Performance and Productivity of Regional Air Transport Systems in China
Abstract
:1. Introduction
2. Methods
2.1. The Three Stage DEA Model
2.2. The Malmquist Productivity Index and Bootstrap-Malmquist Approach
3. Data
3.1. Input Indicators
3.2. Output Indicators
3.3. Environmental Variables
4. Results
4.1. First Stage Results
4.2. Second Stage Results
- 1
- GDP per capita
- 2
- Consumption
- 3
- Technology level
- 4
- Tourism industry
- 5
- Wholesale and retail industry
- 6
- Openness to foreign investment
- 7
- Industrial structure
4.3. Third Stage Results
- Pure technical efficiency (PTE)
- Scale efficiency (SE)
4.4. The Results of Bootstrap-Malmquist Productivity Model
- The outline of the air transport productivity change
- Total Factor Productivity Index (TFPI)
- Technical Efficiency Change Index (TECI)
- Technological change Index (TCI)
5. Conclusions and Discussion of Policy Implications
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DEA | Data envelopment analysis |
DMU | Decision making unit |
TE | Technical efficiency |
PTE | Pure technical efficiency |
SE | Scale efficiency |
IRS | Increasing returns to scale |
DRS | Decreasing returns to scale |
CRS | Constant returns to scale |
SFA | Stochastic frontier analysis |
TFPI | Total factor productivity index |
TECI | Technical efficiency change index |
TCI | Technological change index |
Appendix A
Region | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.854 | 0.865 | 0.883 | 0.975 |
Tianjin | 0.333 | 0.631 | 0.741 | 0.649 | 0.623 | 1 | 0.752 | 0.823 | 0.825 | 0.825 | 0.497 | 0.577 | 0.608 | 0.534 | 0.719 | 0.652 | 0.674 | |
Hebei | 1 | 0.592 | 0.861 | 1 | 0.493 | 0.52 | 0.548 | 0.496 | 0.437 | 0.437 | 0.526 | 0.529 | 0.633 | 0.518 | 0.607 | 0.46 | 0.604 | |
Shanxi | 0.343 | 0.342 | 0.254 | 0.336 | 0.328 | 0.359 | 0.381 | 0.441 | 0.431 | 0.431 | 0.593 | 0.656 | 0.764 | 0.845 | 1 | 1 | 0.532 | |
Inner Mongolia | 0.416 | 0.186 | 0.256 | 0.302 | 0.268 | 0.244 | 0.24 | 0.266 | 0.318 | 0.318 | 0.633 | 0.884 | 1 | 1 | 1 | 1 | 0.521 | |
Mean | 0.618 | 0.550 | 0.622 | 0.657 | 0.542 | 0.625 | 0.584 | 0.605 | 0.602 | 0.602 | 0.650 | 0.729 | 0.801 | 0.750 | 0.838 | 0.799 | 0.661 | |
Northeast China | Liaoning | 0.149 | 0.364 | 0.389 | 0.412 | 0.358 | 0.367 | 0.4 | 0.333 | 0.353 | 0.353 | 0.445 | 0.44 | 0.393 | 0.418 | 0.469 | 0.535 | 0.386 |
Jilin | 0.18 | 0.24 | 0.254 | 0.244 | 0.192 | 0.215 | 0.216 | 0.377 | 0.442 | 0.442 | 0.483 | 0.522 | 0.719 | 0.852 | 0.576 | 0.575 | 0.408 | |
Heilongjiang | 0.163 | 0.369 | 0.357 | 0.434 | 0.411 | 0.69 | 0.607 | 0.662 | 0.71 | 0.71 | 0.758 | 0.911 | 1 | 1 | 0.813 | 0.784 | 0.649 | |
Mean | 0.164 | 0.324 | 0.333 | 0.363 | 0.320 | 0.424 | 0.408 | 0.457 | 0.502 | 0.502 | 0.562 | 0.624 | 0.704 | 0.757 | 0.619 | 0.631 | 0.481 | |
East China | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Jiangsu | 1 | 0.699 | 0.855 | 1 | 1 | 0.739 | 1 | 1 | 1 | 1 | 1 | 0.979 | 0.997 | 1 | 1 | 1 | 0.954 | |
Zhejiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 | |
Anhui | 0.246 | 0.415 | 0.494 | 0.508 | 0.479 | 0.918 | 1 | 0.464 | 0.407 | 0.407 | 0.54 | 0.506 | 1 | 0.702 | 0.843 | 0.79 | 0.607 | |
Fujian | 0.317 | 0.617 | 0.515 | 0.533 | 0.438 | 0.401 | 0.467 | 0.376 | 0.389 | 0.389 | 0.658 | 0.636 | 0.621 | 0.565 | 0.639 | 0.559 | 0.508 | |
Jiangxi | 1 | 0.415 | 0.214 | 0.509 | 0.445 | 0.581 | 0.634 | 0.377 | 0.421 | 0.421 | 1 | 0.549 | 1 | 1 | 1 | 1 | 0.660 | |
Shandong | 0.4 | 0.588 | 0.546 | 0.584 | 0.456 | 0.487 | 0.472 | 0.589 | 0.607 | 0.607 | 0.61 | 0.656 | 0.716 | 0.615 | 0.742 | 0.959 | 0.602 | |
Mean | 0.709 | 0.676 | 0.661 | 0.733 | 0.688 | 0.732 | 0.796 | 0.687 | 0.689 | 0.689 | 0.830 | 0.761 | 0.905 | 0.840 | 0.889 | 0.901 | 0.762 | |
Central and Southern China | Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.967 | 1 | 1 | 1 | 0.998 |
Hubei | 0.436 | 0.466 | 0.356 | 0.505 | 0.364 | 0.424 | 0.439 | 0.412 | 0.474 | 0.474 | 0.752 | 0.712 | 1 | 1 | 1 | 0.684 | 0.594 | |
Hunan | 0.504 | 0.635 | 1 | 0.922 | 0.931 | 0.978 | 1 | 0.91 | 0.68 | 0.68 | 0.771 | 0.925 | 0.931 | 1 | 0.977 | 0.723 | 0.848 | |
Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 | |
Guangxi | 1 | 0.708 | 0.604 | 0.757 | 0.658 | 0.699 | 0.635 | 0.683 | 0.602 | 0.602 | 0.783 | 0.93 | 0.578 | 0.742 | 0.822 | 0.732 | 0.721 | |
Hainan | 0.287 | 0.667 | 0.525 | 0.433 | 0.327 | 0.299 | 0.346 | 0.108 | 0.112 | 0.112 | 0.495 | 0.512 | 0.669 | 0.401 | 0.308 | 0.484 | 0.380 | |
Mean | 0.705 | 0.746 | 0.748 | 0.770 | 0.713 | 0.733 | 0.737 | 0.686 | 0.645 | 0.645 | 0.800 | 0.847 | 0.858 | 0.857 | 0.851 | 0.771 | 0.757 | |
Southwest China | Chongqing | 0.295 | 0.689 | 0.488 | 1 | 1 | 1 | 0.657 | 0.353 | 0.429 | 0.429 | 0.735 | 0.714 | 0.989 | 0.818 | 0.684 | 0.691 | 0.686 |
Sichuan | 0.238 | 0.442 | 0.462 | 0.447 | 0.405 | 0.401 | 0.374 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.736 | |
Guizhou | 0.332 | 0.5 | 0.482 | 0.585 | 0.48 | 0.446 | 0.437 | 0.573 | 0.468 | 0.468 | 0.522 | 0.558 | 0.706 | 0.641 | 0.491 | 0.529 | 0.514 | |
Yunnan | 0.667 | 1 | 1 | 1 | 1 | 0.935 | 0.655 | 0.444 | 0.393 | 0.393 | 0.584 | 0.639 | 0.615 | 0.73 | 0.79 | 0.952 | 0.737 | |
