Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors
Abstract
:1. Introduction
2. Theoretical Background
2.1. Crime and Environment
2.2. Categorization of Crimes
2.3. Crime Prediction Utilizing ANN
3. Research Methods and Research Design
3.1. Research Methods
3.2. Research Target Area
3.3. Clustering
3.3.1. Definition
3.3.2. Analysis Environment Establishment
3.3.3. Setting the Optimal K-Value
- Define k random clusters.
- Calculate the distance between the cluster center and each object and assign each object to the nearest cluster center. All objects are allocated to clusters, and the cluster center is moved in the direction where the distance between each object and the cluster center becomes closer.
- If each moved cluster center has a different result value from the previous center value, you should return to step 2, run the analysis again, and repeat this step. If its result value is the same as the previous center value, the analysis is halted.
3.4. Multiple Linear Regression Analysis
3.4.1. Definition
3.4.2. Variable Setting
3.4.3. Grid Analysis Unit
3.5. Artificial Neural Network
4. Results and Discussion
4.1. Crime Categorization
4.2. Derivation of Significant Environmental Factors
4.3. Artificial Neural Network Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Cluster A | Cluster B | |||||||||
Unstandardized Coefficient | Standardized Coefficient | t | p | Unstandardized Coefficient | Standardized Coefficient | t | p | |||
B | Standard Error | B | Standard Error | |||||||
tem | 0.118 | 0.180 | −0.046 | 0.655 | 0.513 | 0.182 | 0.096 | 1.903 | 0.057 | |
Class 1 general residential area | −3.829 × 10−5 | 0.000 | −0.046 | −1.844 | 0.065 | −3.222 × 10−5 | 0.000 | −0.075 | −2.925 | 0.003 |
Class 2 general residential area | −1.692 × 10−5 | 0.000 | −0.022 | −0.794 | 0.427 | −2.077 × 10−6 | 0.000 | −0.005 | −0.184 | 0.854 |
Class 3 general residential area | 8.600 × 10−5 | 0.000 | 0.091 | 4.089 | 0.000 | 2.626 × 10−5 | 0.000 | 0.054 | 2.353 | 0.019 |
Quasi−residential area | 1.837 × 10−5 | 0.000 | 0.006 | 0.266 | 0.790 | 4.279 × 10−5 | 0.000 | 0.026 | 1.167 | 0.243 |
Neighboring commercial area | 0.000 | 0.000 | 0.039 | 1.730 | 0.084 | 0.000 | 0.000 | 0.053 | 2.280 | 0.023 |
Distribution commercial area | −4.013 × 10−5 | 0.000 | −0.007 | −0.315 | 0.753 | −3.534 × 10−5 | 0.000 | −0.011 | −0.523 | 0.601 |
General commercial area | 0.000 | 0.000 | 0.129 | 5.630 | 0.000 | 8.624 × 10−5 | 0.000 | 0.053 | 2.243 | 0.025 |
Natural green area | −1.012 × 10−7 | 0.000 | 0.000 | −0.004 | 0.997 | −7.865 × 10−6 | 0.000 | −0.021 | −0.641 | 0.522 |
Road | −9.227 × 10−5 | 0.000 | −0.050 | −1.617 | 0.106 | −6.987 × 10−5 | 0.000 | −0.073 | −2.307 | 0.021 |
Other areas | −8.039 × 10−5 | 0.000 | −0.043 | −1.833 | 0.067 | −2.401 × 10−5 | 0.000 | −0.025 | −1.032 | 0.302 |
Detached houses | −0.020 | 0.006 | −0.088 | −3.338 | 0.001 | 0.030 | 0.003 | 0.261 | 9.538 | 0.000 |
