Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Resource
2.2. Model for Land-Use Optimization: LIr-MSO
2.2.1. Objectives
- Objective 1: Minimization of Conversion Cost
- Objective 2: Maximization of GDP
- Objective 3: Maximization of ESV
- Objective 4: Maximization of Compactness
- Objective 5: Minimization of Conflict Degree
2.2.2. Constraints
2.2.3. Procedures of the LIr-MSO Model
3. Results
3.1. Objective Quantification and Constraints
3.2. Implementation and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sui, D.Z.; Zeng, H. Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: A case study in Shenzhen. Landsc. Urban Plan. 2001, 53, 37–52. [Google Scholar] [CrossRef]
- Deng, J.S.; Ke, W.; Yang, H.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Yao, J.; Murray, A.T.; Wang, J.; Zhang, X. Evaluation and development of sustainable urban land use plans through spatial optimization. Trans. GIS 2019, 23, 705–725. [Google Scholar] [CrossRef]
- Bai, X. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, J.; Parapar, J.; Doallo, R.; Rivera, F.F.; Sante, I.; Crecente, R. High performance genetic algorithm for land use planning. Comput. Environ. Urban Syst. 2013, 37, 45–58. [Google Scholar] [CrossRef]
- Sahebgharani, A. Multi-Objective Land Use Optimization Through Parallel Particle Swarm Algorithm: Case Study Baboldasht District of Isfahan, Iran. J. Urban. Environ. Eng. 2016, 10, 42–49. [Google Scholar]
- Schwaab, J.; Deb, K.; Goodman, E.; Lautenbach, S.; van Strien, M.J.; Grêt-Regamey, A. Improving the performance of genetic algorithms for land-use allocation problems. Int. J. GIS 2018, 32, 907–930. [Google Scholar] [CrossRef]
- Cao, K.; Liu, M.; Wang, S.; Liu, M.; Huang, B. Spatial Multi-Objective Land Use Optimization toward Livability Based on Boundary-Based Genetic Algorithm: A Case Study in Singapore. ISPRS Int. J. Geo-Inf. 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, W.; He, J.; Liu, Y.; Ai, T.; Liu, D. A land-use spatial optimization model based on genetic optimization and game theory. Comput. Environ. Urban Syst. 2015, 49, 1–14. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Huang, Q.; Song, W. A land-use spatial optimum allocation model coupling a multi-agent system with the shuffled frog leaping algorithm. Comput. Environ. Urban Syst. 2019, 77, 101360. [Google Scholar] [CrossRef]
- Datta, D.; Deb, K.; Fonseca, C.M.; Lobo, F.G.; Condado, P.A.; Seixas, J. Multi-objective evolutionary algorithm for land-use management problem. Stud. Comput. Intell. 2007, 3, 1–24. [Google Scholar]
- Karakostas, S.; Economou, D. Enhanced multi-objective optimization algorithm for renewable energy sources: Optimal spatial development of wind farms. Int. J. GIS 2014, 28, 83–103. [Google Scholar] [CrossRef]
- Shaygan, M.; Alimohammadi, A.; Mansourian, A.; Govara, Z.S.; Kalami, S.M. Spatial Multi-Objective Optimization Approach for Land Use Allocation Using NSGA-II. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 906–916. [Google Scholar] [CrossRef]
- Song, M.; Chen, D.M. An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo Spat. Inf. Sci. 2018, 21, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Chandramouli, M.; Huang, B.; Xue, L. Spatial Change Optimization: Integrating GA with Visualization for 3D Scenario Generation. Photogramm. Eng. Remote Sens. 2009, 75, 1015–1022. [Google Scholar] [CrossRef]
- Xiao, N.; Bennett, D.A.; Armstrong, M.P. Using evolutionary algorithms to generate alternatives for multiobjective site-search problems. Environ. Plan. A 2002, 34, 639–656. [Google Scholar] [CrossRef] [Green Version]
- Bo, H.; Zhang, W. Sustainable Land-Use Planning for a Downtown Lake Area in Central China: Multiobjective Optimization Approach Aided by Urban Growth Modeling. Urban Plan. Dev. 2014, 140, 04014002. [Google Scholar]
