Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Global Mangrove Watch
2.1.2. Global Distribution of Seagrass
2.1.3. Global Distribution of Coral Reefs
2.1.4. MODIS Ocean Color Standard Mapped Images Aqua
2.1.5. Visible Infrared Imaging Radiometer Suite Boat Detection
2.1.6. Global Artificial Impervious Area
2.1.7. MOD09GA
2.1.8. MOD11A2
2.1.9. MOD13A2
2.2. Indonesian Blue Carbon and Fisheries Management Area
- WPP-RI 571: Includes the waters of the Malacca Strait and the Andaman Sea.
- WPP-RI 572: Includes the waters of the Indian Ocean west of Sumatra and the Sunda Strait.
- WPP-RI 573: Includes the waters of the Indian Ocean south of Java to the south of Nusa Tenggara, the Savu Sea, and the western Timor Sea.
- WPP-RI 711: Includes the waters of the Karimata Strait, Natuna Sea, and the South China Sea.
- WPP-RI 712: Includes the waters of the Java Sea.
- WPP-RI 713: Includes the waters of the Makassar Strait, Bone Bay, Flores Sea, and the Bali Sea.
- WPP-RI 714: Includes the waters of Tolo Bay and Banda Se.
- WPP-RI 715: Includes the waters of Tomini Bay, Maluku Sea, Halmahera Sea, Seram Sea, and Berau Bay.
- WPP-RI 716: Includes the waters of the Sulawesi Sea and northern Halmahera Island.
- WPP-RI 717: Includes the waters of Cendrawasih Bay and the Pacific Ocean.
- WPP-RI 718: Includes the waters of the Aru Sea, Arafuru Sea, and the East Timor Sea.
2.3. Methodology
2.3.1. Marine Human Activity Pressure
2.3.2. Natural Climate Pressure
2.3.3. Terrestrial Human Activity Pressure
3. Results
3.1. Chlorophyll-a and SST Variability during the 2011 La Niña and the 2015 El Niño Periods
3.2. Potential Fishing Zone and Vessel Activity Zone
- High productivity and high blue-carbon risk: characterized by high potential and high ship activity; thus, this area has a high fishery yield. However, the blue carbon ecosystem around this area faces high pressures due to the high ship activity.
- Moderate productivity and moderate blue-carbon risk: these areas have a moderate level of fisheries potential and moderate ship activity; therefore, these areas have moderate fishery production, and the blue carbon ecosystem experiences moderate levels of damage.
- Low productivity and low blue-carbon risk: these areas have a low level of fisheries potential and low ship activity; thus, they have low fishery production yields and experience low levels of blue carbon ecosystem damages.
- Overexploitation and high blue-carbon risk: these areas have a low-to-moderate level of fishery potential but a high level of ship activity; thus, these areas are overexploited and have high levels of damage to the blue carbon ecosystem.
- Overexploitation and medium blue carbon risk: these areas have a low fishery potential but a moderate level of ship activity; thus, these areas are overexploited and have moderate levels of damages to the blue carbon ecosystem.
- Under exploitation and moderate blue carbon risk: these areas have a high fishery potential but a moderate ship activity. Therefore, these areas are less exploited and have moderate levels of damages to the blue carbon ecosystems.
- Under exploitation and low blue carbon risk: these areas have a moderate level of fishery potential but a low level of ship activity; therefore, these areas are less exploited and have low levels of damages to the blue carbon ecosystems.
- Under exploitation and sustainable blue carbon: these areas have a low to a high level of fishery potential but minimal ship activity; thus, these areas are less exploited, and the blue carbon ecosystem is relatively sustained.
- Sustainable blue carbon: the areas belonging to this class have a very low fishery potential and ship activity level. Thus, the blue carbon ecosystems are relatively maintained.
