Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform
Abstract
:1. Introduction
2. Classification of Micro-Manipulation
3. Method
3.1. The Problem
3.2. Platform Model: Non-Linear ODE
3.3. Stick-Slip Model: Linear ODEs
3.4. Nondimensional Analysis
4. Simulation Example
5. Conclusions
Funding
Conflicts of Interest
References
- Knudsen, C.; Feldberg, R.; True, H.; Thompson, J.; Rainey, R.; Soliman, M.; Harrison, A.; Pfeifer, F.; Hajek, M.; Jana, S.; et al. Nonlinear dynamics of engineering systems. Phil. Trans. R. Soc. Lond. A 1992, 338, 451–568. [Google Scholar]
- Hasan, N.A.; Mook, D.T. Nonlinear Oscillations; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 1979. [Google Scholar]
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mitropolskii, Y.A.; Nguyen, V.D. Applied asymptotic methods in nonlinear oscillations. In Solid Mechanics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, Germany, 1997. [Google Scholar]
- Jin, X.; Xu, H.; Wang, Y.; Huang, Z. Approximately analytical procedure to evaluate random stick-slip vibration of Duffing system including dry friction. J. Sound Vib. 2019, 443, 520–536. [Google Scholar] [CrossRef]
- Elmer, F.-J. Nonlinear dynamics of dry friction. J. Phys. A Math. Gen. 1997, 30, 6057–6063. [Google Scholar] [CrossRef] [Green Version]
- Feder, H.J.S.; Feder, J. Self-organized criticality in a stick-slip process. Phys. Rev. Lett. 1991, 66, 2669. [Google Scholar] [CrossRef]
- Schirmeisen, A.; Jansen, L.; Fuchs, H. Tip-jump statistics of stick-slip friction. Phys. Rev. B 2005, 71. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Delfs, J. Dynamics of a self-excited stick-slip oscillator with two degrees of freedom. I, Investigation of equilibria. Eur. J. Mech. Solids 1990, 9, 269–282. [Google Scholar]
- Jan, A.; Claude-henri, L. Bifurcation and Chaos in Nonsmooth Mechanical Systems; World Scientific: Singapore, 2003; Volume 45. [Google Scholar]
- Awrejcewicz, J.; Sendkowski, D. Stick-slip chaos detection in coupled oscillators with friction. Int. J. Solids Struct. 2005, 42, 5669–5682. [Google Scholar] [CrossRef] [Green Version]
- Van Geffen, V. A Study of Friction Models and Friction Compensation. Technische Universiteit Eindhoven Eindhoven. Technical Report. 2009. Available online: http://www.mate.tue.nl/mate/pdfs/11194.pdf (accessed on 13 October 2020).
- Berman, A.D.; Ducker, W.A.; Israelachvili, J.N. Origin and characterization of different stick−slip friction mechanisms. Langmuir 1996, 12, 4559–4563. [Google Scholar] [CrossRef]
- Wu-Bavouzet, F.; Clain-Burckbuchler, J.; Buguin, A.; De Gennes, P.-G.; Brochard-Wyart, F. Stick-Slip: Wet Versus Dry. J. Adhes. 2007, 83, 761–784. [Google Scholar] [CrossRef]
- Gourdon, D.; Israelachvili, J.N. Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 2003, 68, 021602. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Holicke, M.M. Melnikov’s method and stick–slip chaotic oscillations in very weakly forced mechanical systems. Int. J. Bifurc. Chaos 1999, 9, 505–518. [Google Scholar] [CrossRef]
- Schelleng, J.C. The bowed string and the player. J. Acoust. Soc. Am. 1973, 53, 26. [Google Scholar] [CrossRef]
- Ding, W. Self-Excited Vibrations; Tsing-Hua University Press: Beijing, China; Springer: Berlin, Germany, 2010; pp. 243–301. [Google Scholar]
- Feeny, B.; Guran, A.; Hinrichs, N.; Popp, K. A Historical Review on Dry Friction and Stick-Slip Phenomena. Appl. Mech. Rev. 1998, 51, 321–341. [Google Scholar] [CrossRef]
- Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P.P. Review and comparison of dry friction force models. Nonlinear Dyn. 2015, 83, 1785–1801. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Kojima, M.; Huang, Q.; Arai, T. Advances in Micromanipulation Actuated by Vibration-Induced Acoustic Waves and Streaming Flow. Appl. Sci. 2020, 10, 1260. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Sariola, V.; Latifi, K.; Liimatainen, V. Controlling the motion of multiple objects on a Chladni plate. Nat. Commun. 2016, 7, 12764. [Google Scholar] [CrossRef]
- Collins, D.J.; Devendran, C.; Ma, Z.; Ng, J.W.; Neild, A.; Ai, Y. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2016, 2, e1600089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Zhou, Z.; Liu, P.; Pei, Y. Robotic Trajectories and Morphology Manipulation of Single Particle and Granular Materials by a Vibration Tweezer. Soft Robot. 2020. [Google Scholar] [CrossRef]