Mean | 0.383 | 0.658 | 0.608 | 0.758 | 0.721 | 0.696 | 0.531 | 0.593 | 0.573 | 0.573 | 0.710 | 0.728 | 0.828 | 0.797 | 0.741 | 0.793 | 0.668 | |
Northwest China | Shaanxi | 0.182 | 0.372 | 0.335 | 0.471 | 0.676 | 0.627 | 0.676 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.771 |
Gansu | 0.147 | 0.23 | 0.247 | 0.277 | 0.413 | 1 | 1 | 1 | 0.891 | 0.891 | 1 | 1 | 0.968 | 1 | 1 | 1 | 0.754 | |
Qinghai | 1 | 1 | 1 | 0.891 | 0.732 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.976 | |
Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 0.729 | 0.96 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.981 | |
Xinjiang | 0.142 | 0.329 | 0.353 | 0.392 | 0.284 | 0.281 | 0.254 | 0.325 | 0.421 | 0.421 | 0.533 | 0.719 | 0.773 | 0.77 | 0.704 | 0.772 | 0.467 | |
Mean | 0.494 | 0.586 | 0.587 | 0.606 | 0.621 | 0.782 | 0.732 | 0.857 | 0.862 | 0.862 | 0.907 | 0.944 | 0.948 | 0.954 | 0.941 | 0.954 | 0.790 |
Region | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 0.793 | 0.502 | 0.301 | 0.316 | 0.247 | 0.286 | 0.311 | 0.312 | 0.434 | 0.434 | 0.47 | 0.554 | 0.521 | 0.54 | 0.542 | 0.502 | 0.442 |
Tianjin | 0.822 | 0.909 | 0.871 | 0.898 | 0.846 | 0.854 | 0.899 | 0.9 | 0.928 | 0.928 | 0.99 | 0.915 | 0.838 | 0.816 | 0.83 | 0.868 | 0.882 | |
Hebei | 0.951 | 0.815 | 0.356 | 0.507 | 0.579 | 0.355 | 0.403 | 0.478 | 0.56 | 0.56 | 0.979 | 0.971 | 0.811 | 0.874 | 0.716 | 0.903 | 0.676 | |
Shanxi | 0.87 | 0.877 | 0.762 | 0.846 | 0.874 | 0.867 | 0.99 | 0.783 | 0.812 | 0.812 | 0.973 | 0.999 | 0.95 | 0.98 | 0.841 | 1 | 0.890 | |
Inner Mongolia | 0.3 | 0.858 | 0.658 | 0.764 | 0.808 | 0.783 | 0.96 | 0.737 | 0.729 | 0.729 | 0.998 | 0.931 | 1 | 1 | 1 | 1 | 0.828 | |
Mean | 0.747 | 0.792 | 0.590 | 0.666 | 0.671 | 0.629 | 0.713 | 0.642 | 0.693 | 0.693 | 0.882 | 0.874 | 0.824 | 0.842 | 0.786 | 0.855 | 0.744 | |
Northeast China | Liaoning | 0.997 | 0.997 | 0.995 | 0.992 | 0.995 | 0.986 | 0.974 | 0.999 | 0.945 | 0.945 | 0.997 | 0.984 | 0.992 | 0.961 | 0.963 | 0.991 | 0.982 |
Jilin | 0.419 | 0.96 | 0.73 | 0.8 | 0.803 | 0.74 | 0.817 | 0.638 | 0.668 | 0.668 | 0.9 | 0.982 | 0.804 | 0.721 | 0.713 | 0.893 | 0.766 | |
Heilongjiang | 0.709 | 0.952 | 0.882 | 0.953 | 0.881 | 0.496 | 0.755 | 0.847 | 0.852 | 0.852 | 0.977 | 0.995 | 1 | 0.955 | 0.777 | 0.961 | 0.865 | |
Mean | 0.708 | 0.970 | 0.869 | 0.915 | 0.893 | 0.741 | 0.849 | 0.828 | 0.822 | 0.822 | 0.958 | 0.987 | 0.932 | 0.879 | 0.818 | 0.948 | 0.871 | |
East China | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.964 | 0.998 |
Jiangsu | 1 | 0.963 | 0.956 | 1 | 0.897 | 0.898 | 1 | 1 | 1 | 1 | 1 | 0.999 | 0.996 | 1 | 1 | 1 | 0.982 | |
Zhejiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.839 | 0.835 | 0.835 | 1 | 1 | 1 | 1 | 1 | 1 | 0.969 | |
Anhui | 0.684 | 0.97 | 0.787 | 0.827 | 0.829 | 0.45 | 0.597 | 0.652 | 0.628 | 0.628 | 0.942 | 0.994 | 0.86 | 0.887 | 0.868 | 0.862 | 0.779 | |
Fujian | 0.951 | 0.999 | 1 | 0.999 | 0.985 | 0.978 | 0.925 | 0.977 | 0.988 | 0.988 | 0.9 | 0.991 | 0.974 | 0.972 | 0.97 | 0.941 | 0.971 | |
Jiangxi | 1 | 0.944 | 0.81 | 0.927 | 0.847 | 0.591 | 0.627 | 0.683 | 0.695 | 0.695 | 1 | 0.998 | 0.951 | 1 | 0.757 | 1 | 0.845 | |
Shandong | 0.975 | 0.999 | 0.999 | 0.996 | 0.996 | 0.995 | 0.981 | 0.875 | 0.856 | 0.856 | 0.999 | 0.987 | 0.983 | 0.997 | 0.847 | 0.528 | 0.929 | |
Mean | 0.944 | 0.982 | 0.936 | 0.964 | 0.936 | 0.845 | 0.876 | 0.861 | 0.857 | 0.857 | 0.977 | 0.996 | 0.966 | 0.979 | 0.920 | 0.899 | 0.925 | |
Central and Southern China | Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.98 | 1 | 1 | 1 | 0.999 |
Hubei | 0.991 | 0.979 | 0.958 | 0.948 | 0.958 | 0.977 | 0.905 | 0.949 | 0.959 | 0.959 | 0.938 | 0.927 | 1 | 0.996 | 1 | 0.848 | 0.956 | |
Hunan | 0.959 | 0.991 | 1 | 0.986 | 0.962 | 0.959 | 0.978 | 0.955 | 0.968 | 0.968 | 0.998 | 0.975 | 0.997 | 0.974 | 1 | 0.986 | 0.979 | |
Guangdong | 0.568 | 0.815 | 0.706 | 0.652 | 0.473 | 0.459 | 0.452 | 0.455 | 0.435 | 0.435 | 0.715 | 0.397 | 0.418 | 0.456 | 0.519 | 0.506 | 0.529 | |
Guangxi | 1 | 0.993 | 0.981 | 0.979 | 0.947 | 0.941 | 0.977 | 0.923 | 0.933 | 0.933 | 0.994 | 0.954 | 0.973 | 0.989 | 0.992 | 0.997 | 0.969 | |
Hainan | 0.719 | 0.999 | 0.983 | 0.992 | 0.966 | 0.863 | 0.725 | 0.993 | 0.99 | 0.99 | 0.617 | 0.884 | 0.993 | 0.991 | 0.984 | 0.708 | 0.900 | |
Mean | 0.873 | 0.963 | 0.938 | 0.926 | 0.884 | 0.867 | 0.840 | 0.879 | 0.881 | 0.881 | 0.877 | 0.856 | 0.894 | 0.901 | 0.916 | 0.841 | 0.888 | |
Southwest China | Chongqing | 0.949 | 0.994 | 0.978 | 0.995 | 1 | 1 | 0.887 | 0.97 | 0.992 | 0.992 | 0.993 | 1 | 0.993 | 0.991 | 0.973 | 0.867 | 0.973 |
Sichuan | 0.952 | 0.999 | 1 | 1 | 0.969 | 0.901 | 0.979 | 0.417 | 0.425 | 0.425 | 0.976 | 0.443 | 0.582 | 0.625 | 0.589 | 0.553 | 0.740 | |
Guizhou | 0.597 | 0.985 | 0.876 | 0.9 | 0.901 | 0.875 | 0.763 | 0.784 | 0.814 | 0.814 | 0.982 | 0.989 | 0.973 | 0.958 | 0.958 | 0.924 | 0.881 | |
Yunnan | 0.513 | 1 | 1 | 1 | 0.944 | 0.956 | 0.994 | 0.649 | 0.614 | 0.614 | 0.807 | 0.843 | 0.995 | 0.808 | 0.615 | 0.473 | 0.802 | |
Mean | 0.753 | 0.995 | 0.964 | 0.974 | 0.954 | 0.933 | 0.906 | 0.705 | 0.711 | 0.711 | 0.940 | 0.819 | 0.886 | 0.846 | 0.784 | 0.704 | 0.849 | |