Apartment houses | 0.003 | 0.016 | 0.004 | 0.177 | 0.860 | 0.044 | 0.009 | 0.132 | 5.095 | 0.000 |
Commercial facilities | 0.515 | 0.039 | 0.343 | 13.277 | 0.000 | 0.091 | 0.021 | 0.118 | 4.419 | 0.000 |
Educational and research facilities | 0.189 | 0.106 | 0.039 | 1.778 | 0.076 | 0.060 | 0.056 | 0.024 | 1.064 | 0.288 |
Public facilities | −0.589 | 0.396 | −0.031 | −1.486 | 0.138 | −0.122 | 0.210 | −0.013 | −0.581 | 0.561 |
Business facilities | 0.221 | 0.076 | 0.071 | 2.923 | 0.004 | −0.023 | 0.040 | −0.014 | −0.567 | 0.571 |
Medical facilities | 0.832 | 0.228 | 0.079 | 3.657 | 0.000 | 0.327 | 0.121 | 0.061 | 2.709 | 0.007 |
Lodging facilities | 0.521 | 0.613 | 0.019 | 0.850 | 0.395 | −0.132 | 0.325 | −0.009 | −0.406 | 0.685 |
Religious facilities | −0.020 | 0.160 | −0.003 | −0.126 | 0.900 | 0.109 | 0.085 | 0.028 | 1.281 | 0.200 |
Elderly facilities | −0.121 | 0.208 | −0.012 | −0.584 | 0.559 | 0.456 | 0.110 | 0.090 | 4.129 | 0.000 |
Factories | −1.571 | 1.122 | −0.031 | −1.401 | 0.161 | 0.243 | 0.595 | 0.009 | 0.408 | 0.683 |
Warehouses | −0.178 | 0.481 | −0.008 | −0.371 | 0.711 | −0.327 | 0.255 | −0.027 | −1.280 | 0.201 |
Cemetery−related facilities | −0.220 | 0.506 | −0.009 | −0.435 | 0.664 | −0.072 | 0.268 | −0.006 | −0.269 | 0.788 |
Hazardous material storage and treatment facilities | 0.718 | 0.887 | 0.017 | 0.809 | 0.418 | −0.119 | 0.471 | −0.006 | −0.252 | 0.801 |
Parking lots | 0.054 | 1.471 | 0.001 | 0.037 | 0.971 | −0.529 | 0.781 | −0.014 | −0.678 | 0.498 |
Bus stops | −0.006 | 0.029 | −0.006 | −0.218 | 0.827 | 0.018 | 0.015 | 0.036 | 1.199 | 0.231 |
Subway stations | 0.141 | 0.095 | 0.034 | 1.486 | 0.137 | −0.020 | 0.050 | −0.009 | −0.397 | 0.691 |
Streetlight | 0.030 | 0.118 | 0.006 | 0.254 | 0.800 | 0.139 | 0.063 | 0.055 | 2.211 | 0.027 |
CCTV | 0.425 | 0.163 | 0.060 | 2.600 | 0.009 | −0.033 | 0.087 | −0.009 | −0.378 | 0.705 |
Building age range | 0.013 | 0.005 | 0.075 | 2.611 | 0.009 | 0.002 | 0.003 | 0.027 | 0.903 | 0.367 |
Cluster C | Cluster D | |||||||||
Unstandardized Coefficient | Standardized Coefficient | t | p | Unstandardized Coefficient | Standardized Coefficient | t | p | |||
B | Standard Error | B | Standard Error | |||||||
tem | 0.110 | 0.073 | 1.508 | 0.132 | 0.106 | 0.098 | 1.079 | 0.281 | ||
Class 1 general residential area | −1.293 × 10−5 | 0.000 | −0.038 | −1.535 | 0.125 | −1.721 × 10−5 | 0.000 | −0.041 | −1.525 | 0.127 |
Class 2 general residential area | 4.308 × 10−6 | 0.000 | 0.014 | 0.498 | 0.618 | 7.694 × 10−6 | 0.000 | 0.020 | 0.664 | 0.507 |
Class 3 general residential area | 2.347 × 10−6 | 0.000 | 0.006 | 0.275 | 0.783 | 1.975 × 10−5 | 0.000 | 0.041 | 1.727 | 0.084 |
Quasi−residential area | 7.140 × 10−5 | 0.000 | 0.056 | 2.547 | 0.011 | 4.208 × 10−5 | 0.000 | 0.026 | 1.120 | 0.263 |
Neighboring commercial area | 0.000 | 0.000 | 0.027 | 1.174 | 0.240 | 0.000 | 0.000 | 0.040 | 1.654 | 0.098 |