- Lu, X.L.; Zhao, K.; Liu, W.; Yang, D.; Shen, H.; Peng, H.; Guo, X.; Li, J.; Wang, J. A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano 2019, 13, 11443–11452. [Google Scholar] [CrossRef]
- Baudoin, M.; Thomas, J.-L.; Al Sahely, R.; Gerbedoen, J.-C.; Gong, Z.; Sivery, A.; Matar, O.; Smagin, N.; Vlandas, A. Cell selective manipulation with single beam acoustical tweezers. arXiv 2020, arXiv:2001.04162 2020, preprint. [Google Scholar]
- Zhang, Z.M.; An, Q.; Li, J.W.; Zhang, W.J. Piezoelectric friction–inertia actuator—A critical review and future perspective. Int. J. Adv. Manuf. Technol. 2012, 62, 669–685. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, J.; Hu, X.H.; Zhang, Z.M.; Cheng, L.; Lin, Y.; Zhang, W.J. Modeling and control of piezoelectric inertia–friction actuators: Review and future research directions. Mech. Sci. 2015, 6, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Zhu, J.; Jin, Z.; He, H.; Sun, L.; Wang, Z. Improved inertial stick-slip movement performance via driving waveform optimization. Precis. Eng. 2019, 55, 260–267. [Google Scholar] [CrossRef]
- Qin, F.; Huang, H.; Wang, J.; Tian, L.; Liang, T.; Zhao, H. Design and stepping characteristics of novel stick-slip piezo-driven linear actuator. Smart Mater. Struct. 2019, 28. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, M.; Shao, S.; Song, S. Effective dynamical model for piezoelectric stick–slip actuators in bi-directional motion. Mech. Syst. Signal. Process. 2020, 145, 106964. [Google Scholar] [CrossRef]
- Lima, R.; Sampaio, R. Stick–slip oscillations in a multiphysics system. Nonlinear Dyn. 2020, 100, 2215–2224. [Google Scholar] [CrossRef]
- Bohringer, K.-F.; Donald, B.R.; Macdonald, N.C. Programmable Force Fields for Distributed Manipulation, with Applications to MEMS Actuator Arrays and Vibratory Parts Feeders. Int. J. Robot. Res. 1999, 18, 168–200. [Google Scholar] [CrossRef]
- Bohringer, K.-F.; Bhatt, V.; Goldberg, K.Y. Sensorless manipulation using transverse vibrations of a plate. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 1989–1996. [Google Scholar]
- Rayleigh, J.W.S. The Theory of Sound, 2nd ed.; Dover Publications: Mineola, NJ, USA, 1945; Volome 1, pp. 110–111. [Google Scholar]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Chladni, E.F.F. Entdeckungen über die Theorie des Klanges; Bey Weidmanns erben und Reich: Leipzig, Germany, 1787. [Google Scholar]
- Mayyas, M.A. Methodologies for Automated Microassembly. Ph.D. Thesis, University of Texas at Arlington, Arlington, TX, USA, 2008. [Google Scholar]
- Cohn, M.B.; Boehringer, K.F.; Noworolski, J.M.; Singh, A.; Keller, C.G.; Goldberg, K.A.; Howe, R.T. Microassembly technologies for MEMS. In Microelectronic Structures and MEMS for Optical Processing IV; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; pp. 2–16. [Google Scholar]
- Smith, B.D.; Mayer, T.S.; Keating, C.D. Deterministic Assembly of Functional Nanostructures Using Nonuniform Electric Fields. Annu. Rev. Phys. Chem. 2012, 63, 241–263. [Google Scholar] [CrossRef]
- Das, A.N.; Zhang, P.; Lee, W.H.; Popa, D.O.; Stephanou, H. μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots. In Proceedings of the 2007 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Roma, Italy, 10–14 April 2007; pp. 461–466. [Google Scholar]
- Dechev, N.; Cleghorn, W.; Mills, J. Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper. J. Microelectromech. Syst. 2004, 13, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Wich, T.; Edeler, C.; Stolle, C.; Fatikow, S. Micro-nano-integration based on automated serial assembly. In Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering, Bangalore, India, 22–25 August 2009; pp. 573–578. [Google Scholar]
- Wendenburg, R.; Michelmann, A.; Greulich, K.O.; Monajembashi, S.; Uhl, V. System for Introducing Optical Tweezers and/or a Treatment Beam Into a Laser Scanning Microscope. U.S. Patent 6,850,363, 1 February 2005. [Google Scholar]
- Mayyas, M.; Zhang, P.; Lee, W.H.; Shiakolas, P.; Popa, D. Design Tradeoffs for Electrothermal Microgrippers. In Proceedings of the 2001 ICRA IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Roma, Italy, 10–14 April 2007; pp. 907–912. [Google Scholar]
- Fontana, G.; Ruggeri, S.; Pagano, C.; Fassi, I.; Legnani, G. Manipulation of Microcomponents Using Vacuum Grippers. Available online: https://iris.unibs.it/retrieve/handle/11379/179101/4804/Aimeta2011-Bologna-Microgripper-MEM-230-0.pdf (accessed on 13 October 2020).