Northwest China | Shaanxi | 0.987 | 0.996 | 1 | 0.978 | 0.981 | 0.977 | 0.989 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.994 |
Gansu | 0.407 | 0.86 | 0.646 | 0.876 | 0.508 | 0.369 | 0.513 | 0.632 | 0.562 | 0.562 | 0.945 | 1 | 0.854 | 0.918 | 0.902 | 1 | 0.722 | |
Qinghai | 0.446 | 0.896 | 0.414 | 0.401 | 0.435 | 0.376 | 1 | 0.363 | 0.343 | 0.343 | 1 | 0.726 | 0.667 | 0.631 | 0.64 | 0.457 | 0.571 | |
Ningxia | 0.345 | 0.856 | 0.635 | 0.82 | 0.647 | 0.642 | 0.725 | 0.5 | 0.616 | 0.616 | 0.903 | 1 | 0.874 | 0.837 | 1 | 0.986 | 0.750 | |
Xinjiang | 0.709 | 0.99 | 0.983 | 0.949 | 0.94 | 0.935 | 0.986 | 0.903 | 0.93 | 0.93 | 0.989 | 1 | 0.994 | 0.981 | 0.971 | 0.894 | 0.943 | |
Mean | 0.579 | 0.920 | 0.736 | 0.805 | 0.702 | 0.660 | 0.843 | 0.680 | 0.690 | 0.690 | 0.967 | 0.945 | 0.878 | 0.873 | 0.903 | 0.867 | 0.796 |
Region | 2002–2003 | 2003–2004 | 2004–2005 | 2005–2006 | 2006–2007 | 2007–2008 | 2008–2009 | 2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | Average over Study Period | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 0.830 | 0.879 | 0.909 | 0.957 | 0.969 | 0.907 | 1.114 | 1.042 | 1.126 | 1.001 | 0.966 | 1.258 | 0.982 | 0.957 | 0.876 | 0.985 |
Tianjin | 0.737 | 1.052 | 1.000 | 0.913 | 1.001 | 0.931 | 0.954 | 1.013 | 0.962 | 0.711 | 0.942 | 0.928 | 0.569 | 1.050 | 1.310 | 0.938 | |
Hebei | 0.983 | 1.086 | 0.911 | 0.925 | 0.961 | 0.981 | 1.056 | 0.868 | 0.981 | 0.976 | 0.891 | 0.888 | 0.485 | 1.058 | 1.539 | 0.973 | |
Shanxi | 1.504 | 0.953 | 0.976 | 0.987 | 1.000 | 1.028 | 0.987 | 0.966 | 0.953 | 0.945 | 0.994 | 0.938 | 0.648 | 0.940 | 1.165 | 0.999 | |
Inner Mongolia | 1.326 | 1.060 | 0.948 | 0.968 | 0.986 | 0.962 | 1.024 | 0.944 | 0.936 | 0.960 | 0.967 | 0.956 | 0.566 | 1.022 | 1.512 | 1.009 | |
Northeast China | Liaoning | 0.935 | 1.222 | 0.982 | 1.034 | 1.027 | 1.027 | 0.999 | 1.043 | 0.804 | 0.921 | 1.015 | 0.973 | 0.658 | 1.059 | 1.277 | 0.998 |
Jilin | 0.593 | 1.101 | 0.922 | 0.961 | 0.997 | 0.972 | 1.034 | 0.988 | 0.984 | 1.015 | 1.000 | 0.883 | 0.694 | 0.901 | 1.254 | 0.953 | |
Heilongjiang | 0.940 | 1.109 | 0.954 | 0.995 | 0.878 | 0.964 | 0.934 | 0.936 | 1.005 | 1.045 | 0.968 | 0.919 | 0.758 | 0.883 | 1.079 | 0.958 | |
East China | Shanghai | 0.994 | 0.999 | 0.946 | 0.876 | 0.918 | 0.998 | 0.947 | 1.108 | 0.994 | 1.042 | 1.005 | 1.050 | 0.899 | 0.917 | 0.973 | 0.978 |
Jiangsu | 1.132 | 1.163 | 0.896 | 0.871 | 1.076 | 1.053 | 0.996 | 0.942 | 0.926 | 0.962 | 0.890 | 0.880 | 0.884 | 1.017 | 1.195 | 0.992 | |
Zhejiang | 1.008 | 1.383 | 0.836 | 1.301 | 1.031 | 0.958 | 1.121 | 1.008 | 1.004 | 1.022 | 1.141 | 1.051 | 0.827 | 1.029 | 1.316 | 1.069 | |
Anhui | 0.954 | 1.111 | 0.932 | 0.984 | 0.919 | 0.929 | 0.883 | 0.902 | 0.929 | 0.949 | 0.932 | 0.939 | 0.568 | 0.982 | 1.231 | 0.943 | |
Fujian | 0.990 | 1.159 | 0.973 | 1.034 | 1.040 | 1.019 | 0.973 | 1.127 | 1.049 | 0.925 | 0.980 | 0.953 | 0.650 | 1.002 | 1.304 | 1.012 | |
Jiangxi | 0.860 | 0.984 | 1.044 | 0.948 | 0.938 | 0.962 | 0.892 | 0.944 | 0.960 | 1.034 | 0.839 | 1.011 | 0.620 | 0.924 | 1.206 | 0.944 | |
Shandong | 1.076 | 1.191 | 0.957 | 1.010 | 1.037 | 0.936 | 1.046 | 1.003 | 1.121 | 0.863 | 1.057 | 0.978 | 0.660 | 1.073 | 1.511 | 1.035 | |
Central and Southern China | Henan | 0.770 | 1.310 | 1.278 | 0.914 | 1.448 | 1.574 | 1.204 | 1.130 | 0.784 | 1.264 | 0.801 | 0.747 | 0.759 | 1.053 | 1.541 | 1.105 |
Hubei | 0.890 | 1.105 | 0.996 | 0.969 | 1.057 | 0.925 | 1.162 | 0.935 | 1.012 | 0.884 | 0.944 | 0.996 | 0.604 | 1.052 | 1.482 | 1.001 | |
Hunan | 0.920 | 1.275 | 0.882 | 1.084 | 1.004 | 0.933 | 1.015 | 0.823 | 0.945 | 0.865 | 0.980 | 0.913 | 0.648 | 1.025 | 1.315 | 0.975 | |
Guangdong | 0.995 | 1.156 | 1.078 | 1.111 | 1.055 | 1.045 | 1.034 | 1.100 | 1.039 | 1.032 | 0.789 | 1.097 | 0.989 | 1.032 | 1.058 | 1.041 | |
Guangxi | 0.808 | 1.119 | 0.977 | 0.980 | 0.994 | 0.896 | 1.022 | 0.902 | 0.983 | 0.956 | 0.997 | 0.863 | 0.660 | 1.043 | 1.330 | 0.969 | |
Hainan | 0.987 | 1.162 | 0.902 | 1.014 | 1.061 | 0.961 | 1.172 | 1.243 | 1.007 | 0.743 | 1.007 | 1.059 | 0.546 | 1.037 | 1.300 | 1.013 | |
Southwest China | Chongqing | 0.582 | 1.115 | 1.029 | 1.059 | 1.062 | 0.790 | 1.006 | 0.965 | 0.951 | 0.942 | 1.008 | 1.032 | 0.609 | 1.014 | 1.309 | 0.965 |
Sichuan | 0.948 | 1.235 | 0.949 | 1.082 | 1.018 | 0.946 | 1.185 | 1.713 | 1.136 | 1.209 | 0.661 | 1.196 | 0.981 | 1.042 | 1.218 | 1.101 | |
Guizhou | 0.732 | 1.124 | 0.940 | 0.997 | 0.983 | 0.943 | 1.020 | 0.889 | 0.955 | 0.866 | 0.993 | 0.965 | 0.583 | 1.024 | 1.325 | 0.956 | |
Yunnan | 0.903 | 1.136 | 1.094 | 1.132 | 1.022 | 0.762 | 0.733 | 1.175 | 1.002 | 0.939 | 1.085 | 1.077 | 0.797 | 1.120 | 1.489 | 1.031 | |
Northwest China | Shaanxi | 0.985 | 1.117 | 1.049 | 1.089 | 0.996 | 0.900 | 1.353 | 0.950 | 1.109 | 0.784 | 1.053 | 1.028 | 0.833 | 1.007 | 1.095 | 1.023 |
Gansu | 1.546 | 1.035 | 1.011 | 0.910 | 0.947 | 0.875 | 0.961 | 0.903 | 0.976 | 0.968 | 0.978 | 0.896 | 0.590 | 0.970 | 1.309 | 0.992 | |
Qinghai | 1.020 | 1.024 | 0.977 | 0.880 | 0.932 | 0.952 | 0.990 | 0.899 | 0.956 | 0.979 | 0.870 | 0.890 | 0.560 | 0.973 | 1.274 | 0.945 | |
Ningxia | 1.180 | 1.019 | 0.999 | 0.886 | 0.944 | 0.923 | 0.933 | 0.926 | 1.016 | 1.049 | 0.998 | 0.851 | 0.634 | 2.255 | 0.447 | 1.004 | |