3.3. Coastal Urbanization and RSEI Changes on Deforested Mangrove Forests
4. Discussion
4.1. Impact of the 2011 La Niña and 2015 El Niño Phenomena on the Blue Carbon Ecosystems in Indonesia
4.2. Comparison of the Potential Fishing Zone and Vessel Activity Zone with Production Data and the Number of Fishing Vessels of the Ministry of Maritime Affairs and Fisheries
4.3. Mangrove Deforestation and the Decline in the RSEI in Indonesia during 2007–2016
4.4. Study Limitations
4.5. Future Research Directives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon: A Rapid Response Assessment; United Nations Environment Programme; GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Hoyt, S.; Isensee, K.; Pidgeon, E.; Telszewski, M. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. In Conservation International, Intergovernmental Oceanographic Commission of UNESCO; International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Bulmer, R.H.; Stephenson, F.; Jones, H.F.E.; Townsend, M.; Hillman, J.R.; Schwendenmann, L.; Lundquist, C.J. Blue Carbon Stocks and Cross-Habitat Subsidies. Front. Mar. Sci. 2020, 7, 380. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Duarte, C.M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 2019, 15, 20180781. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, C. Exploring New Blue Carbon Plants for Sustainable Ecosystems. Trends Plant Sci. 2020, 25, 1067–1070. [Google Scholar] [CrossRef]
- Guerra-Vargas, L.A.; Gillis, L.G.; Mancera-Pineda, J.E. Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Front. Mar. Sci. 2020, 7, 628. [Google Scholar] [CrossRef]
- Huxham, M.; Whitlock, D.; Githaiga, M.; Dencer-Brown, A. Carbon in the coastal seascape: How interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage. Curr. For. Rep. 2018, 4, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Nakamura, T. Carbon Dynamics in Coral Reefs. In Blue Carbon in Shallow Coastal Ecosystems; Springer: Singapore, 2019; pp. 273–293. [Google Scholar]
- Gillis, L.G.; Bouma, T.J.; Jones, C.G.; Van Katwijk, M.M.; Nagelkerken, I.; Jeuken, C.J.L.; Herman, P.M.J.; Ziegler, A.D. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 2014, 503, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Thorhaug, A.; Gallagher, J.B.; Kiswara, W.; Prathep, A.; Huang, X.; Yap, T.K.; Dorward, S.; Berlyn, G. Coastal and estuarine blue carbon stocks in the greater Southeast Asia region: Seagrasses and mangroves per nation and sum of total. Mar. Pollut. Bull. 2020, 160, 111168. [Google Scholar] [CrossRef]
- Stankovic, M.; Ambo-Rappe, R.; Carly, F.; Dangan-Galon, F.; Fortes, M.D.; Hossain, M.S.; Kiswara, W.; Van Luong, C.; Minh-Thu, P.; Mishra, A.K.; et al. Quantification of blue carbon in seagrass ecosystems of Southeast Asia and their potential for climate change mitigation. Sci. Total Environ. 2021, 783, 146858. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M.; Murdiyarso, D.; Fourqurean, J.W.; Kauffman, J.B.; Hutahaean, A.; Crooks, S.; Lovelock, C.E.; Howard, J.; Herr, D.; Fortes, M.; et al. Indonesia’s blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl. Ecol. Manag. 2016, 24, 3–13. [Google Scholar] [CrossRef]
- Campbell, S.J.; Edgar, G.J.; Stuart-Smith, R.D.; Soler, G.; Bates, A.E. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conserv. Biol. 2018, 32, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Serrano, O.; Kelleway, J.J.; Lovelock, C.; Lavery, P.S. Conservation of blue carbon ecosystems for climate change mitigation and adaptation. In Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier: Amsterdam, The Netherlands, 2018; pp. 965–996. ISBN 9780444638939. [Google Scholar]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. Bioscience 2006, 56, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C. Status of Coral Reefs of the World; Australian Institute of Marine Science: Townsville, QLD, Australia, 2002. [Google Scholar]
- De’Ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakti, A.D.; Rinasti, A.N.; Agustina, E.; Diastomo, H.; Muhammad, F.; Anna, Z.; Wikantika, K. Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS Int. J. Geo-Inf. 2021, 10, 481. [Google Scholar] [CrossRef]
- Palumbi, S.R.; Barshis, D.J.; Traylor-Knowles, N.; Bay, R.A. Mechanisms of reef coral resistance to future climate change. Science 2014, 344, 895–898. [Google Scholar] [CrossRef]
- Grech, A.; Chartrand-Miller, K.; Erftemeijer, P.; Fonseca, M.; McKenzie, L.; Rasheed, M.; Taylor, H.; Coles, R. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 2012, 7, 024006. [Google Scholar] [CrossRef]
- Wilson, S.K.; Fisher, R.; Pratchett, M.S.; Graham, N.A.J.; Dulvy, N.K.; Turner, R.A.; Cakacaka, A.; Polunin, N.V.C. Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol. Appl. 2010, 20, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Adame, M.F.; Reef, R.; Santini, N.S.; Najera, E.; Turschwell, M.P.; Hayes, M.A.; Masque, P.; Lovelock, C.E. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 2021, 248, 106796. [Google Scholar] [CrossRef]