- Aerts, J.C.; Heuvelink, G.B. Using simulated annealing for resource allocation. Int. J. GIS 2002, 16, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Batty, M.; Huang, B.; Liu, Y.; Yu, L.; Chen, J. Spatial multi-objective land use optimization: Extensions to the non-dominated sorting genetic algorithm-II. Int. J. GIS 2011, 25, 1949–1969. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Li, H.; Xu, G.; Wang, Z.; Kong, C. Transit-oriented land planning model considering sustainability of mass rail transit. J. Urban Plan. Dev. 2010, 136, 243–248. [Google Scholar] [CrossRef]
- Liu, X.; Xun, L.; Xia, L.; Xu, X.; Wang, S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Balling, R.J.; Taber, J.T.; Brown, M.R.; Day, K. Multiobjective Urban Planning Using Genetic Algorithm. J. Urban Plan. Dev. 1999, 125, 86–99. [Google Scholar] [CrossRef]
- Stewart, T.J.; Janssen, R. A multiobjective GIS-based land use planning algorithm. Comput. Environ. Urban Syst. 2014, 46, 25–34. [Google Scholar] [CrossRef]
- Li, X.; Parrott, L. An improved Genetic Algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, W.; Wang, T. Spatio-temporal land use multi-objective optimization: A case study in Central China. Trans. GIS 2019, 23, 726–744. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. Environ. Sci. Pollut Res. 2015, 22, 4475–4490. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Lin, J. Using a genetic algorithm to generate alternative sketch maps for urban planning. Comput. Environ. Urban Syst 1999, 23, 91–108. [Google Scholar] [CrossRef]
- Ligmann-Zielinska, A.; Church, R.; Jankowski, P. Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. Int. J. GIS 2008, 22, 601–622. [Google Scholar] [CrossRef]
- Ma, X.; Chen, X.; Li, X.; Ding, C.; Wang, Y. Sustainable station-level planning: An integrated transport and land use design model for transit-oriented development. J. Clean Prod. 2018, 170, 1052–1063. [Google Scholar] [CrossRef]
- Stewart, T.J.; Janssen, R.; Herwijnen, M.v. A genetic algorithm approach to multiobjective land use planning. Comput. Oper. Res. 2004, 31, 2293–2313. [Google Scholar] [CrossRef]
- Janssen, R.; van Herwijnen, M.; Stewart, T.J.; Aerts, J.C. Multiobjective decision support for land-use planning. Environ. Urban Plan. B: Plan Des. 2008, 35, 740–756. [Google Scholar] [CrossRef]
- Arthur, J.L.; Nalle, D.J. Clarification on the use of linear programming and GIS for land-use modelling. Int. J. GIS 1997, 11, 397–402. [Google Scholar] [CrossRef]
- Santé-Riveira, I.; Boullón-Magán, M.; Crecente-Maseda, R.; Miranda-Barrós, D. Algorithm based on simulated annealing for land-use allocation. Comput. Geosci. 2008, 34, 259–268. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Integration of genetic algorithms and GIS for optimal location search. Int. J. GIS 2005, 19, 581–601. [Google Scholar] [CrossRef]
- Brookes, C.J. A genetic algorithm for designing optimal patch configurations in GIS. Int. J. GIS 2001, 15, 539–559. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, N.; Chandramouli, M. A GIS supported Ant algorithm for the linear feature covering problem with distance constraints. Decis. Support Syst. 2006, 42, 1063–1075. [Google Scholar] [CrossRef]
- Masoomi, Z.; Mesgari, M.S.; Hamrah, M. Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. Int. J. GIS 2013, 27, 542–566. [Google Scholar] [CrossRef]
- De Jong, K. Learning with genetic algorithms: An overview. Mach. Learn. 1988, 3, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.; Van Herwijnen, M.; Janssen, R.; Stewart, T. Evaluating Spatial Design Techniques for Solving Land-use Allocation Problems. J. Environ. Plan Manag. 2005, 48, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Huang, K.; Liu, Y. A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. Int. J. GIS 2012, 26, 1325–1343. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Dapeng Government Online. Available online: http://www.dpxq.gov.cn/ (accessed on 1 June 2019).
- China Ocean Satellite Data Service Center. Available online: https://osdds.nsoas.org.cn (accessed on 23 April 2019).
- Baidu Map. Available online: https://map.baidu.com/ (accessed on 1 June 2019).