Xinjiang | 0.972 | 1.137 | 0.941 | 0.958 | 0.984 | 0.990 | 0.918 | 0.988 | 1.115 | 1.057 | 1.062 | 0.887 | 0.750 | 0.934 | 1.161 | 0.990 | |
National average | 0.970 | 1.117 | 0.976 | 0.994 | 1.009 | 0.968 | 1.022 | 1.013 | 0.991 | 0.964 | 0.960 | 0.970 | 0.700 | 1.047 | 1.247 | 0.997 |
Region | 2002–2003 | 2003–2004 | 2004–2005 | 2005–2006 | 2006–2007 | 2007–2008 | 2008–2009 | 2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | Average over Study Period | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 0.989 | 0.996 | 1.011 | 0.987 | 0.995 | 0.995 | 0.900 | 1.048 | 0.994 | 1.086 | 1.011 | 1.018 | 0.906 | 1.004 | 1.023 | 0.998 |
Tianjin | 0.932 | 1.097 | 0.971 | 0.990 | 1.034 | 0.930 | 0.949 | 1.110 | 1.015 | 0.895 | 1.036 | 1.012 | 1.021 | 1.037 | 0.917 | 0.996 | |
Hebei | 1.132 | 0.998 | 1.002 | 1.013 | 0.984 | 0.943 | 1.003 | 0.975 | 1.021 | 1.070 | 1.003 | 1.004 | 0.998 | 1.009 | 0.961 | 1.008 | |
Shanxi | 0.978 | 0.921 | 1.058 | 0.992 | 0.986 | 1.028 | 0.860 | 1.058 | 0.976 | 1.080 | 1.037 | 1.039 | 1.005 | 1.004 | 0.975 | 1.000 | |
Inner Mongolia | 0.956 | 1.004 | 1.034 | 0.981 | 0.987 | 0.939 | 0.849 | 1.108 | 0.984 | 1.160 | 1.062 | 0.986 | 1.006 | 1.003 | 0.969 | 1.002 | |
Northeast China | Liaoning | 0.873 | 1.021 | 1.032 | 0.954 | 0.973 | 1.066 | 0.723 | 1.082 | 0.834 | 1.358 | 1.001 | 1.002 | 1.085 | 1.020 | 0.956 | 0.999 |
Jilin | 0.945 | 0.991 | 1.008 | 0.969 | 1.004 | 0.947 | 0.908 | 1.087 | 1.001 | 1.071 | 1.015 | 0.993 | 1.065 | 1.010 | 0.921 | 0.996 | |
Heilongjiang | 1.049 | 0.997 | 1.032 | 1.004 | 0.935 | 1.096 | 0.923 | 1.034 | 0.966 | 1.047 | 1.014 | 1.028 | 1.000 | 0.977 | 0.949 | 1.003 | |
East China | Shanghai | 0.989 | 0.998 | 1.002 | 0.997 | 0.997 | 0.997 | 0.897 | 1.050 | 0.989 | 1.087 | 1.011 | 1.008 | 1.005 | 0.996 | 0.988 | 1.001 |
Jiangsu | 1.077 | 1.003 | 0.910 | 0.957 | 1.162 | 1.080 | 0.926 | 1.029 | 1.022 | 1.059 | 0.960 | 1.023 | 1.018 | 0.995 | 0.986 | 1.014 | |
Zhejiang | 0.885 | 1.106 | 0.855 | 1.193 | 1.002 | 0.961 | 0.942 | 1.010 | 1.009 | 1.059 | 1.010 | 1.009 | 1.004 | 0.999 | 0.985 | 1.002 | |
Anhui | 1.011 | 1.000 | 1.014 | 0.991 | 0.953 | 1.029 | 0.893 | 1.016 | 0.960 | 1.091 | 1.046 | 1.049 | 0.980 | 1.004 | 0.979 | 1.001 | |
Fujian | 0.979 | 0.959 | 1.020 | 0.956 | 0.973 | 1.063 | 0.616 | 1.147 | 1.097 | 1.339 | 0.979 | 0.995 | 1.023 | 1.020 | 0.919 | 1.006 | |
Jiangxi | 1.080 | 0.979 | 1.045 | 0.991 | 0.951 | 1.044 | 0.829 | 1.065 | 0.999 | 1.143 | 0.923 | 1.108 | 1.000 | 1.000 | 0.984 | 1.009 | |
Shandong | 1.027 | 0.984 | 1.013 | 0.952 | 0.997 | 0.927 | 0.916 | 0.972 | 1.054 | 1.105 | 1.053 | 1.010 | 1.025 | 1.024 | 1.016 | 1.005 | |
Central and Southern China | Henan | 0.991 | 0.997 | 1.002 | 0.996 | 0.997 | 0.995 | 0.897 | 1.050 | 0.992 | 1.089 | 1.011 | 1.029 | 0.995 | 0.993 | 0.979 | 1.001 |
Hubei | 1.062 | 0.942 | 1.089 | 0.931 | 0.998 | 1.007 | 0.731 | 1.080 | 1.047 | 1.288 | 1.000 | 1.025 | 1.016 | 0.986 | 0.962 | 1.011 | |
Hunan | 1.090 | 1.077 | 0.944 | 1.072 | 1.000 | 0.974 | 0.965 | 0.953 | 0.922 | 1.138 | 1.046 | 0.997 | 1.021 | 0.994 | 0.941 | 1.009 | |
Guangdong | 0.990 | 0.997 | 1.001 | 0.996 | 0.996 | 0.997 | 0.896 | 1.052 | 0.989 | 1.089 | 1.012 | 1.008 | 1.003 | 0.996 | 0.988 | 1.001 | |
Guangxi | 0.994 | 1.011 | 0.985 | 1.029 | 0.997 | 0.980 | 0.934 | 1.012 | 0.925 | 1.140 | 1.036 | 0.922 | 1.050 | 1.014 | 0.948 | 0.998 | |
Hainan | 0.973 | 0.940 | 0.960 | 0.938 | 0.971 | 1.000 | 0.556 | 1.408 | 0.974 | 1.450 | 1.003 | 1.094 | 0.880 | 0.908 | 1.076 | 1.009 | |
Southwest China | Chongqing | 1.015 | 0.944 | 1.102 | 0.985 | 0.986 | 0.876 | 0.732 | 1.097 | 0.984 | 1.401 | 1.001 | 1.061 | 0.985 | 0.966 | 0.977 | 1.007 |
Sichuan | 0.899 | 0.988 | 0.970 | 0.989 | 0.980 | 0.937 | 0.946 | 1.291 | 0.990 | 1.088 | 1.012 | 1.009 | 1.005 | 0.997 | 0.987 | 1.006 | |
Guizhou | 0.967 | 0.981 | 1.037 | 0.983 | 0.967 | 0.951 | 1.010 | 0.969 | 0.958 | 1.040 | 1.086 | 1.028 | 0.985 | 0.947 | 0.991 | 0.993 | |
Yunnan | 0.979 | 0.997 | 1.002 | 0.996 | 0.996 | 0.999 | 0.727 | 1.178 | 0.836 | 1.294 | 1.017 | 0.989 | 1.086 | 1.009 | 1.026 | 1.009 | |
Northwest China | Shaanxi | 0.936 | 0.957 | 1.084 | 1.095 | 0.982 | 1.028 | 0.886 | 1.036 | 0.986 | 1.077 | 1.011 | 1.008 | 1.003 | 1.002 | 0.981 | 1.005 |
Gansu | 1.003 | 0.990 | 1.013 | 1.031 | 1.031 | 0.987 | 0.995 | 0.987 | 1.005 | 1.024 | 0.998 | 1.018 | 1.001 | 1.000 | 0.974 | 1.004 | |
Qinghai | 0.993 | 1.003 | 1.009 | 1.002 | 0.984 | 0.993 | 0.974 | 1.014 | 0.998 | 1.008 | 1.022 | 1.005 | 1.009 | 0.995 | 1.001 | 1.001 | |
Ningxia | 0.989 | 0.993 | 1.008 | 1.002 | 0.994 | 0.991 | 0.934 | 1.049 | 0.980 | 1.030 | 1.008 | 1.012 | 1.002 | 0.994 | 1.003 | 0.999 | |
Xinjiang | 0.970 | 1.001 | 1.027 | 0.934 | 0.971 | 1.020 | 0.758 | 1.077 | 1.086 | 1.146 | 1.151 | 0.977 | 1.003 | 0.970 | 0.964 | 1.004 | |
National average | 0.992 | 0.996 | 1.008 | 0.997 | 0.993 | 0.993 | 0.869 | 1.068 | 0.986 | 1.132 | 1.019 | 1.016 | 1.006 | 0.996 | 0.978 | 1.003 |