- Dang, X.; Chen, X.; Bai, Y.; He, X.; Arthur Chen, C.T.; Li, T.; Pan, D.; Zhang, Z. Impact of ENSO events on phytoplankton over the Sulu Ridge. Mar. Environ. Res. 2020, 157, 104934. [Google Scholar] [CrossRef]
- Zhang, R.H.; Tian, F.; Wang, X. Ocean chlorophyll-induced heating feedbacks on ENSO in a coupled ocean physics-biology model forced by prescribed wind anomalies. J. Clim. 2018, 31, 1811–1832. [Google Scholar] [CrossRef]
- Claar, D.C.; Szostek, L.; McDevitt-Irwin, J.M.; Schanze, J.J.; Baum, J.K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS ONE 2018, 13, e0190957. [Google Scholar] [CrossRef] [Green Version]
- Macreadie, P.I.; Hardy, S.S.S. Response of seagrass “Blue Carbon” stocks to increased water temperatures. Diversity 2018, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Harborne, A.R.; Green, A.L.; Peterson, N.A.; Beger, M.; Golbuu, Y.; Houk, P.; Spalding, M.D.; Taylor, B.M.; Terk, E.; Treml, E.A.; et al. Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef management in Micronesia. Divers. Distrib. 2018, 24, 1729–1743. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Ambo-Rappe, R.; Jones, B.L.; La Nafie, Y.A.; Irawan, A.; Hernawan, U.E.; Moore, A.M.; Cullen-Unsworth, L.C. Indonesia’s globally significant seagrass meadows are under widespread threat. Sci. Total Environ. 2018, 634, 279–286. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Afflerbach, J.; Lowndes, J.S.; Micheli, F.; O’Hara, C.; Scarborough, C.; Selkoe, K.A. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 2019, 9, 11609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sejati, A.W.; Buchori, I.; Kurniawati, S.; Brana, Y.C.; Fariha, T.I. Quantifying the impact of industrialization on blue carbon storage in the coastal area of Metropolitan Semarang, Indonesia. Appl. Geogr. 2020, 124, 102319. [Google Scholar] [CrossRef]
- Giakoumi, S.; Halpern, B.S.; Michel, L.N.; Gobert, S.; Sini, M.; Boudouresque, C.F.; Gambi, M.C.; Katsanevakis, S.; Lejeune, P.; Montefalcone, M.; et al. Towards a framework for assessment and management of cumulative human impacts on marine food webs. Conserv. Biol. 2015, 29, 1228–1234. [Google Scholar] [CrossRef]
- Tan, Y.M.; Saunders, J.E.; Yaakub, S.M. A proposed decision support tool for prioritising conservation planning of Southeast Asian seagrass meadows: Combined approaches based on ecosystem services and vulnerability analyses. Bot. Mar. 2018, 61, 305–320. [Google Scholar] [CrossRef]
- Veach, V.; Moilanen, A.; Minin, E. Di Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas. PLoS ONE 2017, 12, e0188397. [Google Scholar] [CrossRef]
- Noble, M.M.; Harasti, D.; Fulton, C.J.; Doran, B. Identifying spatial conservation priorities using Traditional and Local Ecological Knowledge of iconic marine species and ecosystem threats. Biol. Conserv. 2020, 249, 108709. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beißler, M.R. A conceptual approach to modeling the geospatial impact of typical Urban threats on the habitat quality of river corridors. Remote Sens. 2020, 12, 1345. [Google Scholar] [CrossRef] [Green Version]
- Cattarino, L.; Hermoso, V.; Carwardine, J.; Kennard, M.J.; Linke, S. Multi-action planning for threat management: A novel approach for the spatial prioritization of conservation actions. PLoS ONE 2015, 10, e0128027. [Google Scholar] [CrossRef] [Green Version]
- Tulloch, V.J.D.; Tulloch, A.I.T.; Visconti, P.; Halpern, B.S.; Watson, J.E.M.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I.; et al. Why do We map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Rioja-Nieto, R.; Barrera-Falcón, E.; Torres-Irineo, E.; Mendoza-González, G.; Cuervo-Robayo, A.P. Environmental drivers of decadal change of a mangrove forest in the North coast of the Yucatan peninsula, Mexico. J. Coast. Conserv. 2017, 21, 167–175. [Google Scholar] [CrossRef]
- Hayashi, S.N.; Souza-Filho, P.W.M.; Nascimento, W.R.; Fernandes, M.E.B. The effect of anthropogenic drivers on spatial patterns of mangrove land use on the Amazon coast. PLoS ONE 2018, 14, e0217754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.F.; Dragoni, D.; Didan, K.; Barreto-Munoz, A.; Hutabarat, J.A. Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens. Environ. 2013, 130, 96–107. [Google Scholar] [CrossRef]
- Ellison, J.C. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl. Ecol. Manag. 2015, 23, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Constance, A.; Haverkamp, P.J.; Bunbury, N.; Schaepman-Strub, G. Extent change of protected mangrove forest and its relation to wave power exposure on Aldabra Atoll. Glob. Ecol. Conserv. 2021, 27, e01564. [Google Scholar] [CrossRef]
- Critchell, K.; Hamann, M.; Wildermann, N.; Grech, A. Predicting the exposure of coastal species to plastic pollution in a complex island archipelago. Environ. Pollut. 2019, 252, 982–991. [Google Scholar] [CrossRef]
