Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Image Preprocessing
2.3. Calculation of Land-Cover Changes
2.4. Computation of Normalized Differences Vegetation Index (NDVI) and Land Surface Temperature (LST)
2.5. Statistical Analysis
3. Results
3.1. Land-Cover Changes of Mérida
3.2. Historical LST Results
3.3. Historical NDVI Results
3.4. Relationship between LST, Land Use Change (LUC), and NDVI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; He, X.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China. Sustain. Sci. Pract. Policy 2017, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Glaeser, E.L. A World of Cities: The Causes and Consequences of Urbanization in Poorer Countries. J. Eur. Econ. Assoc. 2014, 12, 1154–1199. [Google Scholar] [CrossRef]
- Wup, U.N. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER. A/420); United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Censo de Población y Vivienda. 2010. Resultados definitivos, México. 2011. Available online: https://www.inegi.org.mx/programas/ccpv/2010/ (accessed on 12 October 2020).
- Ciardini, V.; Caporaso, L.; Sozzi, R.; Petenko, I.; Bolignano, A.; Morelli, M.; Melas, D.; Argentini, S. Interconnections of the urban heat island with the spatial and temporal micrometeorological variability in Rome. Urban. Clim. 2019, 29, 100493. [Google Scholar] [CrossRef]
- Romero Rodríguez, L.; Sánchez Ramos, J.; Sánchez de la Flor, F.J.; Álvarez Domínguez, S. Analyzing the urban heat Island: Comprehensive methodology for data gathering and optimal design of mobile transects. Sustain. Cities Soc. 2020, 55, 102027. [Google Scholar] [CrossRef]
- Martin-Vide, J.; Moreno-Garcia, M.C. Probability values for the intensity of Barcelona’s urban heat island (Spain). Atmos. Res. 2020, 240, 104877. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban. For. Urban. Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Kim, H.H. Urban heat island. Int. J. Remote Sens. 1992, 13, 2319–2336. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, S.; Shen, S.; Hai, Y.; Fang, Y. Analyzing the relationship between urban heat island and land use/cover changes in Beijing using remote sensing images. Remote Sens. Modeling Ecosyst. Sustain. VI 2009, 7454, 74541J. [Google Scholar]
- Aslan, N.; Koc-San, D. Analysis of relationship between urban heat island effect and land use/cover type using landsat 7 etm and landsat 8 oli images. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 821–828. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban. Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Soltani, A.; Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front. Archit. Res. 2017, 6, 529–538. [Google Scholar] [CrossRef]
- Keeling, C.D.; Whorf, T.P.; Wahlen, M.; van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 1995, 375, 666–670. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Ecology. Phenology feedbacks on climate change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Villarreal, S.; Vargas, R.; Yepez, E.A.; Acosta, J.S.; Castro, A.; Escoto-Rodriguez, M.; Lopez, E.; Martínez-Osuna, J.; Rodriguez, J.C.; Smith, S.V.; et al. Contrasting precipitation seasonality influences evapotranspiration dynamics in water-limited shrublands: Shrubland evapotranspiration dynamics. J. Geophys. Res. Biogeosci. 2016, 121, 494–508. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.X.; Davies, S.J.; Ashton, P.S.; Bunyavejchewin, S.; Supardi, M.N.N.; Kassim, A.R.; Tan, S.; Moorcroft, P.R. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proc. Biol. Sci. 2012, 279, 3923–3931. [Google Scholar] [CrossRef]