Distribution commercial area | 4.488 × 10−6 | 0.000 | 0.002 | 0.087 | 0.931 | −4.236 × 10−5 | 0.000 | −0.014 | −0.612 | 0.540 |
General commercial area | 0.000 | 0.000 | 0.183 | 7.880 | 0.000 | 0.000 | 0.000 | 0.161 | 6.511 | 0.000 |
Natural green area | −7.889 × 10−6 | 0.000 | −0.027 | −0.841 | 0.401 | −7.895 × 10−6 | 0.000 | −0.021 | −0.628 | 0.530 |
Road | 8.728 × 10−7 | 0.000 | 0.001 | 0.038 | 0.970 | −4.961 × 10−5 | 0.000 | −0.053 | −1.599 | 0.110 |
Other areas | −2.532 × 10−5 | 0.000 | −0.033 | −1.424 | 0.155 | −3.110 × 10−5 | 0.000 | −0.033 | −1.304 | 0.192 |
Detached houses | 0.005 | 0.002 | 0.055 | 2.060 | 0.040 | −0.005 | 0.003 | −0.043 | −1.497 | 0.135 |
Apartment houses | 0.009 | 0.007 | 0.033 | 1.321 | 0.187 | −0.008 | 0.009 | −0.025 | −0.927 | 0.354 |
Commercial facilities | 0.127 | 0.016 | 0.211 | 8.059 | 0.000 | 0.148 | 0.021 | 0.196 | 7.042 | 0.000 |
Educational and research facilities | −0.017 | 0.043 | −0.009 | −0.395 | 0.693 | 0.179 | 0.058 | 0.073 | 3.112 | 0.002 |
Public facilities | −0.050 | 0.161 | −0.007 | −0.312 | 0.755 | 0.108 | 0.215 | 0.011 | 0.501 | 0.616 |
Business facilities | 0.073 | 0.031 | 0.059 | 2.390 | 0.017 | 0.079 | 0.041 | 0.050 | 1.921 | 0.055 |
Medical facilities | 0.509 | 0.092 | 0.121 | 5.514 | 0.000 | 0.389 | 0.124 | 0.073 | 3.143 | 0.002 |
Lodging facilities | 0.836 | 0.248 | 0.077 | 3.365 | 0.001 | −0.615 | 0.333 | −0.045 | −1.847 | 0.065 |
Religious facilities | 0.060 | 0.065 | 0.019 | 0.926 | 0.355 | 0.018 | 0.087 | 0.005 | 0.207 | 0.836 |
Elderly facilities | −0.096 | 0.084 | −0.024 | −1.132 | 0.258 | −0.089 | 0.113 | −0.018 | −0.788 | 0.431 |
Factories | 0.510 | 0.455 | 0.025 | 1.121 | 0.262 | 0.565 | 0.610 | 0.022 | 0.926 | 0.354 |
Warehouses | −0.116 | 0.195 | −0.012 | −0.594 | 0.552 | 0.261 | 0.262 | 0.022 | 0.996 | 0.319 |
Cemetery−related facilities | −0.119 | 0.205 | −0.012 | −0.582 | 0.560 | 0.072 | 0.275 | 0.006 | 0.263 | 0.793 |
Hazardous material storage and treatment facilities | 0.684 | 0.360 | 0.041 | 1.902 | 0.057 | 0.506 | 0.482 | 0.024 | 1.050 | 0.294 |
Parking lots | −0.477 | 0.597 | −0.017 | −0.800 | 0.424 | −0.291 | 0.800 | −0.008 | −0.364 | 0.716 |
Bus stops | 0.011 | 0.012 | 0.028 | 0.936 | 0.349 | 0.020 | 0.016 | 0.041 | 1.300 | 0.194 |
Subway stations | 0.036 | 0.038 | 0.021 | 0.925 | 0.355 | 0.050 | 0.052 | 0.024 | 0.970 | 0.332 |
Streetlight | −0.009 | 0.048 | −0.004 | −0.182 | 0.856 | −0.006 | 0.064 | −0.002 | −0.093 | 0.926 |
CCTV | 0.063 | 0.066 | 0.022 | 0.946 | 0.344 | 0.048 | 0.089 | 0.013 | 0.539 | 0.590 |
Building age range | 0.004 | 0.002 | 0.058 | 1.983 | 0.048 | 0.006 | 0.003 | 0.070 | 2.272 | 0.023 |
References
- Chen, H.; Chung, W.; Xu, J.J.; Wang, G.; Qin, Y.; Chau, M. Crime data mining: A general framework and some examples. Computer 2004, 37, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Brown, D.E. Criminal incident prediction using a point-pattern-based density model. Int. J. Forecast. 2003, 19, 603–622. [Google Scholar] [CrossRef]