Region | 2002–2003 | 2003–2004 | 2004–2005 | 2005–2006 | 2006–2007 | 2007–2008 | 2008–2009 | 2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | Average over Study Period | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 0.838 | 0.882 | 0.899 | 0.969 | 0.973 | 0.912 | 1.238 | 0.994 | 1.132 | 0.922 | 0.956 | 1.236 | 1.084 | 0.953 | 0.856 | 0.990 |
Tianjin | 0.791 | 0.959 | 1.030 | 0.922 | 0.968 | 1.002 | 1.006 | 0.913 | 0.948 | 0.794 | 0.909 | 0.917 | 0.557 | 1.012 | 1.429 | 0.944 | |
Hebei | 0.868 | 1.088 | 0.909 | 0.914 | 0.977 | 1.040 | 1.053 | 0.891 | 0.962 | 0.913 | 0.888 | 0.885 | 0.486 | 1.048 | 1.601 | 0.968 | |
Shanxi | 1.538 | 1.034 | 0.923 | 0.995 | 1.014 | 1.000 | 1.147 | 0.914 | 0.977 | 0.876 | 0.958 | 0.903 | 0.645 | 0.937 | 1.195 | 1.004 | |
Inner Mongolia | 1.386 | 1.056 | 0.917 | 0.987 | 0.999 | 1.025 | 1.207 | 0.852 | 0.951 | 0.828 | 0.910 | 0.970 | 0.563 | 1.020 | 1.561 | 1.015 | |
Northeast China | Liaoning | 1.070 | 1.196 | 0.951 | 1.084 | 1.055 | 0.964 | 1.381 | 0.964 | 0.965 | 0.678 | 1.014 | 0.970 | 0.606 | 1.038 | 1.336 | 1.018 |
Jilin | 0.627 | 1.111 | 0.915 | 0.992 | 0.992 | 1.027 | 1.138 | 0.909 | 0.983 | 0.947 | 0.985 | 0.889 | 0.651 | 0.891 | 1.361 | 0.961 | |
Heilongjiang | 0.897 | 1.113 | 0.924 | 0.991 | 0.940 | 0.880 | 1.011 | 0.905 | 1.040 | 0.998 | 0.955 | 0.895 | 0.759 | 0.904 | 1.137 | 0.956 | |
East China | Shanghai | 1.006 | 1.001 | 0.944 | 0.879 | 0.921 | 1.002 | 1.056 | 1.055 | 1.006 | 0.959 | 0.995 | 1.042 | 0.895 | 0.921 | 0.985 | 0.978 |
Jiangsu | 1.051 | 1.160 | 0.984 | 0.910 | 0.926 | 0.976 | 1.075 | 0.915 | 0.906 | 0.908 | 0.927 | 0.860 | 0.869 | 1.022 | 1.212 | 0.980 | |
Zhejiang | 1.139 | 1.251 | 0.977 | 1.090 | 1.029 | 0.996 | 1.190 | 0.998 | 0.995 | 0.965 | 1.130 | 1.041 | 0.823 | 1.030 | 1.336 | 1.066 | |
Anhui | 0.944 | 1.111 | 0.919 | 0.993 | 0.964 | 0.902 | 0.989 | 0.888 | 0.969 | 0.870 | 0.891 | 0.896 | 0.580 | 0.978 | 1.257 | 0.943 | |
Fujian | 1.011 | 1.208 | 0.954 | 1.082 | 1.069 | 0.958 | 1.580 | 0.983 | 0.956 | 0.691 | 1.001 | 0.957 | 0.635 | 0.983 | 1.420 | 1.033 | |
Jiangxi | 0.796 | 1.005 | 0.999 | 0.956 | 0.986 | 0.921 | 1.076 | 0.887 | 0.961 | 0.905 | 0.910 | 0.913 | 0.620 | 0.924 | 1.225 | 0.939 | |
Shandong | 1.047 | 1.211 | 0.945 | 1.061 | 1.040 | 1.009 | 1.142 | 1.032 | 1.064 | 0.781 | 1.003 | 0.968 | 0.644 | 1.048 | 1.486 | 1.032 | |
Central and Southern China | Henan | 0.777 | 1.314 | 1.275 | 0.918 | 1.452 | 1.582 | 1.342 | 1.076 | 0.791 | 1.161 | 0.793 | 0.725 | 0.763 | 1.060 | 1.575 | 1.107 |
Hubei | 0.838 | 1.173 | 0.914 | 1.041 | 1.059 | 0.918 | 1.590 | 0.866 | 0.967 | 0.687 | 0.943 | 0.972 | 0.595 | 1.068 | 1.541 | 1.011 | |
Hunan | 0.844 | 1.184 | 0.934 | 1.011 | 1.004 | 0.957 | 1.052 | 0.864 | 1.025 | 0.760 | 0.936 | 0.916 | 0.635 | 1.031 | 1.397 | 0.970 | |
Guangdong | 1.005 | 1.159 | 1.077 | 1.116 | 1.059 | 1.048 | 1.154 | 1.046 | 1.051 | 0.947 | 0.779 | 1.087 | 0.986 | 1.037 | 1.071 | 1.042 | |
Guangxi | 0.813 | 1.107 | 0.992 | 0.953 | 0.997 | 0.915 | 1.094 | 0.891 | 1.063 | 0.839 | 0.963 | 0.936 | 0.628 | 1.028 | 1.404 | 0.975 | |
Hainan | 1.014 | 1.236 | 0.940 | 1.080 | 1.093 | 0.961 | 2.109 | 0.883 | 1.034 | 0.513 | 1.003 | 0.968 | 0.621 | 1.143 | 1.208 | 1.054 | |
Southwest China | Chongqing | 0.573 | 1.182 | 0.934 | 1.075 | 1.077 | 0.902 | 1.375 | 0.880 | 0.966 | 0.673 | 1.006 | 0.973 | 0.618 | 1.050 | 1.340 | 0.975 |
Sichuan | 1.055 | 1.250 | 0.978 | 1.095 | 1.038 | 1.010 | 1.253 | 1.326 | 1.148 | 1.111 | 0.653 | 1.185 | 0.976 | 1.046 | 1.234 | 1.091 | |
Guizhou | 0.757 | 1.146 | 0.907 | 1.014 | 1.017 | 0.992 | 1.010 | 0.918 | 0.996 | 0.833 | 0.914 | 0.938 | 0.592 | 1.081 | 1.338 | 0.964 | |
Yunnan | 0.923 | 1.139 | 1.092 | 1.137 | 1.026 | 0.763 | 1.008 | 0.998 | 1.198 | 0.726 | 1.067 | 1.089 | 0.734 | 1.110 | 1.452 | 1.031 | |
Northwest China | Shaanxi | 1.052 | 1.167 | 0.967 | 0.995 | 1.014 | 0.875 | 1.527 | 0.917 | 1.126 | 0.728 | 1.042 | 1.019 | 0.830 | 1.005 | 1.115 | 1.025 |
Gansu | 1.541 | 1.046 | 0.998 | 0.883 | 0.919 | 0.886 | 0.967 | 0.915 | 0.971 | 0.946 | 0.980 | 0.880 | 0.590 | 0.971 | 1.343 | 0.989 | |
Qinghai | 1.028 | 1.021 | 0.968 | 0.878 | 0.947 | 0.959 | 1.017 | 0.886 | 0.958 | 0.971 | 0.851 | 0.885 | 0.556 | 0.978 | 1.273 | 0.945 | |
Ningxia | 1.193 | 1.026 | 0.991 | 0.885 | 0.950 | 0.932 | 0.999 | 0.883 | 1.036 | 1.019 | 0.990 | 0.840 | 0.633 | 2.269 | 0.446 | 1.006 | |
Xinjiang | 1.002 | 1.137 | 0.916 | 1.026 | 1.014 | 0.970 | 1.212 | 0.917 | 1.027 | 0.922 | 0.923 | 0.908 | 0.747 | 0.963 | 1.204 | 0.993 | |
National average | 0.981 | 1.122 | 0.969 | 0.998 | 1.017 | 0.976 | 1.200 | 0.946 | 1.006 | 0.862 | 0.942 | 0.956 | 0.697 | 1.052 | 1.278 | 1.000 |
References
- IATA’s Annual Review. Edited by International Air Transport Association (IATA). 2018. Available online: https://www.iata.org/en/publications/annual-review/ (accessed on 30 December 2020).
- ICAO’s Annual Reports of the Council. Edited by International Civil Aviation Organization (ICAO). 2018. Available online: https://www.icao.int/about-icao/Pages/annual-reports.aspx (accessed on 30 December 2020).
- Statistical Yearbook of the Chinese Investment in Fixed Assets. Edited by China’s National Bureau of Statistics; 2003–2018. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexeh.htm (accessed on 30 December 2020).