- Wright, S.J. Phenological Responses to Seasonality in Tropical Forest Plants. In Tropical Forest Plant Ecophysiology; Mulkey, S.S., Chazdon, R.L., Smith, A.P., Eds.; Springer: Boston, MA, USA, 1996; pp. 440–460. ISBN 9781461311638. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- De Faria Peres, L.; de Lucena, A.J.; Rotunno Filho, O.C.; de Almeida França, J.R. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Chrysoulakis, N. Estimation of the all-wave urban surface radiation balance by use of ASTER multispectral imagery and in situ spatial data. J. Geophys. Res. D Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Yamaguchi, Y. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens. Environ. 2005, 99, 44–54. [Google Scholar] [CrossRef]
- Liu, Y.; Hiyama, T.; Yamaguchi, Y. Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ. 2006, 105, 115–128. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban. Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. Urban heat island and mitigation solutions evaluation in cold climates: A case of Montreal. Adv. Environ. Res. 2017, 54, 143–177. [Google Scholar]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Olofsson, P.; Eklundh, L. Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sens. Environ. 2007, 110, 240–251. [Google Scholar] [CrossRef]
- Pirotti, F.; Parraga, M.A.; Stuaro, E.; Dubbini, M.; Masiero, A.; Ramanzin, M. NDVI From landsat 8 vegetation indices to study movement dynamics of Capra ibex in mountain areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Ridd, M.K. Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Carlson, T.N.; Traci Arthur, S. The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Bai, X.; Tian, Y.; Wu, L.; Xiao, J.; Chen, F.; Qian, Q. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep. 2018, 8, 641. [Google Scholar] [CrossRef] [PubMed]
- Hubp, J.L.; Quesado, J.F.A.; Pereño, R.E. Rasgos geomorfológicos mayores de la Península de Yucatán. Revista Mexicana de Ciencias Geológicas 1992, 10, 143–150. [Google Scholar]
- García Amaro, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2004. [Google Scholar]
- Orellana, R.; Islebe, G.; Espadas, C. Presente, pasado y futuro de los climas de la Península de Yucatán. In Naturaleza y Sociedad del Área maya. Pasado Presente y Futuro; Colunga García, P., Marín, A., Saavedra, L., Eds.; Academia Mexicana de Ciencias y Centro de Investigación Científica de Yucatán: Mérida, México, 2003; pp. 37–52. [Google Scholar]
- Orellana, R.; Espadas, C.; Conde, C.; Gay, C. Atlas escenarios de cambio climático en la Península de Yucatán. Mérida: Centro de Investigación Científica de Yucatán (CICY) 2009, 43, 191–193. [Google Scholar]
- Capurro, L.; Euán, J.; Herrera, J. Manejo sustentable del ecosistema costero de Yucatán. Avance y Perspectiva 2002, 21, 195–204. [Google Scholar]
- Torrescano-Valle, N.; Folan, W.J. Physical Settings, Environmental History with an Outlook on Global Change. In Biodiversity and Conservation of the Yucatán Peninsula; Islebe, G.A., Calmé, S., León-Cortés, J.L., Schmook, B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–37. ISBN 9783319065298. [Google Scholar]
- Miranda, F.; Hernández-X, E. Los tipos de vegetación de México y su clasificación. Bot. Sci. 1963, 29–179. [Google Scholar] [CrossRef]
- Islebe, G.A.; Sánchez-Sánchez, O.; Valdéz-Hernández, M.; Weissenberger, H. Distribution of Vegetation Types. In Biodiversity and Conservation of the Yucatán Peninsula; Islebe, G.A., Calmé, S., León-Cortés, J.L., Schmook, B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 39–53. ISBN 9783319065298. [Google Scholar]
- Irish, R.R.; NASA. Landsat 7 Science Data Users Handbook. 2000; pp. 415–430. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7-data-users-handbook (accessed on 2 June 2020).
- Ihlen, V. Landsat 8 (L8) Data Users Handbook. U.S. Geological Survey. 2019. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-data-users-handbook (accessed on 2 June 2020).
- Chuvieco, E. Fundamentals of Satellite Remote Sensing; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420021516. [Google Scholar]
- Congedo, L. Semi-Automatic Classification Plugin User Manual. Tech. Rep. Navtradevcen 2016. [Google Scholar] [CrossRef]
- QGIS. Available online: https://qgis.org/en/site (accessed on 15 May 2020).