- Nakaya, T.; Yano, K. Visualising crime clusters in a space-time cube: An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions 2010, 14, 223–239. [Google Scholar] [CrossRef]
- Chandra, B.; Gupta, M.; Gupta, M.P. A multivariate time series clustering approach for crime trends prediction. In Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 October 2008; pp. 892–896. [Google Scholar]
- Newman, O. Defensible Space: Architectural Design for Crime Prevention; US Department of Justice Law Enforcement Assistance Administration National Criminal Justice Reference Service: Washington, DC, USA, 1973; p. 53.
- Brantingham, P.; Brantingham, P. Criminality of place. Eur. J. Crim. Pol. Res. 1995, 3, 5–26. [Google Scholar] [CrossRef]
- Jeffery, C.R. Crime Prevention Through Environmental Design; Sage Publications: Beverly Hills, CA, USA, 1971; Volume 91. [Google Scholar]
- Cullen, J.B.; Levitt, S.D. Crime, Urban Flight, and the Consequences for Cities; National Bureau of Economic Research: Cambridge, MA, USA, 1996. [Google Scholar]
- Eck, J.; Weisburd, D.L. Crime places in crime theory. Crime Place Crime Prev. Stud. 2015, 4, 1–33. [Google Scholar]
- Brantingham, P.J.; Brantingham, P.L. Environmental Criminology; Sage Publications: Beverly Hills, CA, USA, 1981; pp. 27–54. [Google Scholar]
- McCord, E.S.; Jerry, H.R. Intensity value analysis and the criminogenic effects of land use features on local crime patterns. Crime Patterns Anal. 2009, 2, 17–30. [Google Scholar]
- Bae, W.K.; Kim, H.J.; Kwon, G.O. A study on the relationship between land use patterns and crime rates-Focused on the Bundang Newtown in 2006. J. Urban Des. Inst. Korea Urban Des. 2009, 10, 5–20. [Google Scholar]
- Stucky, T.D.; Ottensmann, J.R. Land use and violent crime. Criminology 2009, 47, 1223–1264. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Yoon, Y.J.; Ahn, K.H. A study on urban crime in relation to land use patterns. J. Korea Plan. Assoc. 2007, 42, 155–168. [Google Scholar]
- Lee, K.J.; Kim, Y.J.; Hong, S.J. An empirical study on exploration of spatial association between crime and land use. J. Korean Urban Manag. Assoc. 2015, 28, 245–267. [Google Scholar]
- Gouvis, R.C. Schools as Generators of Crime: Routine Activities and the Sociology of Place; American University: Washington, DC, USA, 2002. [Google Scholar]
- Kautt, P.M.; Dennis, W.R. Schools as criminal hot spots primary, secondary, and beyond. Crim. Justice Rev. 2007, 32, 339–357. [Google Scholar] [CrossRef]
- Engstad, P.A. Environmental Opportunities and the Ecology of Crime. In Crime in Canadian Society; Silverman, R.A., Teevan, J.J., Eds.; Butterworths: Toronto, ON, Canada, 1975. [Google Scholar]
- Block, R.L.; Davis, S. The Environs of Rapid Transit Stations: A Focus for Street Crime or Just Another Risky Place? In Preventing Mass Transit. Crime; Clarke, R.V., Ed.; Criminal Justice Press: Monsey, NY, USA, 1996; pp. 237–257. [Google Scholar]