- Yoshida, Y.; Fujimoto, H. Japanese-airport benchmarking with the DEA and endogenous-weight TFP methods: Testing the criticism of overinvestment in Japanese regional airports. Transp. Res. Part E Logist. Transp. Rev. 2004, 40, 533–546. [Google Scholar] [CrossRef]
- Barros, C.P.; Dieke, P.U.C. Performance evaluation of Italian airports: A data envelopment analysis. J. Air Transp. Manag. 2007, 13, 184–191. [Google Scholar] [CrossRef]
- Örkcü, H.H.; Balıkçı, C.; Dogan, M.I.; Genç, A. An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case. Transp. Policy 2016, 48, 92–104. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Min, H. Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index. J. Air Transp. Manag. 2014, 39, 12–22. [Google Scholar] [CrossRef]
- Barros, C.P.; Dieke, P.U.C. Measuring the economic efficiency of airports: A Simar–Wilson methodology analysis. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 1039–1051. [Google Scholar] [CrossRef]
- Ülkü, T. A comparative efficiency analysis of Spanish and Turkish airports. J. Air Transp. Manag. 2015, 46, 56–68. [Google Scholar] [CrossRef]
- Assaf, A.G.; Gillen, D. Measuring the joint impact of governance form and economic regulation on airport efficiency. Eur. J. Operational Res. 2012, 220, 187–198. [Google Scholar] [CrossRef]
- Merkert, R.; Mangia, L. Efficiency of Italian and Norwegian airports: A matter of management or of the level of competition in remote regions? Transp. Res. Part A Policy Pract. 2014, 62, 30–38. [Google Scholar] [CrossRef]
- Adler, N.; Ülkü, T.; Yazhemsky, E. Small regional airport sustainability: Lessons from benchmarking. J. Air Transp. Manag. 2013, 33, 22–31. [Google Scholar] [CrossRef]
- Merkert, R.; Assaf, A.G. Using DEA models to jointly estimate service quality perception and profitability—Evidence from international airports. Transp. Res. Part A Policy Pract. 2015, 75, 42–50. [Google Scholar] [CrossRef]
- Yu, M.-M. Assessment of airport performance using the SBM-NDEA model. Omega 2010, 38, 440–452. [Google Scholar] [CrossRef]
- Liu, D. Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of Network Data Envelopment Analysis. J. Air Transp. Manag. 2016, 52, 2–14. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. Airline environmental efficiency measures considering materials balance principles: An application of a network range-adjusted measure with weak-G disposability. J. Environ. Plan Manag. 2018, 61, 2298–2318. [Google Scholar] [CrossRef]
- Duygun, M.; Prior, D.; Shaban, M.; Tortosa-Ausina, E. Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach. Omega-Int. J. Manag. Sci. 2016, 60, 2–14. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Shyu, J.; Chiang, T. Measuring the true managerial efficiency of bank branches in Taiwan: A three-stage DEA analysis. Expert Syst. Appl. 2012, 39, 11494–11502. [Google Scholar] [CrossRef]
- Chaouk, M.; Pagliari, D.R.; Moxon, R. The impact of national macro-environment exogenous variables on airport efficiency. J. Air Transp. Manag. 2020, 82, 101740. [Google Scholar] [CrossRef]
- Fried, H.O.; Schmidt, S.S.; Yaisawarng, S. Incorporating the Operating Environment into a Nonparametric Measure of Technical Efficiency. J. Product. Anal. 1999, 12, 249–267. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. European J. Operational Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Jondrow, J.; Knox Lovell, C.A.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. Estimating and bootstrapping Malmquist indices. Eur. J. Operational Res. 1999, 115, 459–471. [Google Scholar] [CrossRef]
- Catalano, G.; Daraio, C.; Diana, M.; Gregori, M.; Matteucci, G. Efficiency, effectiveness, and impacts assessment in the rail transport sector: A state-of-the-art critical analysis of current research. Int. Transp. Oper. Res. 2019, 26, 5–40. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Di Cataldo, M.; Rodriguez-Pose, A. Government Quality and The Economic Returns of Transport Infrastructure Investment in European Regions. J. Reg. Sci. 2016, 56, 555–582. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, M. Transport infrastructure and long-run economic growth in OECD countries. Transp. Res. Part A Policy Pract. 2015, 74, 73–90. [Google Scholar] [CrossRef]
- Irmen, A.; Kuehnel, J. Productive Government Expenditure and Economic Growth. J. Econ. Sur. 2009, 23, 692–733. [Google Scholar] [CrossRef] [Green Version]
- Maparu, T.S.; Mazumder, T.N. Transport infrastructure, economic development and urbanization in India (1990–2011): Is there any causal relationship? Transp. Res. Part A-Policy Pract. 2017, 100, 319–336. [Google Scholar] [CrossRef]
- Zuo, C.C.; Birkin, M. Modelling the economic and demographic impacts of major transport infrastructure provision: A case study of UK regions. Transp. Res. Part A Policy Pract. 2019, 125, 207–222. [Google Scholar] [CrossRef]
- Rothengatter, W. Wider economic impacts of transport infrastructure investments: Relevant or negligible? Transp. Policy 2017, 59, 124–133. [Google Scholar] [CrossRef]
- Young, A. Gold into base metals: Productivity growth in the People’s Republic of China during the reform period. J. Polit Econ. 2003, 111, 1220–1261. [Google Scholar] [CrossRef] [Green Version]
- Kamps, C. New estimates of government net capital stocks for 22 OECD countries, 1960-2001. IMF Staff Pap. 2006, 53, 120–150. [Google Scholar]
- China Statistical Yearbook. Edited by China’s National Bureau of Statistics; 2003–2018. Available online: http://data.stats.gov.cn/ (accessed on 30 December 2020).
- Zhang, J. Estimation of China’s provincial capital stock (1952–2004) with applications. J. Chin. Econ. Bus. Stud. 2008, 6, 177–196. [Google Scholar] [CrossRef]
- Jin, G. The Estimation of China’s Infrastructure Capital Stock. Econ. Res. J. 2012, 47, 12. [Google Scholar]
- Jin, G. Infrastructure and Non-infrastructure Capital Stocksin China and Their Productivity: A New Estimate. Econ. Res. J. 2016, 51, 16. [Google Scholar]
- China Statistical Yearbook of the Tertiary Industry. Edited by China’s National Bureau of Statistics; 2003–2018. Available online: http://data.stats.gov.cn/ (accessed on 30 December 2020).
- Chang, Y.-T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Liu, X.H.; Wu, J. Energy and environmental efficiency analysis of China’s regional transportation sectors: A slack-based DEA approach. Energy Syst. 2017, 8, 747–759. [Google Scholar] [CrossRef]
- Park, Y.S.; Lim, S.H.; Egilmez, G.; Szmerekovsky, J. Environmental efficiency assessment of US transport sector: A slack-based data envelopment analysis approach. Transp. Res. Part D-Transp. Environ. 2018, 61, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Baek, J. Price and income elasticities of demand for air transportation: Empirical evidence from US airfreight industry. J. Air Transp. Manag. 2012, 20, 18–19. [Google Scholar] [CrossRef]
- Halpern, N.; Bråthen, S. Impact of airports on regional accessibility and social development. J. Transp. Geogr. 2011, 19, 1145–1154. [Google Scholar] [CrossRef]
- Bråthen, S.; Halpern, N. Air transport service provision and management strategies to improve the economic benefits for remote regions. Res. Transp. Bus. Manag. 2012, 4, 3–12. [Google Scholar] [CrossRef]
- Baker, D.; Merkert, R.; Kamruzzaman, M. Regional aviation and economic growth: Cointegration and causality analysis in Australia. J. Transp. Geogr. 2015, 43, 140–150. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Bekun, F.V.; Adedoyin, F.F. The asymmetric impact of air transport on economic growth in Spain: Fresh evidence from the tourism-led growth hypothesis. Curr. Issues Tour. 2019, 24, 36–53. [Google Scholar] [CrossRef]
- Gallego, I.; Font, X. Measuring the vulnerability of tourist destinations to the availability of air transport, using multi-criteria composite indexes. J. Destin. Mark Manag. 2019, 14, 2–12. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Dong, Q.L.; Wei, S.B.; Zaman, K.; Zhang, Y. Travel and tourism competitiveness index: The impact of air transportation, railways transportation, travel and transport services on international inbound and outbound tourism. J. Air Transp. Manag. 2017, 58, 125–144. [Google Scholar] [CrossRef]
- Malighetti, P.; Martini, G.; Redondi, R.; Scotti, D. Air transport networks of global integrators in the more liberalized Asian air cargo industry. Transp. Policy 2019, 80, 12–23. [Google Scholar] [CrossRef]
- Schuckmann, S.W.; Gnatzy, T.; Darkow, I.-L.; von der Gracht, H.A. Analysis of factors influencing the development of transport infrastructure until the year 2030—A Delphi based scenario study. Technol. Forecast. Soc. Chang. 2012, 79, 1373–1387. [Google Scholar] [CrossRef]
- Debbage, K.G. Air transportation and urban-economic restructuring: Competitive advantage in the US Carolinas. J. Air Transp. Manag. 1999, 5, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Melo, P.C.; Graham, D.J.; Brage-Ardao, R. The productivity of transport infrastructure investment: A meta-analysis of empirical evidence. Reg. Sci. Urban Econ. 2013, 43, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.L.; Timmermans, H.J.P.; Yu, B. Relocation of manufacturing industry from the perspective of transport accessibility—An application of percolation theory. Transp. Policy 2018, 63, 10–29. [Google Scholar] [CrossRef]
- Sengupta, J.K. Theory of Systems Efficiency. In Dynamics of Data Envelopment Analysis: Theory of Systems Efficiency; Springer: Dordrecht, The Netherlands, 1995; pp. 179–215. [Google Scholar]
- Kan Tsui, W.H.; Balli, H.O.; Gilbey, A.; Gow, H. Operational efficiency of Asia–Pacific airports. J. Air Transp. Manag. 2014, 40, 16–24. [Google Scholar] [CrossRef]
- Pestana Barros, C.; Managi, S.; Yoshida, Y. Productivity growth and biased technological change in Japanese airports. Transp. Policy 2010, 17, 259–265. [Google Scholar] [CrossRef]
- Fung, M.K.Y.; Wan, K.K.H.; Hui, Y.V.; Law, J.S. Productivity changes in Chinese airports 1995–2004. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 521–542. [Google Scholar] [CrossRef]
- The 13th Five-Year Plan for the Technological Development of Civil Aviation in China. Edited by Civil Aviation Administration of China; 2016. Available online: http://data.stats.gov.cn/ (accessed on 30 December 2020).