- Grech, A.; Coles, R.; Marsh, H. A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar. Policy 2011, 35, 560–567. [Google Scholar] [CrossRef]
- Magris, R.A.; Grech, A.; Pressey, R.L. Cumulative human impacts on coral reefs: Assessing risk and management implications for brazilian coral reefs. Diversity 2018, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Fauzi, A.; Sakti, A.; Yayusman, L.; Harto, A.; Prasetyo, L.; Irawan, B.; Kamal, M.; Wikantika, K. Contextualizing mangrove forest deforestation in southeast asia using environmental and socio-economic data products. Forests 2019, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.D.; Fauzi, A.I.; Wilwatikta, F.N.; Rajagukguk, Y.S.; Sudhana, S.A.; Yayusman, L.F.; Syahid, L.N.; Sritarapipat, T.; Principe, J.A.; Quynh Trang, N.T.; et al. Multi-source remote sensing data product analysis: Investigating anthropogenic and naturogenic impacts on mangroves in southeast asia. Remote Sens. 2020, 12, 2720. [Google Scholar] [CrossRef]
- Fauzi., A.I.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluating mangrove forest deforestation causes in Southeast Asia by analyzing recent environment and socio-economic data products. In Proceedings of the 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia, 15–19 October 2018; Asian Association on Remote Sensing: Kuala Lumpur, Malaysia, 2018; Volume 2, pp. 880–889. [Google Scholar]
- Syahid, L.N.; Sakti, A.D.; Virtriana, R.; Windupranata, W.; Sudhana, S.A.; Wilwatikta, F.N.; Fauzi, A.I.; Wikantika, K. Land suitability analysis for global mangrove rehabilitation in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; Volume 500. [Google Scholar]
- Syahid, L.N.; Sakti, A.D.; Virtriana, R.; Wikantika, K.; Windupranata, W.; Tsuyuki, S.; Caraka, R.E.; Pribadi, R. Determining optimal location for mangrove planting using remote sensing and climate model projection in southeast asia. Remote Sens. 2020, 12, 3734. [Google Scholar] [CrossRef]
- Sakti, A.D.; Takeuchi, W.; Wikantika, K. Development of Global Cropland Agreement Level Analysis by Integrating Pixel Similarity of Recent Global Land Cover Datasets. J. Environ. Prot. 2017, 8, 1509–1529. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.D.; Takeuchi, W. A data-intensive approach to address food sustainability: Integrating optic and microwave satellite imagery for developing long-term global cropping intensity and sowing month from 2001 to 2015. Sustainability 2020, 12, 3227. [Google Scholar] [CrossRef] [Green Version]
- Guannel, G.; Arkema, K.; Ruggiero, P.; Verutes, G. The power of three: Coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS ONE 2016, 11, e0158094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earp, H.S.; Prinz, N.; Cziesielski, M.J.; Andskog, M. For a World Without Boundaries: Connectivity Between Marine Tropical Ecosystems in Times of Change. In YOUMARES 8–Oceans Across Boundaries: Learning from Each Other; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ulumuddin, Y.I.; Prayudha, B.; Arafat, M.Y.; Indrawati, A.; Anggraini, K. The role of mangrove, seagrass and coral reefs for coral reef fish communities. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ekaterinburg, Russia, 21–22 October 2020; Volume 674. [Google Scholar]
- Ministry of Marine Affairs and Fisheries. Peraturan Menteri Kelautan dan Perikanan Republik Indonesia No.18/PERMEN-KP/2014 Tentang Wilayah Pengelolaan Perikanan Negara Republik Indonesia; MMAF: Jakarta, Indonesia, 2014. [Google Scholar]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch-A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- UNEP-WCMC, Short FT (2021). Global Distribution of Seagrasses (Version 7.1). Seventh Update to the Data Layer Used in Green and Short (2003) Cambridge (UK): UN Environment Programme World Conservation Monitoring Centre. Available online: https://doi.org/10.34892/x6r3-d211 (accessed on 12 November 2021).
- UNEP-WCMC, WorldFish Centre, WRI, TNC (2021). Global Distribution of Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.1, Updated by UNEP-WCMC. Includes Contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment Programme World Conservation Monitoring Centre. Available online: https://data.unep-wcmc.org/pdfs/1/WCMC_008_Global_Distribution_of_Coral_Reefs.pdf?1617121809 (accessed on 9 October 2021).
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Available online: http://dx.doi.org/10.5067/AQUA/MODIS_OC.2014.0 (accessed on 12 November 2021).
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Remote Sensing of Environment Annual maps of global arti fi cial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Vermote, E.; Wolfe, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1kmand 500m SIN Grid V006. 2015, Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD09GA.006 (accessed on 12 November 2021).