- Leroux, L.; Congedo, L.; Bellón, B.; Gaetano, R.; Bégué, A. Land cover mapping using Sentinel-2 images and the semi-automatic classification plugin: A Northern Burkina Faso case study. QGIS Appl. Agric. For. 2018, 2, 119–151. [Google Scholar]
- Pereira, L.F.; Guimarães, R.M.F. Mapping land uses/covers with Semi-automatic Classification Plugin: Which data set, classifier and sampling design? Nativa Pesquisas Agrárias e 2019, 7, 70–76. [Google Scholar] [CrossRef]
- Balaji, K.; Kamarapermual, R.; Ragunath, K.P.; Jagadeeswaran, R. Evaluating Urbanisation by Land Use/Land Cover Change Detection in Coimbatore Using Remote Sensing and Geographic Information System. Int. J. Agric. Sci. ISSN 2020, 12, 9706–9709. [Google Scholar]
- Henrico, S.; Coetzee, S.; Cooper, A.; Rautenbach, V. Acceptance of open source geospatial software: Assessing QGIS in South Africa with the UTAUT2 model. Trans. GIS 2020, 1–23. [Google Scholar] [CrossRef]
- Yanru, H.; Masoudi, M.; Chadala, A.; Olszewska-Guizzo, A. Visual Quality Assessment of Urban Scenes with the Contemplative Landscape Model: Evidence from a Compact City Downtown Core. Remote Sens. 2020, 12, 3517. [Google Scholar] [CrossRef]
- Karasiak, N.; Perbet, P. Remote sensing of distinctive vegetation in Guiana amazonian park. In QGIS and Applications in Agriculture and Forest; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 215–245. ISBN 9781119457107. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Vectoriales de uso del Suelo y Vegetación Escala 1: 250 000; Serie VI (Conjunto Nacional). 2017. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 25 August 2020).
- Green, E.; Mumby, P.; Edwards, A.; Clark, C. Remote Sensing: Handbook for Tropical Coastal Management; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2000. [Google Scholar]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; De la Riva, J. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens. 2016, 1480307. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Marschner, I.; Donoghoe, M.W.; Donoghoe, M.M.W. Package “glm2”. J. Vol. 2018, 3, 12–15. [Google Scholar]
- Team, R.C. R development core team. RA Lang. Environ. Stat. Comput 2013, 55, 275–286. [Google Scholar]
- OECD. Territorial Reviews: Yucatan, Mexico 2007. OECD Territ. Rev. 2007. Available online: https://www.oecd.org/mexico/oecdterritorialreviewsyucatanmexico.htm (accessed on 3 November 2020).
- Cerón-Palma, I.; Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.-I.; Ponce-Caballero, C.; Rieradevall, J. Towards a green sustainable strategy for social neighbourhoods in Latin America: Case from social housing in Merida, Yucatan, Mexico. Habitat Int. 2013, 38, 47–56. [Google Scholar] [CrossRef]
- Pérez-Medina, S.; López-Falfán, I. Áreas verdes y arbolado en Mérida, Yucatán. Hacia una sostenibilidad urbana. Economía Sociedad y Territorio 2015, 15, 01–33. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, E.; Ward, P.M. Sustainable housing applications and policies for low-income self-build and housing rehab. Habitat Int. 2012, 36, 312–323. [Google Scholar] [CrossRef]
- Turok, I. Deconstructing density: Strategic Dilemmas Confronting the Post-Apartheid city. Cities 2011, 28, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.S.; Duarte, D.H.S. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban. Clim. 2019, 27, 105–123. [Google Scholar] [CrossRef]
- Kitsara, G.; Papaioannou, G.; Retalis, A.; Paronis, D.; Kerkides, P. Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece. Int. J. Remote Sens. 2018, 39, 924–948. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Gillett, N.P.; Zwiers, F.W. Overestimated global warming over the past 20 years. Nat. Clim. Chang. 2013, 3, 767–769. [Google Scholar] [CrossRef]
- COMISION NACIONAL DEL AGUA, Resúmenes Mensuales de Temperatura y Lluvias. 2016. Available online: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 12 November 2020).