- Li, Y.T.; Yang, B.; Cui, Q. The effects of high-speed rail on air passenger transport in China. Appl. Econ. Lett. 2019, 26, 745–749. [Google Scholar] [CrossRef]
- Gundelfinger-Casar, J.; Coto-Millan, P. Intermodal competition between high-speed rail and air transport in Spain. Util. Policy 2017, 47, 12–17. [Google Scholar] [CrossRef]
- Dobruszkes, F.; Dehon, C.; Givoni, M. Does European high-speed rail affect the current level of air services? An EU-wide analysis. Transp. Res. Part A Policy Pract. 2014, 69, 461–475. [Google Scholar] [CrossRef]
Input Indicators | Output Indicators | Environmental Variables |
---|---|---|
Capital Stock | Volume of Passengers | Gross Domestic Product per capita |
Number of Employees | Volume of Freight | Consumption |
Number of Planes taking off and landing | Scientific and technological level | |
Tourism industry | ||
Wholesale and retail industry |
Independent Variable | Dependent Variable | |
---|---|---|
Capital Input Slack | Labor Input Slack | |
Constant term | −81,133.907 *** (−6146.518) | 1196.001 *** (3.100) |
GDP per capita | 127,103.120 *** (11,302.493) | 861.606 ** (2.202) |
Consumption | −131,960.330 *** (−10,983.392) | −2025.766 *** (9.109) |
Technological level | −96,452.384 *** (−5560.775) | −778.917 (−1.500) |
Tourism industry level | 49,024.917 *** (2954.973) | 22.793 (0.091) |
Wholesale and retail industry level | −36,260.115 *** (−2309.660) | 1519.889 *** (3.302) |
Openness to foreign investment | −2859.904 *** (−164.608) | −292.306 * (−1.904) |
Industrial structure | −122,923.980 *** (−8783.660) | −385.309 ** (2.303) |
6.190 × 1011 *** (6.190 × 1011 ) | 2.00E × 107 *** (1.67E × 107) | |
9.10E ×10−1 *** (152.434) | 6.61 × 10−1 *** (28.100) | |
LR test of the one-sided error | 0.68152907 × 103 | 0.19282677 × 103 |
Region | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.89 | 0.894 | 0.916 | 0.981 |
Tianjin | 1 | 0.91 | 1 | 0.974 | 0.963 | 0.995 | 0.933 | 0.908 | 1 | 1 | 0.882 | 0.911 | 0.916 | 0.934 | 0.967 | 0.895 | 0.949 | |
Hebei | 0.867 | 0.985 | 1 | 1 | 1 | 0.982 | 0.933 | 0.952 | 0.917 | 0.93 | 0.987 | 0.985 | 0.982 | 0.979 | 0.988 | 0.962 | 0.966 | |
Shanxi | 1 | 0.975 | 0.895 | 0.941 | 0.933 | 0.926 | 0.95 | 0.833 | 0.882 | 0.861 | 0.914 | 0.943 | 0.977 | 0.982 | 1 | 1 | 0.938 | |
Inner Mongolia | 1 | 0.938 | 0.939 | 0.967 | 0.95 | 0.941 | 0.883 | 0.775 | 0.843 | 0.835 | 0.95 | 1 | 1 | 1 | 1 | 1 | 0.939 | |
Mean | 0.973 | 0.962 | 0.967 | 0.976 | 0.969 | 0.969 | 0.940 | 0.894 | 0.928 | 0.925 | 0.947 | 0.968 | 0.975 | 0.957 | 0.970 | 0.955 | 0.955 | |
Northeast China | Liaoning | 0.909 | 0.788 | 0.807 | 0.83 | 0.798 | 0.782 | 0.828 | 0.626 | 0.666 | 0.568 | 0.734 | 0.73 | 0.729 | 0.792 | 0.809 | 0.781 | 0.761 |
Jilin | 0.97 | 0.91 | 0.904 | 0.909 | 0.885 | 0.893 | 0.846 | 0.783 | 0.847 | 0.853 | 0.899 | 0.912 | 0.9 | 0.957 | 0.96 | 0.896 | 0.895 | |
Heilongjiang | 0.892 | 0.927 | 0.925 | 0.952 | 0.958 | 0.906 | 0.985 | 0.929 | 0.953 | 0.93 | 0.962 | 0.971 | 1 | 1 | 0.965 | 0.925 | 0.949 | |
Mean | 0.924 | 0.875 | 0.879 | 0.897 | 0.880 | 0.860 | 0.886 | 0.779 | 0.822 | 0.784 | 0.865 | 0.871 | 0.876 | 0.916 | 0.911 | 0.867 | 0.868 | |
East China | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Jiangsu | 0.811 | 0.864 | 0.872 | 0.802 | 0.768 | 0.892 | 1 | 1 | 1 | 1 | 1 | 0.952 | 0.967 | 1 | 1 | 1 | 0.933 | |
Zhejiang | 0.981 | 0.878 | 0.976 | 0.828 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.979 | |
Anhui | 0.959 | 0.972 | 0.973 | 0.984 | 0.981 | 0.94 | 0.97 | 0.884 | 0.888 | 0.858 | 0.918 | 0.954 | 1 | 0.975 | 0.979 | 0.963 | 0.950 | |
Fujian | 0.933 | 0.911 | 0.872 | 0.886 | 0.851 | 0.83 | 0.877 | 0.581 | 0.652 | 0.719 | 0.914 | 0.896 | 0.887 | 0.905 | 0.921 | 0.855 | 0.843 | |
Jiangxi | 0.892 | 0.961 | 0.949 | 0.978 | 0.97 | 0.931 | 0.969 | 0.821 | 0.87 | 0.874 | 1 | 0.901 | 1 | 1 | 1 | 1 | 0.945 | |
Shandong | 0.938 | 0.963 | 0.949 | 0.956 | 0.914 | 0.914 | 0.855 | 0.817 | 0.791 | 0.835 | 0.877 | 0.92 | 0.929 | 0.949 | 0.973 | 1 | 0.911 | |
Mean | 0.931 | 0.936 | 0.942 | 0.919 | 0.926 | 0.930 | 0.953 | 0.872 | 0.886 | 0.898 | 0.958 | 0.946 | 0.969 | 0.976 | 0.982 | 0.974 | 0.937 | |
Central and Southern China | Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Hubei | 0.889 | 0.93 | 0.882 | 0.953 | 0.894 | 0.903 | 0.897 | 0.702 | 0.738 | 0.783 | 0.963 | 0.958 | 1 | 1 | 1 | 0.955 | 0.903 | |
Hunan | 0.842 | 0.915 | 1 | 0.929 | 1 | 1 | 1 | 1 | 0.921 | 0.862 | 0.949 | 0.986 | 0.98 | 0.994 | 0.991 | 0.936 | 0.957 | |
Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 | |
Guangxi | 1 | 0.971 | 0.978 | 0.969 | 0.987 | 0.997 | 0.974 | 0.935 | 0.929 | 0.875 | 0.969 | 1 | 0.919 | 0.962 | 0.977 | 0.937 | 0.961 | |
Hainan | 1 | 0.939 | 0.885 | 0.841 | 0.793 | 0.773 | 0.771 | 0.459 | 0.628 | 0.618 | 0.846 | 0.847 | 0.925 | 0.814 | 0.745 | 0.798 | 0.793 | |
Mean | 0.955 | 0.959 | 0.958 | 0.949 | 0.946 | 0.946 | 0.940 | 0.849 | 0.869 | 0.856 | 0.955 | 0.965 | 0.971 | 0.962 | 0.952 | 0.938 | 0.936 | |
Southwest China | Chongqing | 0.953 | 0.957 | 0.908 | 1 | 1 | 1 | 0.852 | 0.648 | 0.704 | 0.703 | 0.95 | 0.946 | 0.997 | 0.982 | 0.949 | 0.933 | 0.905 |
Sichuan | 0.926 | 0.835 | 0.83 | 0.804 | 0.793 | 0.777 | 0.73 | 0.722 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.901 | |
Guizhou | 0.998 | 0.962 | 0.949 | 0.977 | 0.966 | 0.939 | 0.894 | 0.918 | 0.892 | 0.855 | 0.877 | 0.939 | 0.962 | 0.95 | 0.901 | 0.891 | 0.929 | |
Yunnan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.737 | 0.833 | 0.718 | 0.88 | 0.895 | 0.879 | 0.954 | 0.964 | 0.998 | 0.929 | |
Mean | 0.969 | 0.939 | 0.922 | 0.945 | 0.940 | 0.929 | 0.869 | 0.756 | 0.857 | 0.819 | 0.927 | 0.945 | 0.960 | 0.972 | 0.954 | 0.956 | 0.916 | |
Northwest China | Shaanxi | 0.915 | 0.856 | 0.829 | 0.892 | 0.974 | 0.958 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.964 |
Gansu | 0.92 | 0.932 | 0.925 | 0.937 | 0.963 | 1 | 1 | 1 | 1 | 0.995 | 1 | 1 | 1 | 1 | 1 | 1 | 0.980 | |
Qinghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 | |
Ningxia | 0.995 | 1 | 1 | 1 | 1 | 1 | 0.981 | 0.937 | 0.983 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.994 | |