- Sharma, L.D.; Kumar, M.; Gupta, J.K.; Rana, M.S.; Dangwal, V.S.; Dhar, G.M. Characterization and catalytic activity of Ni-W/SiO2-Al2O3 hydrocracking catalysts. Indian J. Chem. Technol. 2001, 8, 169–175. [Google Scholar]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide (Collection 6). Univ. Ariz. Veg. Index Phenol. Lab 2015, 2015, 31. [Google Scholar]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996-2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [Green Version]
- Feldman, G.C. MODIS-Aqua, NASA; NASA: Washington, DC, USA, 2021. [Google Scholar]
- Hsu, F.C.; Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Ghosh, T.; Kroodsma, D.; Susanto, A.; Budy, W.; Riyanto, M.; Nurzeha, R.; et al. Cross-matching VIIRS boat detections with vessel monitoring system tracks in Indonesia. Remote Sens. 2019, 11, 995. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 035001. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A Normalized Urban Areas Composite Index (NUACI) based on combination of DMSP-OLS and MODIS for mapping impervious surface area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Zhang, X.; Liu, J.; Li, H.; Ding, G. MODIS-Derived estimation of soil respiration within five cold temperate coniferous forest sites in the eastern Loess Plateau, China. Forests 2020, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Argo Gallih, S.; Wikanti, A. Potential Fishing Zones Estimation Based on Approach of Area Matching Between Thermal Front and Mesotrophic Area. Ilmu dan Teknol. Kelaut. Trop. 2020, 2, 565–581. [Google Scholar]
- Cayula, J.F.; Cornillon, P. Edge detection algorithm for SST images. J. Atmos. Ocean Technol. 1992, 9, 67–80. [Google Scholar] [CrossRef]
- Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to Enhance Societal Readiness for El Niño’s Impacts. Int. J. Disaster Risk Sci. 2020, 11, 394–403. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Ning, L.; Jiayao, W.; Fen, Q. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 403. [Google Scholar] [CrossRef]
- Seprianto, A.; Kunarso, K.; Wirasatriya, A. Studi Pengaruh El Nino Southern Oscillation (Enso) Dan Indian Ocean Dipole (Iod) Terhadap Variabilitas Suhu Permukaan Laut Dan Klorofil-a Di Perairan Karimunjawa. J. Oseanografi 2016, 5, 116334. [Google Scholar]
- Nabilah, F.; Prasetyo, Y.; Sukmono, A. Analisis pengaruh fenomena el nino dan la nina terhadap curah hujan tahun 1998–2016 menggunakan indikator oni (oceanic nino index) (studi kasus: Provinsi jawa barat). J. Geod. Undip 2017, 6, 402–412. [Google Scholar]
- Sukresno, B.; Jatisworo, D.; Kusuma, D.W. Multilayer Analysis of Upwelling Variability in South Java Sea. J. Kelaut. Nas. 2018, 1, 15–25. [Google Scholar] [CrossRef]
- Torregroza-Espinosa, A.C.; Restrepo, J.C.; Escobar, J.; Pierini, J.; Newton, A. Spatial and temporal variability of temperature, salinity and chlorophyll-a in the Magdalena River mouth, Caribbean Sea. J. South Am. Earth Sci. 2021, 105, 102978. [Google Scholar] [CrossRef]
- Purnama, D.R.; Zulistyawan, K.A.; Christian, B.; Okta Veanti, D.P. Dampak terjadinya el nino/la nina terhadap intensitas, masa hidup dan frekuensi siklon. J. Meteorol. Klimatol. dan Geofis. 2019, 5, 10–21. [Google Scholar] [CrossRef]
- Sari, Q.W.; Siswanto, E.; Setiabudidaya, D.; Yustian, I.; Iskandar, I. Spatial and temporal variability of surface chlorophyll-a in the gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 2018, 19, 793–801. [Google Scholar] [CrossRef]
- Hickey, S.M.; Radford, B.; Callow, J.N.; Phinn, S.R.; Duarte, C.M.; Lovelock, C.E. ENSO feedback drives variations in dieback at a marginal mangrove site. Sci. Rep. 2021, 11, 8130. [Google Scholar] [CrossRef] [PubMed]
- Heron, S.F.; Liu, G.; Rauenzahn, J.L.; Christensen, T.R.L.; Skirving, W.J.; Burgess, T.F.R.; Eakin, C.M.; Morgan, J.A. Improvements to and continuity of operational global thermal stress monitoring for coral bleaching. J. Oper. Oceanogr. 2014, 7, 3–11. [Google Scholar] [CrossRef]
