | Foot left | LeftFoot, LeftToe |
Parameter | Lower Bound | Upper Bound | Type |
---|---|---|---|
No. stator segments | 4 | 8 | integer |
No. mover segments | 5 | 16 | integer |
Appendix length | 5 mm | 400 mm | continuous |
Appendix length | 5 mm | 400 mm | continuous |
No. cells in series | 6 | 14 | integer |
No. cells in parallel | 1 | 2 | integer |
Parameter | Value |
---|---|
Density appendix | |
Density active section | |
Inner radius stator | |
Outer radius stator | |
Density mover | |
Radius mover |
Parameter | Value |
---|---|
No. stator segments | 6 |
No. mover segments | 10 |
Appendix length | 89 mm |
Appendix length | 158 mm |
No. cells in series | 13 |
No. cells in parallel | 1 |
Actuation system mass | 2.57 kg |
Exoskeleton mass | 5.03 kg |
Parameter | Value |
---|---|
No. stator segments | 6 |
No. mover segments | 13 |
Appendix length | 151 mm |
Appendix length | 168 mm |
No. cells in series | 14 |
No. cells in parallel | 1 |
Actuation system mass | 2.93 kg |
Exoskeleton mass | 5.39 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greve, D.; Kreischer, C. Methodology for Integrated Design Optimization of Actuation Systems for Exoskeletons. Robotics 2024, 13, 158. https://doi.org/10.3390/robotics13110158
Greve D, Kreischer C. Methodology for Integrated Design Optimization of Actuation Systems for Exoskeletons. Robotics. 2024; 13(11):158. https://doi.org/10.3390/robotics13110158
Chicago/Turabian StyleGreve, Daniel, and Christian Kreischer. 2024. "Methodology for Integrated Design Optimization of Actuation Systems for Exoskeletons" Robotics 13, no. 11: 158. https://doi.org/10.3390/robotics13110158
APA StyleGreve, D., & Kreischer, C. (2024). Methodology for Integrated Design Optimization of Actuation Systems for Exoskeletons. Robotics, 13(11), 158. https://doi.org/10.3390/robotics13110158