Xinjiang | 0.91 | 0.879 | 0.884 | 0.899 | 0.844 | 0.824 | 0.837 | 0.653 | 0.703 | 0.761 | 0.858 | 0.985 | 0.957 | 0.958 | 0.93 | 0.905 | 0.862 | |
Mean | 0.948 | 0.933 | 0.928 | 0.946 | 0.956 | 0.956 | 0.964 | 0.918 | 0.937 | 0.951 | 0.972 | 0.997 | 0.991 | 0.992 | 0.986 | 0.981 | 0.960 |
Region | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 1 | 1 | 0.978 | 0.642 | 0.699 | 0.763 | 0.645 | 0.794 | 0.685 | 0.796 | 0.734 | 0.689 | 0.625 | 0.707 | 0.692 | 0.621 | 0.754 |
Tianjin | 0.31 | 0.24 | 0.285 | 0.401 | 0.424 | 0.44 | 0.612 | 0.61 | 0.593 | 0.574 | 0.503 | 0.542 | 0.53 | 0.474 | 0.502 | 0.64 | 0.480 | |
Hebei | 0.164 | 0.082 | 0.073 | 0.222 | 0.289 | 0.161 | 0.159 | 0.184 | 0.278 | 0.336 | 0.38 | 0.382 | 0.437 | 0.348 | 0.339 | 0.517 | 0.272 | |
Shanxi | 0.277 | 0.229 | 0.261 | 0.308 | 0.346 | 0.373 | 0.405 | 0.474 | 0.485 | 0.478 | 0.579 | 0.612 | 0.604 | 0.569 | 0.598 | 0.831 | 0.464 | |
Inner Mongolia | 0.423 | 0.149 | 0.187 | 0.204 | 0.246 | 0.25 | 0.303 | 0.411 | 0.393 | 0.457 | 0.64 | 0.623 | 0.717 | 0.669 | 0.621 | 1 | 0.456 | |
Mean | 0.435 | 0.340 | 0.357 | 0.355 | 0.401 | 0.397 | 0.425 | 0.495 | 0.487 | 0.528 | 0.567 | 0.570 | 0.583 | 0.553 | 0.550 | 0.722 | 0.485 | |
Northeast China | Liaoning | 0.932 | 0.696 | 0.738 | 0.702 | 0.798 | 0.852 | 0.817 | 0.964 | 0.956 | 0.969 | 0.922 | 0.874 | 0.82 | 0.714 | 0.781 | 0.964 | 0.844 |
Jilin | 0.705 | 0.208 | 0.203 | 0.201 | 0.216 | 0.227 | 0.25 | 0.31 | 0.367 | 0.365 | 0.427 | 0.455 | 0.446 | 0.457 | 0.34 | 0.51 | 0.355 | |
Heilongjiang | 0.474 | 0.359 | 0.358 | 0.367 | 0.352 | 0.337 | 0.427 | 0.562 | 0.586 | 0.568 | 0.664 | 0.67 | 0.671 | 0.688 | 0.585 | 0.712 | 0.524 | |
Mean | 0.704 | 0.421 | 0.433 | 0.423 | 0.455 | 0.472 | 0.498 | 0.612 | 0.636 | 0.634 | 0.671 | 0.666 | 0.646 | 0.620 | 0.569 | 0.729 | 0.574 | |
East China | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Jiangsu | 0.593 | 0.559 | 0.598 | 0.64 | 0.719 | 0.767 | 0.923 | 1 | 1 | 1 | 0.962 | 0.986 | 0.987 | 1 | 1 | 1 | 0.858 | |
Zhejiang | 0.672 | 0.93 | 0.972 | 0.924 | 1 | 1 | 1 | 1 | 1 | 0.93 | 1 | 1 | 1 | 1 | 1 | 1 | 0.964 | |
Anhui | 0.429 | 0.291 | 0.283 | 0.289 | 0.292 | 0.287 | 0.299 | 0.355 | 0.362 | 0.365 | 0.458 | 0.448 | 0.475 | 0.391 | 0.434 | 0.493 | 0.372 | |
Fujian | 0.923 | 0.843 | 0.821 | 0.774 | 0.846 | 0.874 | 0.829 | 0.994 | 0.999 | 0.997 | 0.941 | 0.93 | 0.898 | 0.861 | 0.845 | 0.899 | 0.892 | |
Jiangxi | 0.163 | 0.247 | 0.244 | 0.291 | 0.292 | 0.287 | 0.326 | 0.394 | 0.366 | 0.38 | 0.5 | 0.504 | 0.465 | 0.472 | 0.343 | 0.577 | 0.366 | |
Shandong | 0.65 | 0.812 | 0.825 | 0.822 | 0.901 | 0.937 | 0.902 | 0.993 | 0.999 | 0.912 | 0.947 | 0.937 | 0.994 | 0.938 | 0.994 | 0.851 | 0.901 | |
Mean | 0.633 | 0.669 | 0.678 | 0.677 | 0.721 | 0.736 | 0.754 | 0.819 | 0.818 | 0.798 | 0.830 | 0.829 | 0.831 | 0.809 | 0.802 | 0.831 | 0.765 | |
Central and Southern China | Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Hubei | 0.54 | 0.542 | 0.543 | 0.506 | 0.583 | 0.719 | 0.658 | 0.876 | 0.797 | 0.985 | 0.863 | 0.868 | 0.982 | 0.86 | 0.957 | 0.966 | 0.765 | |
Hunan | 0.456 | 0.615 | 0.635 | 0.661 | 0.66 | 0.673 | 0.693 | 0.875 | 0.847 | 0.883 | 0.905 | 0.879 | 0.936 | 0.873 | 0.858 | 0.922 | 0.773 | |
Guangdong | 1 | 1 | 0.937 | 0.854 | 0.741 | 0.771 | 0.724 | 0.662 | 0.673 | 0.927 | 0.964 | 0.492 | 0.515 | 0.627 | 0.624 | 0.607 | 0.757 | |
Guangxi | 0.587 | 0.563 | 0.589 | 0.576 | 0.562 | 0.58 | 0.599 | 0.756 | 0.753 | 0.77 | 0.787 | 0.758 | 0.729 | 0.763 | 0.744 | 0.949 | 0.692 | |
Hainan | 1 | 0.75 | 0.783 | 0.716 | 0.755 | 0.831 | 0.797 | 0.976 | 0.952 | 0.928 | 0.884 | 0.85 | 0.859 | 0.802 | 0.853 | 0.893 | 0.852 | |
Mean | 0.764 | 0.745 | 0.748 | 0.719 | 0.717 | 0.762 | 0.745 | 0.858 | 0.837 | 0.916 | 0.901 | 0.808 | 0.837 | 0.821 | 0.839 | 0.890 | 0.807 | |
Southwest China | Chongqing | 0.759 | 0.593 | 0.586 | 0.579 | 0.675 | 0.771 | 0.692 | 0.87 | 0.838 | 0.89 | 0.884 | 0.857 | 0.864 | 0.803 | 0.835 | 0.869 | 0.773 |
Sichuan | 0.933 | 0.802 | 0.873 | 0.869 | 0.977 | 0.978 | 0.907 | 0.889 | 0.716 | 0.766 | 1 | 0.627 | 0.776 | 0.861 | 0.84 | 0.741 | 0.847 | |
Guizhou | 0.644 | 0.343 | 0.357 | 0.345 | 0.376 | 0.383 | 0.38 | 0.485 | 0.488 | 0.481 | 0.574 | 0.57 | 0.616 | 0.572 | 0.582 | 0.8 | 0.500 | |
Yunnan | 0.874 | 1 | 1 | 1 | 1 | 1 | 1 | 0.998 | 0.84 | 0.908 | 0.979 | 0.972 | 0.998 | 0.952 | 0.935 | 0.78 | 0.952 | |
Mean | 0.803 | 0.685 | 0.704 | 0.698 | 0.757 | 0.783 | 0.745 | 0.811 | 0.721 | 0.761 | 0.859 | 0.757 | 0.814 | 0.797 | 0.798 | 0.798 | 0.768 | |
Northwest China | Shaanxi | 0.793 | 0.684 | 0.757 | 0.767 | 0.742 | 0.779 | 0.794 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.895 |
Gansu | 0.313 | 0.187 | 0.2 | 0.208 | 0.198 | 0.22 | 0.219 | 0.278 | 0.313 | 0.293 | 0.38 | 0.437 | 0.399 | 0.386 | 0.403 | 0.61 | 0.315 | |
Qinghai | 0.071 | 0.09 | 0.089 | 0.081 | 0.08 | 0.089 | 0.101 | 0.135 | 0.136 | 0.143 | 0.23 | 0.23 | 0.234 | 0.252 | 0.236 | 0.254 | 0.153 | |
Ningxia | 0.088 | 0.115 | 0.13 | 0.132 | 0.126 | 0.141 | 0.164 | 0.218 | 0.246 | 0.264 | 0.332 | 0.364 | 0.378 | 0.381 | 1 | 0.594 | 0.292 | |
Xinjiang | 0.603 | 0.519 | 0.603 | 0.545 | 0.514 | 0.547 | 0.498 | 0.594 | 0.716 | 0.76 | 0.826 | 0.877 | 0.899 | 0.88 | 0.87 | 0.998 | 0.703 | |
Mean | 0.374 | 0.319 | 0.356 | 0.347 | 0.332 | 0.355 | 0.355 | 0.445 | 0.482 | 0.492 | 0.554 | 0.582 | 0.582 | 0.580 | 0.702 | 0.691 | 0.472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Jia, G. Performance and Productivity of Regional Air Transport Systems in China. ISPRS Int. J. Geo-Inf. 2021, 10, 83. https://doi.org/10.3390/ijgi10020083
Song M, Jia G. Performance and Productivity of Regional Air Transport Systems in China. ISPRS International Journal of Geo-Information. 2021; 10(2):83. https://doi.org/10.3390/ijgi10020083
Chicago/Turabian StyleSong, Mingli, and Guangshe Jia. 2021. "Performance and Productivity of Regional Air Transport Systems in China" ISPRS International Journal of Geo-Information 10, no. 2: 83. https://doi.org/10.3390/ijgi10020083
APA StyleSong, M., & Jia, G. (2021). Performance and Productivity of Regional Air Transport Systems in China. ISPRS International Journal of Geo-Information, 10(2), 83. https://doi.org/10.3390/ijgi10020083