- Shuttle Radar Topography Mission. Available online: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (accessed on 21 April 2019).
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Longman Publishing: Boston, MA, USA, 1989; Volume 36. [Google Scholar]
- Zhang, H.; Zeng, Y.; Bian, L. Simulating multi-objective spatial optimization allocation of land use based on the integration of multi-agent system and genetic algorithm. Int. J. Environ. Res. 2010, 4, 765–776. [Google Scholar]
- Xie, G.D.; Zhen, L.; Chun-Xia, L.U.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Maitland, B. Towards a minimal theory of urban structure. Gosling D Maitland B Concepts Urban Des. 1984, 153–155. [Google Scholar]
Change to\Change from | R | C | I | O | F | Ar | P |
---|---|---|---|---|---|---|---|
R | 0 | 0.44 | 0.32 | 0.18 | 0.22 | 1 | 0.24 |
C | 0.23 | 0 | 0.31 | 0.18 | 0.22 | 1 | 0.27 |
I | 0.29 | 0.37 | 0 | 0.18 | 0.22 | 1 | 0.45 |
O | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
F | 0.89 | 0.92 | 0.89 | 0.7 | 0 | 0.3 | 0.85 |
Ar | 0.83 | 0.85 | 0.82 | 0.7 | 0.4 | 0 | 0.81 |
P | 0.35 | 0.51 | 0.33 | 0.34 | 0.18 | 1 | 0 |
Land-Use Type | GDP per Unit Area (RMB/m2) | ESV per Unit Area |
---|---|---|
R | 30,467 | 0 |
C | 699 | 0 |
I | 4508 | 0 |
P | 0 | 0 |
Ar | 0 | 7.9 |
Aq | 4.9 | 7.9 |
F | 0.001 | 28.12 |
O | 0 | 1.39 |
B | 0 | 28.12 |
W | 0 | 45.35 |
R | C | I | O | F | Ar | P | |
---|---|---|---|---|---|---|---|
R | 0 | 4 | 8 | 5 | 7 | 8 | 0 |
C | 4 | 0 | 6 | 5 | 7 | 8 | 2 |
I | 8 | 6 | 0 | 5 | 7 | 8 | 7 |
O | 5 | 5 | 5 | 0 | 1 | 1 | 5 |
F | 7 | 7 | 7 | 1 | 0 | 2 | 6 |
Ar | 8 | 8 | 8 | 1 | 2 | 0 | 8 |
P | 0 | 2 | 7 | 5 | 6 | 8 | 0 |
Land Use Type | Lower Area Limits (ha) | Upper Area Limits (ha) |
---|---|---|
Residential land | No less than 410 | No more than 660 |
Industrial land | No less than 250 | No more than 500 |
Objs\Land Use (km2) | C | I | O | F | Ar |
Initial | 2.3894 | 6.5216 | 2.0319 | 67.2372 | 1.7036 |
LIr-MSO | 4.9478 | 8.1120 | 1.8262 | 62.8576 | 1.6818 |
Changed (%) | 107.07% | 24.39% | −10.12% | −6.51% | −1.28% |
Objs\Land Use (km2) | Aq | W | B | R | P |
Initial | 1.2413 | 1.3628 | 0.2270 | 4.8931 | 0.6966 |
LIr-MSO | 1.2413 | 1.3628 | 0.2270 | 5.2754 | 0.7726 |
Changed (%) | - | - | - | 7.81% | 10.91% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, Y.; Su, F.; Lyne, V.; Cheng, F.; Xiao, H. Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS Int. J. Geo-Inf. 2021, 10, 100. https://doi.org/10.3390/ijgi10020100
Pan T, Zhang Y, Su F, Lyne V, Cheng F, Xiao H. Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS International Journal of Geo-Information. 2021; 10(2):100. https://doi.org/10.3390/ijgi10020100
Chicago/Turabian StylePan, Tingting, Yu Zhang, Fenzhen Su, Vincent Lyne, Fei Cheng, and Han Xiao. 2021. "Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization" ISPRS International Journal of Geo-Information 10, no. 2: 100. https://doi.org/10.3390/ijgi10020100
APA StylePan, T., Zhang, Y., Su, F., Lyne, V., Cheng, F., & Xiao, H. (2021). Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS International Journal of Geo-Information, 10(2), 100. https://doi.org/10.3390/ijgi10020100