- Block, R.L.; Block, C.R. The Bronx and Chicago: Street Robbery in the Environs of Rapid Transit Stations. In Analyzing Crime Patterns: Frontiers in Practice; Goldsmith, V., McGuire, P.G., Mollenkopf, J.H., Eds.; Sage Publications: Thousand Oaks, CA, USA, 2000; pp. 137–152. [Google Scholar]
- Greenberg, S.W. Fear and its Relationship to Crime, Neighborhood Deterioration, and Informal Social Control. The Social Ecology of Crime; Springer: New York, NY, USA, 1986; pp. 47–62. [Google Scholar]
- Welsh, B.C.; Farrington, D.P. Public area CCTV and crime prevention: An updated systematic review and meta-analysis. Justice Quart. 2009, 26, 716–745. [Google Scholar] [CrossRef]
- Phillips, C. A review of CCTV evaluations: Crime reduction effects and attitudes towards its use. Crime Prevent. Stud. 1999, 10, 123–155. [Google Scholar]
- Xu, Y.; Fu, C.; Kennedy, E.; Jiang, S.; Owusu-Agyemang, S. The impact of street lights on spatial-temporal patterns of crime in Detroit, Michigan. Cities 2018, 79, 45–52. [Google Scholar] [CrossRef]
- Park, M.K. Implementation of Crime Prediction Map Using Space Analysis of GIS: A Case Study of Seongbuk-gu; Kyung Hee University: Seoul, Korea, 2003. [Google Scholar]
- Kwak, M.S.; Kwon, J.J.; Sung, H.G. Impacts of urban physical environment on crime incidence by its type and time. J. Korea Plan. Assoc. 2017, 52, 225–236. [Google Scholar] [CrossRef]
- Mahmud, N.; Zinnah, K.I.; Rahman, Y.A.; Ahmed, N. Crimecast: A crime prediction and strategy direction service. In Proceedings of the 2016 19th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2016; pp. 414–418. [Google Scholar]
- Kang, H.W.; Kang, H.B. Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE 2017, 12, e0176244. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.I.; Kim, K.M. Spatial pattern analysis of urban crime in Seoul Metropolitan Area. Korean J. Public Saf. Crim. Just. 2013, 22, 217–246. [Google Scholar]
- Kim, B.H.; Kim, K.S. General research papers: Improvements of K-modes algorithm and ROCK algorithm. Korean J. Appl. Stat. 2002, 15, 381–393. [Google Scholar]
- Huang, Z. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. Res. Issues Data Min. Knowl. Discov. 1997, 3, 281–297. [Google Scholar]
- Loukaitou, S.A. Hot spots of bus stop crime: The importance of environmental attributes. J. Am. Plan. Assoc. 1999, 65, 395–411. [Google Scholar] [CrossRef]
- Groff, E.R.; Lockwood, B. Criminogenic facilities and crime across street segments in Philadelphia: Uncovering evidence about the spatial extent of facility influence. J. Res. Crime Delinq. 2014, 51, 277–314. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, J.Y. A data transformation method for visualizing the statistical information based on the grid. J. Korea Spat. Inform. Soc. 2015, 23, 31–40. [Google Scholar]