- Xia, P.; Meng, X.; Li, Z.; Feng, A.; Yin, P.; Zhang, Y. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150years: Stable carbon isotopes and mangrove pollen. Org. Geochem. 2015, 85, 32–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Xia, P.; Li, Z. Response of Mangrove Development to Air Temperature Variation Over the Past 3000 Years in Qinzhou Bay, Tropical China. Front. Earth Sci. 2021, 9, 397. [Google Scholar] [CrossRef]
- Wilson, S.S.; Dunton, K.H. Hypersalinity During Regional Drought Drives Mass Mortality of the Seagrass Syringodium filiforme in a Subtropical Lagoon. Estuaries Coasts 2018, 41, 855–865. [Google Scholar] [CrossRef]
- Olsen, Y.S.; Collier, C.; Ow, Y.X.; Kendrick, G.A. Global warming and ocean acidification: Effects on Australian Seagrass Ecosystems. In Seagrasses of Australia: Structure, Ecology and Conservation; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 705–742. ISBN 9783319713540. [Google Scholar]
- Insanu, R.K. Pemetaan zona tangkapan ikan (fishing ground) menggunakan citra satelit terra modis dan parameter oseanografi di perairan delta mahakam. Geoid 2017, 12, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, E.F.; Pujiyati, S.; Suman, A.; Hestirianoto, T. Estimating Potential Zones of Pelagic Fish in WPPNRI 711 (Study Case of Natuna Sea). J. Pengelolaan Sumberd. Alam dan Lingkung. 2019, 9, 92–96. [Google Scholar] [CrossRef]
- Kripa, V.; Mohamed, K.S.; Prema, D.; Mohan, A.; Abhilash, K.S. On the persistent occurrence of potential fishing zones in the southeastern Arabian Sea. Indian J. Geo Marine Sci. 2014, 43, 737–745. [Google Scholar]
- Syah, A.F.; Gaol, J.L.; Zainuddin, M.; Apriliya, N.R.; Berlianty, D.; Mahabrort, D. Detection of potential fishing zones of Bigeye tuna (Jhunnus obesus) at profundity of 155 M in the eastern Indian Ocean. Indones. J. Geogr. 2020, 52, 29–35. [Google Scholar] [CrossRef]
- Fitrianah, D.; Hidayanto, A.N.; Gaol, J.L.; Fahmi, H.; Arymurthy, A.M. A Spatio-Temporal Data-Mining Approach for Identification of Potential Fishing Zones Based on Oceanographic Characteristics in the Eastern Indian Ocean. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3720–3728. [Google Scholar] [CrossRef]
- Lumban-Gaol, J.; Syah, A.F.; Arhatin, R.E.; Natih, N.M.N.; Kusumaningrum, E.E. Distribution of fishing vessels derived Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor and Vessel Monitoring System (VMS) in the Java Sea. IOP Conf. Ser. Earth Environ. Sci. 2020, 429, 012051. [Google Scholar] [CrossRef]
- Damuri, Y.R.; Atje, R.; Alexandra, L.A.; Soedjito, A. A Maritime Silk Road and Indonesia’s Perspective of Maritime State. CSIS Work. Pap. Ser. 2014, 1–41. [Google Scholar]
- Darmawan, B.; Mardianto, D. Analisis kerusakan terumbu karang akibat sampah di pulau panggang, kabupaten kepulauan seribu bani. J. Bumi Indones. 2015, 4, 63–70. [Google Scholar]
- Novianty, R.; Sasatrawibawa, S.; Juliandri, D. Identifikasi kerusakan dan upaya rehabilitasi ekosistem mangrove di pantai utara kabupaten subang. Perikan. dan Kelaut. 2012, 3, 41–47. [Google Scholar] [CrossRef]
- Nirwan; Syahdan, M.; Salim, D. Studi Kerusakan Ekosistem Terumbu Karang di Kawasan Wisata Bahari Pulau Liukang loe Kabupaten Bulukumba Provinsi Sulawesi Selatan Abstrak. 2017, Volume 1. Available online: https://docplayer.info/83842584-Studi-kerusakan-ekosistem-terumbu-karang-di-kawasan-wisata-bahari-pulau-liukang-loe-kabupaten-bulukumba-provinsi-sulawesi-selatan-abstrak.html (accessed on 9 October 2021).
- Syukur, A.; Yusli, W.; Muchsin, I.; Mukhlis, M.K. Kerusakan Lamun (Seagrass) dan Rumusan Konservasinya di Tanjung Luar Lombok Timur. J. Biol. Trop. 2017, 17, 69. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Rumwaropen, Y.F.; Nugroho, B.; Sineri, A. Dampak alih fungsi hutan mangrove terhadap ekonomi masyarakat di Telaga Wasti Sowi IV Manokwari Papua Barat. Cassowary 2019, 2, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Public Works and Housing. In Arahan Kebijakan dan Rencana Strategis Infrastruktur Bidang Cipta Karya Kota Balikpapan Tahun 2016. Available online: https://sippa.ciptakarya.pu.go.id/sippa_online/# (accessed on 11 November 2021).