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- How Jin Aik, D.; Ismail, M.H.; Muharam, F.M. Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia. Land 2020, 9, 372. [Google Scholar] [CrossRef]
- Kamali Maskooni, E.; Hashemi, H.; Berndtsson, R.; Daneshkar Arasteh, P.; Kazemi, M. Impact of spatiotemporal land-use and land-cover changes on surface urban heat islands in a semiarid region using Landsat data. Int. J. Digit. Earth 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Akinluyi, F.O.; Ishola, K.A. Spatio-temporal trend of vegetation cover over Abuja using Landsat datasets. Int. J. Agric. Environ. Res. 2017, 3. [Google Scholar] [CrossRef]
- Dang, T.; Yue, P.; Bachofer, F.; Wang, M.; Zhang, M. Monitoring Land Surface Temperature Change with Landsat Images during Dry Seasons in Bac Binh, Vietnam. Remote Sens. 2020, 12, 4067. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Ding, H.; Liang, H. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resour. Conserv. Recycl. 2018, 128, 526–534. [Google Scholar] [CrossRef]
- Blake, R.; Grimm, A.; Ichinose, T.; Horton, R.; Gaffin, S.; Jiong, S.; Bader, D.; Cecil, L.D. Urban climate: Processes, trends and projections. In Climate Chagne and Cities: First Assessment Report of the Urban Climate Change Research Newtork; Tosenzweig, C., Solecki, W., Hammer, S., Mehrotra, S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 43–81. [Google Scholar] [CrossRef]
- Estes, M.G., Jr. Urban Heat Island Mitigation Strategies. 2000, pp. 1–4. Available online: https://www.researchgate.net/publication/294517225_Urban_heat_island_mitigation_strategies (accessed on 12 November 2020).
- Sanchez, L.; Reames, T.G. Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban For. Urban Green. 2019, 44, 126331. [Google Scholar] [CrossRef]
ID | Image Name | Path | Row | Year | Month | Day |
---|---|---|---|---|---|---|
Dry Season | ||||||
1 | LT05_L1TP_020045_19950423_20170109_01_T1 | 20 | 45 | 1995 | 4 | 23 |
2 | LT05_L1TP_020046_19950423_20170108_01_T1 | 20 | 46 | 1995 | 4 | 23 |
3 | LE07_L1TP_020045_20000428_20170212_01_T1 | 20 | 45 | 2000 | 4 | 28 |
4 | LE07_L1TP_020046_20000428_20170212_01_T1 | 20 | 46 | 2000 | 4 | 28 |
5 | LE07_L1TP_020045_20020317_20170131_01_T1 | 20 | 45 | 2002 | 3 | 17 |
6 | LE07_L1TP_020046_20020317_20170131_01_T1 | 20 | 46 | 2002 | 3 | 17 |
7 | LC08_L1TP_020045_20140427_20170307_01_T1 | 20 | 45 | 2014 | 4 | 27 |
8 | LC08_L1TP_020046_20140427_20170307_01_T1 | 20 | 46 | 2014 | 4 | 27 |
9 | LC08_L1TP_020045_20150414_20170228_01_T1 | 20 | 45 | 2015 | 4 | 14 |
10 | LC08_L1TP_020046_20150414_20170228_01_T1 | 20 | 46 | 2015 | 4 | 14 |
11 | LC08_L1TP_020045_20160416_20170326_01_T1 | 20 | 45 | 2016 | 3 | 26 |
12 | LC08_L1TP_020046_20160416_20170326_01_T1 | 20 | 46 | 2016 | 3 | 26 |
13 | LC08_L1TP_020045_20180406_20180417_01_T1 | 20 | 45 | 2018 | 4 | 6 |