- Birch, C.P.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering. In 2007 Proceeding, Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, USA, 20 June 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 791–798. [Google Scholar]
- Lee, S.; Jung, S.; Lee, J. Prediction model based on an artificial neural network for user-based building energy consumption in South Korea. Energies 2019, 12, 608. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Foo, S. Neural network modeling of salinity variation in Apalachicola River. Water Res. 2002, 36, 356–362. [Google Scholar] [CrossRef]
- Hwang, J.T. A study on target selection of burglars, robbers and thieves. Korean Inst. Criminol. 2004, 04-26, 217–247. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
No. | Time of Crime | Location Classification | Method of Crime | Gender of the Victim |
---|---|---|---|---|
1 | Evening | Residence | Intrusion | Y |
2 | Dawn | Store | Trick | N |
… | … | … | … | … |
… | … | … | … | … |
… | … | … | … | … |
4464 | other | other | other | other |
Variable | Category | Mean | Standard Deviation | Common Difference | VIF | ||
---|---|---|---|---|---|---|---|
Land use | Class 1 general residential area | Numeric | 1673.914 | 2875.871 | 0.686 | 1.457 | |
Class 2 general residential area | Numeric | 2718.752 | 3153.959 | 0.542 | 1.846 | ||
Class 3 general residential area | Numeric | 1540.355 | 2559.198 | 0.845 | 1.184 | ||
Quasi-residential area | Numeric | 131.554 | 758.575 | 0.890 | 1.123 | ||
Neighboring commercial area | Numeric | 16.044 | 219.330 | 0.817 | 1.224 | ||
Distribution commercial area | Numeric | 26.354 | 395.758 | 0.965 | 1.036 | ||
General commercial area | Numeric | 134.135 | 765.147 | 0.797 | 1.255 | ||
Natural green area | Numeric | 1976.576 | 3298.413 | 0.420 | 2.378 | ||
Road | Numeric | 1190.231 | 1294.794 | 0.448 | 2.231 | ||
Other areas | Numeric | 226.810 | 1276.379 | 0.781 | 1.280 | ||
Facility | Detached houses | Numeric | 6.840 | 10.814 | 0.599 | 1.669 | |
Apartment houses | Numeric | 2.380 | 3.715 | 0.671 | 1.491 | ||
Commercial facilities | Numeric | 0.740 | 1.609 | 0.629 | 1.591 | ||
Educational and research facilities | Numeric | 0.150 | 0.495 | 0.886 | 1.128 | ||
Public facilities | Numeric | 0.020 | 0.128 | 0.958 | 1.043 | ||
Business facilities | Numeric | 0.270 | 0.781 | 0.704 | 1.420 | ||
Medical facilities | Numeric | 0.040 | 0.230 | 0.893 | 1.120 | ||
Lodging facilities | Numeric | 0.010 | 0.890 | 0.824 | 1.214 | ||
Religious facilities | Numeric | 0.070 | 0.314 | 0.972 | 1.029 | ||
Elderly facilities | Numeric | 0.060 | 0.245 | 0.944 | 1.059 | ||
Factories | Numeric | 0.000 | 0.048 | 0.857 | 1.167 | ||
Warehouses | Numeric | 0.010 | 0.104 | 0.981 | 1.019 | ||
Cemetery-related facilities | Numeric | 0.010 | 0.101 | 0.942 | 1.062 | ||
Hazardous material storage and treatment facilities | Numeric | 0.000 | 0.058 | 0.915 | 1.093 | ||
Parking lots | Numeric | 0.000 | 0.034 | 0.995 | 1.005 | ||
Bus stops | 1 | within 100 m | 0.060 | 0.490 | 0.729 | 1.372 | |