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Yang, M.; Khan, F.A.; Tian, H.; Liu, Q. Analysis of the monthly and spring-neap tidal variability of satellite chlorophyll-a and total suspended matter in a turbid coastal ocean using the dineof method. Remote Sens. 2021, 13, 632. [Google Scholar] [CrossRef]
- Zhu, Y.; Kang, E.; Bo, Y.; Tang, Q.; Cheng, J.; He, Y. A robust fixed rank kriging method for improving the spatial completeness and accuracy of satellite SST products. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5021–5035. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Kohsaka, R. Perceptions of the seagrass ecosystems for the local communities of Eastern Samar, Philippines: Preliminary results and prospects of blue carbon services. Ocean Coast. Manag. 2020, 191, 105181. [Google Scholar] [CrossRef]
- Salmo, S.G.I.I.I. Mangrove blue carbon in the Verde Island Passage. Conserv. Int. Philipp. 2019, 30, 32. [Google Scholar]
- Arora, N.K.; Mishra, I. Ocean sustainability: Essential for blue planet. Environ. Sustain. 2020, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Sordo, L.; Santos, R.; Barrote, I.; Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. EVolume 2019, 9, 11000–11009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peteet, D.; Nichols, J.; Pederson, D.; Kenna, T.; Chang, C.; Newton, B.; Vincent, S. Climate and anthropogenic controls on blue carbon sequestration in Hudson River tidal marsh, Piermont, New York. Environ. Res. Lett. 2020, 15, 065001. [Google Scholar] [CrossRef]
- Hillmann, E.R.; Rivera-Monroy, V.H.; Nyman, J.A.; La Peyre, M.K. Estuarine submerged aquatic vegetation habitat provides organic carbon storage across a shifting landscape. Sci. Total Environ. 2020, 717, 137217. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Donoghue, D.N.M.; Bracken, L.J. Is soil organic carbon underestimated in the largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. Catena 2021, 200, 105159. [Google Scholar] [CrossRef]
- Krauss, K.W.; Noe, G.B.; Duberstein, J.A.; Conner, W.H.; Stagg, C.L.; Cormier, N.; Jones, M.C.; Bernhardt, C.E.; Graeme Lockaby, B.; From, A.S.; et al. The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Glob. Biogeochem. Cycles 2018, 32, 817–839. [Google Scholar] [CrossRef]
- Geldenhuys, C.; Cotiyane, P.; Rajkaran, A. Understanding the creek dynamics and environmental characteristics that determine the distribution of mangrove and salt marsh communities at Nahoon Estuary. South Afr. J. Bot. 2016, 107, 137–147. [Google Scholar] [CrossRef]
- Cussioli, M.C.; Bryan, K.R.; Pilditch, C.A.; de Lange, W.P.; Bischof, K. Light penetration in a temperate meso-tidal lagoon: Implications for seagrass growth and dredging in Tauranga Harbour, New Zealand. Ocean Coast. Manag. 2019, 174, 25–37. [Google Scholar] [CrossRef]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. Detecting multi-decadal changes in seagrass cover in tauranga harbour, new zealand, using landsat imagery and boosting ensemble classification techniques. ISPRS Int. J. Geo-Inf. 2021, 10, 371. [Google Scholar] [CrossRef]
- Slamet, N.S.; Dargusch, P.; Aziz, A.A.; Wadley, D. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean Coast. Manag. 2020, 195, 105283. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Chen, X.; Lei, L.; Chen, Y. Detection of potential fishing zones for neon flying squid based on remote-sensing data in the Northwest Pacific Ocean using an artificial neural network. Int. J. Remote Sens. 2015, 36, 3317–3330. [Google Scholar] [CrossRef]
- Daqamseh, S.T.; Al-Fugara, A.; Pradhan, B.; Al-Oraiqat, A.; Habib, M. MODIS derived sea surface salinity, temperature, and chlorophyll-a data for potential fish zone mapping: West red sea coastal areas, Saudi Arabia. Sensors 2019, 19, 2069. [Google Scholar] [CrossRef] [Green Version]
- Ariana, M.; Suyasa, I.N.; Simbolon, D. Remote sensing for assessing the potential anchovy fishing ground in the pesisir selatan regency, west sumatra, indonesia. AACL Bioflux 2020, 13, 2273–2282. [Google Scholar]