14 | LC08_L1TP_020046_20180406_20180417_01_T1 | 20 | 46 | 2018 | 4 | 6 |
15 | LC08_L1TP_020045_20190511_20190521_01_T1 | 20 | 45 | 2019 | 5 | 11 |
16 | LC08_L1TP_020046_20190511_20190521_01_T1 | 20 | 46 | 2019 | 5 | 11 |
Wet Season | ||||||
17 | LT05_L1TP_020045_19951203_20170105_01_T1 | 20 | 45 | 1995 | 12 | 3 |
18 | LT05_L1TP_020046_19951203_20170106_01_T1 | 20 | 46 | 1995 | 12 | 3 |
19 | LE07_L1TP_020045_20001106_20170209_01_T1 | 20 | 45 | 2000 | 11 | 6 |
20 | LE07_L1TP_020046_20001106_20170209_01_T1 | 20 | 46 | 2000 | 11 | 6 |
21 | LE07_L1TP_020045_20021230_20170127_01_T1 | 20 | 45 | 2002 | 12 | 30 |
22 | LE07_L1TP_020046_20021230_20170127_01_T1 | 20 | 46 | 2002 | 12 | 30 |
23 | LC08_L1TP_020045_20140105_20170307_01_T1 | 20 | 45 | 2014 | 1 | 5 |
24 | LC08_L1TP_020046_20140105_20170307_01_T1 | 20 | 46 | 2014 | 1 | 5 |
25 | LC08_L1TP_020045_20151108_20170225_01_T1 | 20 | 45 | 2015 | 11 | 8 |
26 | LC08_L1TP_020046_20151108_20170225_01_T1 | 20 | 46 | 2015 | 11 | 8 |
27 | LC08_L1TP_020045_20161228_20170314_01_T1 | 20 | 45 | 2016 | 12 | 18 |
28 | LC08_L1TP_020046_20161228_20170314_01_T1 | 20 | 46 | 2016 | 12 | 18 |
29 | LC08_L1TP_020045_20181202_20181211_01_T1 | 20 | 45 | 2018 | 12 | 2 |
30 | LC08_L1TP_020046_20181202_20181211_01_T1 | 20 | 46 | 2018 | 12 | 2 |
31 | LC08_L1TP_020045_20190119_20190201_01_T1 | 20 | 45 | 2019 | 1 | 19 |
32 | LC08_L1TP_020046_20190119_20190201_01_T1 | 20 | 46 | 2019 | 1 | 19 |
Sensors | Characteristics of Sensors | |||
---|---|---|---|---|
Bands | Spatial Resolution (m) | Wavelength (µm) | ||
Landsat 5MT * and Landsat 7 ETM+ ** | 1 | Blue | 30 | 0.45–0.515 |
2 | Green | 30 | 0.525–0.605 | |
3 | Red | 30 | 0.63–0.69 | |
4 | NIR | 30 | 0.775–0.90 | |
5 | SWIR 1 | 30 | 1.55–1.75 | |
6 | Thermal * | 120 | 10.41–12.5 | |
6 | Thermal ** | 60 | 10.4–12.5 | |
Landsat 8 OLI | 2 | Blue | 30 | 0.450–0.515 |
3 | Green | 30 | 0.525–0.600 | |
4 | Red | 30 | 0.630–0.680 | |
5 | NIR | 30 | 0.845–0.885 | |
6 | SWIR 1 | 30 | 1.560–1.660 | |
10 | Thermal | 100 | 10.6–11.2 |
1995 | 2019 | |||||
---|---|---|---|---|---|---|
LSC | Area (ha) | Occupancy % | # Polygons | Area (ha) | Occupancy % | # Polygons |
Urban | 14,505.5 | 14.0 | 8577 | 24,215.66 | 23.1 | 5715 |
Scattered vegetation | 18,151.1 | 17.1 | 6493 | 24,225.47 | 23.1 | 6509 |
Vegetation | 72,343.9 | 68.9 | 3701 | 56,448.76 | 53.8 | 2821 |
Total | 105,000.48 | 99.99 | 18,771 | 104,889.89 | 99.9 | 15,045 |
Year | Class Cover | Total Precision [%] | Kappa Coefficient | Producer Accuracy [%] | User Accuracy [%] | Overall Accuracy [%] | Kappa Hat |
---|---|---|---|---|---|---|---|
1995 | Urban | 95.21 | 0.96 | 82.44 | 89.16 | 89.16 | 0.88 |
Scatt. Veg. | 89.08 | 89.11 | 89.11 | 0.87 | |||
Veg. | 98.61 | 97.49 | 97.49 | 0.92 | |||
2000 | Urban | 97.86 | 0.96 | 89.29 | 98.14 | 98.14 | 0.98 |
Scatt. Veg. | 95.28 | 95.03 | 95.03 | 0.94 | |||
Veg. | 98.54 | 98.85 | 98.85 | 0.96 | |||