2 | none within 100 m | - | - | - | - | ||
Subway stations | 1 | within 200 m | 0.130 | 0.338 | 0.801 | 1.248 | |
2 | none within 200 m | - | - | - | - | ||
security facility | Streetlight | 1 | O | 1.380 | 2.441 | 0.491 | 2.038 |
2 | X | - | - | - | - | ||
CCTV | 1 | O | 0.300 | 0.577 | 0.816 | 1.225 | |
2 | X | - | - | - | - | ||
Building age range | Numeric | 19.403 | 14.300 | 0.507 | 1.973 |
R | R2 | Revised R2 | Durbin-Watson | F | Significant Probability | |
---|---|---|---|---|---|---|
Cluster A | 0.523 | 0.273 | 0.261 | 1.759 | 21.647 | 0.000 |
Cluster B | 0.473 | 0.223 | 0.210 | 1.962 | 16.573 | 0.000 |
Cluster C | 0.507 | 0.257 | 0.245 | 1.957 | 19.969 | 0.000 |
Cluster D | 0.403 | 0.162 | 0.148 | 1.945 | 11.152 | 0.000 |
Variable | Category | Cluster A | Cluster B | Cluster C | Cluster D |
---|---|---|---|---|---|
Land use | Class 1 general residential area | ✓ | |||
Class 2 general residential area | |||||
Class 3 general residential area | ✓ | ✓ | |||
Quasi-residential area | ✓ | ||||
Neighboring commercial area | ✓ | ||||
Distribution commercial area | |||||
General commercial area | ✓ | ✓ | ✓ | ✓ | |
Natural green area | |||||
Road | ✓ | ||||
Other areas | |||||
Facility | Detached houses | ✓ | ✓ | ✓ | |
Apartment houses | ✓ | ||||
Commercial facilities | ✓ | ✓ | ✓ | ✓ | |
Educational and research facilities | ✓ | ||||
Public facilities | |||||
Business facilities | ✓ | ✓ | |||
Medical facilities | ✓ | ✓ | ✓ | ✓ | |
Lodging facilities | ✓ | ||||
Religious facilities | |||||
Elderly facilities | ✓ | ||||
Factories | |||||
Warehouses | |||||
Cemetery-related facilities | |||||
Hazardous material storage and treatment facilities | |||||
Parking lots | |||||
Bus stops | ✓ | ||||
Subway stations | ✓ | ||||
security facility | Streetlight | ||||
CCTV | |||||
Building age range | ✓ | ✓ | ✓ | ||
Total | 8 | 12 | 8 | 5 |
Min | Max | Layer | Neuron | R Value of Training | R Value of Validation | R Value of Test | MSE | Terminated Epoch | |
---|---|---|---|---|---|---|---|---|---|
Cluster A | 9 | 19 | 1 | 10 | 0.670 | 0.445 | 0.281 | 4.0049 | 3th |
15 | 0.691 | 0.372 | 0.355 | 7.3922 | 5th | ||||
19 | 0.415 | 0.035 | 0.106 | 5.4744 | 2th | ||||
2 | 5 | 0.797 | 0.574 | 0.289 | 7.5817 | 13th | |||
7 | 0.549 | 0.576 | 0.693 | 1.8745 | 6th | ||||
9 | 0.841 | 0.380 | 0.508 | 8.5441 | 12th | ||||
3 | 4 | 0.623 | 0.678 | 0.384 | 4.8175 | 23th | |||
5 | 0.542 | 0.278 | 0.585 | 4.2803 | 3th | ||||
6 | 0.492 | 0.445 | 0.548 | 2.8829 | 3th | ||||
4 | 3 | 0.543 | 0.547 | 0.397 | 4.2073 | 24th | |||
4 | 0.358 | 0.131 | 0.306 | 6.0464 | 6th | ||||
Cluster B | 12 | 25 | 1 | 12 | 0.515 | 0.536 | 0.353 | 0.9840 | 5th |
17 | 0.452 | 0.350 | 0.523 | 1.4372 | 2th | ||||
23 | 0.407 | 0.375 | 0.448 | 1.2945 | 5th | ||||
2 | 8 | 0.598 | 0.359 | 0.503 | 1.4261 | 10th | |||
9 | 0.523 | 0.499 | 0.334 | 0.9553 | 9th | ||||
12 | 0.403 | 0.429 | 0.387 | 1.3008 | 7th | ||||