- Priya, R.K.S.; Balaguru, B.; Ramakrishnan, S. Improved exploration of fishery resources through the integration of remotely sensed merged sea level anomaly, chlorophyll concentration, and sea surface temperature. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2013, Dresden, Germany, 23–26 September 2013; Bostater, C.R., Mertikas, S.P., Neyt, X., Bruyant, J., Eds.; SPIE Remote Sensing: Dresden, Germany, 2013; Volume 8888, p. 888805. [Google Scholar]
- Li, X.L.; Xiao, Y.; Su, F.; Wu, W.; Zhou, L. AIS and VBD data fusion for marine fishing intensity mapping and analysis in the northern part of the south china sea. ISPRS Int. J. Geo-Inf. 2021, 10, 277. [Google Scholar] [CrossRef]
- Bennett, N.J. Navigating a just and inclusive path towards sustainable oceans. Mar. Policy 2018, 97, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Dat Pham, T.; Xia, J.; Thang Ha, N.; Tien Bui, D.; Nhu Le, N.; Tekeuchi, W. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Zaman, S. Blue Carbon Reservoir of the Blue Planet; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9788132221074. [Google Scholar]
- Rinasti, A.N.; Sakti, A.D.; Agustina, E.; Wikantika, K. Developing data approaches for accumulation of plastic waste modelling using environment and socio-economic data product. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.; Bristol, UK, 2020; Volume 592. [Google Scholar]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next generation mapping: Combining deep learning, cloud computing, and big remote sensing data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Di Minin, E.; Soutullo, A.; Bartesaghi, L.; Rios, M.; Szephegyi, M.N.; Moilanen, A. Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biol. Conserv. 2017, 206, 56–64. [Google Scholar] [CrossRef]
No. | Data Product | Data Information | Data Format | Spatial Resolution | Temporal Range | Reference |
---|---|---|---|---|---|---|
1 | WPP-RI | Fisheries Management Area | Vector | - | 2013 | [59] |
2 | GMW | Mangroves | Raster | 25 m | 1996, 2000, 2007–2010, 2015, 2016 | [60] |
3 | GDS | Seagrasses | Vector | - | 1934–2020 | [61] |
4 | GDCR | Coral Reefs | Vector | - | 1954–2009 | [62] |
5 | MODIS OCSMI | Chl-a and SST | Raster | 500 m | 2002–2020 | [63] |
6 | VBD | Vessels | Raster | 15 arc degrees | 2015–2019 | [64] |
7 | GAIA | Impervious Surface | Raster | 30 m | 1985–2018 | [65] |
8 | MOD09GA | Surface Reflectance | Raster | 1 km | 2000–present | [66] |
9 | MOD11A2 | LST | Raster | 1 km | 2000–present | [67] |
10 | MOD13A2 | Vegetation Indices | Raster | 1 km | 2000–present | [68] |
Remote Sensing Data Products | Natural Climate Pressure | Marine Human Activities Pressure | Terrestrial Human Activities Pressure |
---|---|---|---|
GMW | √ | √ | √ |
GDS | √ | √ | √ |
GDCR | √ | √ | √ |
Chlor-A | √ | √ | |
SST | √ | √ | |
VBD | √ | ||
GAIA | √ | ||
MOD09GA | √ | ||
MOD11A2 | √ | ||
MOD13A2 | √ |
Summary of Main Findings | ||
---|---|---|
Potential Pressures | Climate |
|
Marine |
| |
Terrestrial |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, A.I.; Sakti, A.D.; Robbani, B.F.; Ristiyani, M.; Agustin, R.T.; Yati, E.; Nuha, M.U.; Anika, N.; Putra, R.; Siregar, D.I.; et al. Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 778. https://doi.org/10.3390/ijgi10110778
Fauzi AI, Sakti AD, Robbani BF, Ristiyani M, Agustin RT, Yati E, Nuha MU, Anika N, Putra R, Siregar DI, et al. Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach. ISPRS International Journal of Geo-Information. 2021; 10(11):778. https://doi.org/10.3390/ijgi10110778
Chicago/Turabian StyleFauzi, Adam Irwansyah, Anjar Dimara Sakti, Balqis Falah Robbani, Mita Ristiyani, Rahiska Tisa Agustin, Emi Yati, Muhammad Ulin Nuha, Nova Anika, Raden Putra, Diyanti Isnani Siregar, and et al. 2021. "Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach" ISPRS International Journal of Geo-Information 10, no. 11: 778. https://doi.org/10.3390/ijgi10110778
APA StyleFauzi, A. I., Sakti, A. D., Robbani, B. F., Ristiyani, M., Agustin, R. T., Yati, E., Nuha, M. U., Anika, N., Putra, R., Siregar, D. I., Prasetyo, B. A., Julzarika, A., & Wikantika, K. (2021). Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach. ISPRS International Journal of Geo-Information, 10(11), 778. https://doi.org/10.3390/ijgi10110778