2002 | Urban | 95.62 | 0.92 | 91.08 | 92.80 | 92.8 | 0.92 |
Scatt. Veg. | 89.61 | 95.14 | 95.14 | 0.94 | |||
Veg. | 98.17 | 95.98 | 95.98 | 0.9 | |||
2014 | Urban | 96.13 | 0.92 | 90.36 | 82.54 | 82.54 | 0.82 |
Scatt. Veg. | 85.34 | 94.59 | 94.59 | 0.94 | |||
Veg. | 99.48 | 97.92 | 97.92 | 0.93 | |||
2015 | Urban | 82.43 | 0.71 | 93.93 | 95.88 | 95.88 | 0.95 |
Scatt. Veg. | 98.27 | 79.25 | 79.25 | 0.56 | |||
Veg. | 30.33 | 74.16 | 74.16 | 0.68 | |||
2016 | Urban | 94.1 | 0.9 | 85.71 | 88.74 | 88.74 | 0.86 |
Scatt. Veg. | 97.99 | 97.71 | 97.71 | 0.97 | |||
Veg. | 100 | 99.41 | 99.41 | 0.99 | |||
2018 | Urban | 79.95 | 0.69 | 80.99 | 91.78 | 91.78 | 0.91 |
Scatt. Veg. | 55.86 | 92.53 | 92.53 | 0.89 | |||
Veg. | 99.88 | 69.77 | 69.77 | 0.49 | |||
2019 | Urban | 81.2 | 0.69 | 93.56 | 92.81 | 92.81 | 0.92 |
Scatt. Veg. | 61.91 | 63.78 | 63.78 | 0.52 | |||
Veg. | 84.76 | 84.38 | 84.38 | 0.66 |
NDVI | Temperature °C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Wet | Dry | Wet | |||||||||
Year | Min | Ave | Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | Max |
1995 | −0.35 | 0.29 | 0.93 | −0.38 | 0.28 | 0.93 | 23.2 | 30.60 | 38.0 | 20.2 | 26.35 | 32.5 |
2000 | −0.3 | 0.18 | 0.66 | −0.53 | 0.14 | 0.81 | 19.7 | 33.55 | 47.4 | 16.0 | 28.25 | 40.5 |
2002 | −0.35 | 0.21 | 0.77 | −0.42 | 0.17 | 0.76 | 13.8 | 30.05 | 46.3 | 13.3 | 26.90 | 40.5 |
2014 | −0.65 | 0.07 | 0.79 | −0.88 | 0.01 | 0.9 | 18.3 | 32.90 | 47.5 | 18.0 | 25.85 | 33.7 |
2015 | −0.67 | 0.07 | 0.81 | −0.81 | 0.03 | 0.87 | 18.7 | 30.05 | 41.4 | 5.7 | 19.30 | 32.9 |
2016 | −0.53 | 0.145 | 0.82 | −0.86 | 0.01 | 0.87 | 21.6 | 30.90 | 40.2 | 16.7 | 25.00 | 33.3 |
2018 | −0.69 | 0.045 | 0.78 | −0.2 | 0.18 | 0.56 | 21.1 | 31.25 | 41.4 | 19.4 | 25.45 | 31.5 |
2019 | −0.73 | 0.04 | 0.81 | −0.74 | 0.03 | 0.8 | 23.1 | 35.45 | 47.8 | 14.5 | 14.50 | 33.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palafox-Juárez, E.B.; López-Martínez, J.O.; Hernández-Stefanoni, J.L.; Hernández-Nuñez, H. Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS Int. J. Geo-Inf. 2021, 10, 76. https://doi.org/10.3390/ijgi10020076
Palafox-Juárez EB, López-Martínez JO, Hernández-Stefanoni JL, Hernández-Nuñez H. Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS International Journal of Geo-Information. 2021; 10(2):76. https://doi.org/10.3390/ijgi10020076
Chicago/Turabian StylePalafox-Juárez, Erika Betzabeth, Jorge Omar López-Martínez, José Luis Hernández-Stefanoni, and Héctor Hernández-Nuñez. 2021. "Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico" ISPRS International Journal of Geo-Information 10, no. 2: 76. https://doi.org/10.3390/ijgi10020076
APA StylePalafox-Juárez, E. B., López-Martínez, J. O., Hernández-Stefanoni, J. L., & Hernández-Nuñez, H. (2021). Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS International Journal of Geo-Information, 10(2), 76. https://doi.org/10.3390/ijgi10020076