- Wang, F.; Liang, C.; Tian, Y.; Zhao, X.; Zhang, D. Design and Control of a Compliant Microgripper With a Large Amplification Ratio for High-Speed Micro Manipulation. IEEE/ASME Trans. Mechatron. 2016, 21, 1262–1271. [Google Scholar] [CrossRef]
- Monkman, G. Electroadhesive microgrippers. Ind. Robot. Int. J. 2003, 30, 326–330. [Google Scholar] [CrossRef]
- Donald, B.R.; Levey, C.G.; Paprotny, I. Planar Microassembly by Parallel Actuation of MEMS Microrobots. J. Microelectromech. Syst. 2008, 17, 789–808. [Google Scholar] [CrossRef]
- Chen, L.; Chen, T.; Sun, L.; Rong, W.; Shao, B.; Yang, Q. Active control of adhesion force for pick-and-place of micro objects with compound vibration in micromanipulation. In Proceedings of the 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, 21–24 August 2010; pp. 716–721. [Google Scholar]
- Khalil, K.S.; Mahmoudi, S.R.; Abu-Dheir, N.; Varanasi, K.K. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Appl. Phys. Lett. 2014, 105, 041604. [Google Scholar] [CrossRef]
- Boncheva, M.; Whitesides, G.M. Making Things by Self-Assembly. MRS Bull. 2005, 30, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Rida, A.; Gijs, M.A.M. Manipulation of Self-Assembled Structures of Magnetic Beads for Microfluidic Mixing and Assaying. Anal. Chem. 2004, 76, 6239–6246. [Google Scholar] [CrossRef]
- Čižmár, T.; Romero, L.C.D.; Dholakia, K.; Andrews, D.L. Multiple optical trapping and binding: New routes to self-assembly. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 102001. [Google Scholar] [CrossRef]
- Gagnon, L.; Morandini, M.; Ghiringhelli, G.L. A review of friction damping modeling and testing. Arch. Appl. Mech. 2019, 90, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Li, J.; Zhang, Z.M.; Hu, X.H.; Zhang, W.J. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 2015, 6, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Gurgoze, M. On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system. J. Sound Vib. 1996, 190, 149–162. [Google Scholar] [CrossRef]
- Gurgoze, M. On the approximate determination of the fundamental frequency of a restrained cantilever beam carrying a tip heavy body. J. Sound Vib. 1986, 105, 443–449. [Google Scholar] [CrossRef]
- Gürgöze, M. On the representation of a cantilevered beam carrying a tip mass by an equivalent spring–mass system. J. Sound Vib. 2005, 282, 538–542. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayyas, M. Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform. Robotics 2020, 9, 86. https://doi.org/10.3390/robotics9040086
Mayyas M. Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform. Robotics. 2020; 9(4):86. https://doi.org/10.3390/robotics9040086
Chicago/Turabian StyleMayyas, Mohammad. 2020. "Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform" Robotics 9, no. 4: 86. https://doi.org/10.3390/robotics9040086
APA StyleMayyas, M. (2020). Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform. Robotics, 9(4), 86. https://doi.org/10.3390/robotics9040086