3 | 4 | 0.491 | 0.417 | 0.447 | 1.4915 | 7th | |||
6 | 0.457 | 0.472 | 0.484 | 1.4075 | 6th | ||||
7 | 0.553 | 0.342 | 0.363 | 2.1231 | 8th | ||||
4 | 3 | 0.480 | 0.449 | 0.411 | 1.7526 | 12th | |||
4 | 0.488 | 0.513 | 0.349 | 1.0793 | 4th | ||||
6 | 0.427 | 0.487 | 0.360 | 0.9120 | 8th | ||||
5 | 2 | 0.443 | 0.402 | 0.517 | 1.6537 | 15th | |||
3 | 0.490 | 0.412 | 0.422 | 2.0418 | 12th | ||||
5 | 0.492 | 0.357 | 0.393 | 1.2083 | 13th | ||||
6 | 2 | 0.468 | 0.393 | 0.520 | 1.4834 | 6th | |||
3 | 0.461 | 0.489 | 0.354 | 1.1160 | 5th | ||||
4 | 0.473 | 0.416 | 0.474 | 1.7732 | 7th | ||||
Cluster C | 8 | 17 | 1 | 9 | 0.343 | 0.139 | 0.181 | 0.7130 | 6th |
13 | 0.560 | 0.572 | 0.337 | 0.6818 | 6th | ||||
17 | 0.599 | 0.506 | 0.429 | 3.4085 | 2th | ||||
2 | 5 | 0.539 | 0.351 | 0.340 | 0.6894 | 7th | |||
7 | 0.593 | 0.508 | 0.404 | 0.6586 | 9th | ||||
8 | 0.540 | 0.590 | 0.727 | 1.7023 | 5th | ||||
3 | 3 | 0.477 | 0.514 | 0.431 | 0.7625 | 12th | |||
5 | 0.544 | 0.395 | 0.503 | 1.4863 | 5th | ||||
6 | 0.536 | 0.483 | 0.527 | 0.7203 | 2th | ||||
Cluster D | 5 | 11 | 1 | 6 | 0.322 | 0.099 | 0.165 | 2.7068 | 11th |
9 | 0.399 | 0.446 | 0.380 | 0.3960 | 3th | ||||
11 | 0.357 | 0.341 | 0.325 | 0.6758 | 4th | ||||
2 | 3 | 0.276 | 0.465 | 0.227 | 0.6714 | 10th | |||
4 | 0.351 | 0.368 | 0.448 | 1.3609 | 4th | ||||
5 | 0.394 | 0.450 | 0.424 | 1.0653 | 12th | ||||
3 | 2 | 0.377 | 0.422 | 0.451 | 0.8053 | 7th | |||
3 | 0.332 | 0.253 | 0.028 | 0.9770 | 4th | ||||
4 | 0.395 | 0.398 | 0.347 | 1.5418 | 5th |
Cluster | Input Type | Layer | Neuron | R Value of Training | R Value of Validation | R Value of Test | MSE | Terminated Epoch |
---|---|---|---|---|---|---|---|---|
A | I | 2 | 7 | 0.812 | 0.628 | 0.509 | 3.2180 | 14th |
S | 2 | 7 | 0.549 | 0.576 | 0.693 | 1.8745 | 6th | |
B | I | 4 | 6 | 0.535 | 0.456 | 0.275 | 1.0701 | 6th |
S | 4 | 6 | 0.427 | 0.487 | 0.360 | 0.9120 | 8th | |
C | I | 2 | 7 | 0.477 | 0.514 | 0.431 | 0.7626 | 12th |
S | 2 | 7 | 0.593 | 0.508 | 0.404 | 0.6586 | 6th | |
D | I | 1 | 9 | 0.178 | 0.346 | 0.288 | 0.5590 | 5th |
S | 1 | 9 | 0.399 | 0.446 | 0.380 | 0.3960 | 3th |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, E.; Jung, S.; Lee, J. Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors. ISPRS Int. J. Geo-Inf. 2021, 10, 99. https://doi.org/10.3390/ijgi10020099
Kwon E, Jung S, Lee J. Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors. ISPRS International Journal of Geo-Information. 2021; 10(2):99. https://doi.org/10.3390/ijgi10020099
Chicago/Turabian StyleKwon, Eunseo, Sungwon Jung, and Jaewook Lee. 2021. "Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors" ISPRS International Journal of Geo-Information 10, no. 2: 99. https://doi.org/10.3390/ijgi10020099
APA StyleKwon, E., Jung, S., & Lee, J. (2021). Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors. ISPRS International Journal of Geo-Information, 10(2), 99. https://doi.org/10.3390/ijgi10020099