Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images
Abstract
:1. Introduction
- The core attention modules and the global attention modules are cascaded in the DenseUNet together to combine road information at different scales, thus improving the connectivity of the road network and the smoothness of the sidelines.
- An adaptive loss function is introduced to solve the problem of too-small ratio of roads to non-road areas in the training samples.
2. Methods
2.1. Encoder
2.2. Attention Mechanism
2.3. Decoder
2.4. Adaptive Loss Function
3. Experiment Preparation
4. Results
4.1. Pavement Integrity and Sideline Smoothness of Roads
4.1.1. Massachusetts Dataset
4.1.2. CVPR Dataset
4.2. Road Network Connectivity
4.2.1. Massachusetts Dataset
4.2.2. CVPR Dataset
4.3. Loss Function
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.Y.; Zhang, J.P.; Li, T.; Sun, K. Road Extraction and Intersection Detection Based on Tensor Voting. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1587–1590. [Google Scholar]
- Frizzelle, B.G.; Evenson, K.R.; Rodriguez, D.A.; Laraia, B.A. The Importance of Accurate Road Data for Spatial Applications in Public Health: Customizing a Road Network. Int. J. Health Geogr. 2009, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Deng, L.; Cai, Z.; Franks, B.; Yao, X. Intelligent Transportation System in Macao Based on Deep Self-Coding Learning. IEEE Trans. Ind. Inform. 2018, 14, 3253–3260. [Google Scholar] [CrossRef]
- Courtrai, L.; Lefevre, S. Morphological Path Filtering at the Region Scale for Efficient and Robust Road Network Extraction from Satellite Imagery. Pattern Recognit. Lett. 2016, 83, 195–204. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sens. 2020, 12, 1444. [Google Scholar] [CrossRef]
- Mena, J.B. State of the Art on Automatic Road Extraction for GIS Update: A Novel Classification. Pattern Recognit. Lett. 2003, 24, 3037–3058. [Google Scholar] [CrossRef]
- Das, S.; Mirnalinee, T.T.; Varghese, K. Use of Salient Features for the Design of a Multistage Framework to Extract Roads From High-Resolution Multispectral Satellite Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3906–3931. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Kushwaha, N.K.; Samal, A. Semi-Automated Road Detection from High Resolution Satellite Images by Directional Morphological Enhancement and Segmentation Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1538–1544. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, K.; Ming, D. Road Extraction from High-Resolution Remote Sensing Images Based on Spectral and Shape Features. In MIPPR 2009: Automatic Target. Recognition and Image Analysis; SPIE: Bellingham, WA, USA, 2009; Volume 7495, pp. 74953R-74951–74953R-74956. [Google Scholar] [CrossRef]
- Gaetano, R.; Zerubia, J.; Scarpa, G.; Poggi, G. Morphological road segmentation in urban areas from high resolution satellite images. In Proceedings of the 2011 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 6–8 July 2011; pp. 1–8. [Google Scholar]
- Mirnalinee, T.T.; Das, S.; Varghese, K. An Integrated Multistage Framework for Automatic Road Extraction from High Resolution Satellite Imagery. J. Indian Soc. Remote 2011, 39, 1–25. [Google Scholar] [CrossRef]
- Miao, Z.L.; Shi, W.Z.; Gamba, P.; Li, Z.B. An Object-Based Method for Road Network Extraction in VHR Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4853–4862. [Google Scholar] [CrossRef]
- Li, M.M.; Stein, A.; Bijker, W.; Zhan, Q.M. Region-Based Urban Road Extraction from VHR Satellite Images Using Binary Partition Tree. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 217–225. [Google Scholar] [CrossRef]
- Shanmugam, L.; Kaliaperumal, V. Junction-Aware Water Flow Approach for Urban Road Network Extraction. IET Image Process. 2016, 10, 227–234. [Google Scholar] [CrossRef]
- Buslaev, A.; Seferbekov, S.; Iglovikov, V.; Shvets, A. Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 197–1973. [Google Scholar]
- Zhou, L.C.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 192–1924. [Google Scholar]
- Gao, L.; Song, W.; Dai, J.; Chen, Y. Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network. Remote Sens. 2019, 11, 552. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Sui, W.; Li, L.; Zhang, C.; Yue, A.Z.; Li, H.X. A Comparison of Pixel-based and Object-oriented Classification Using SPOT5 Imagery. In Proceedings of the 13th WSEAS International Conference on Applied Mathematics, Puerto De La Cruz, Spain, 14–16 December 2008; pp. 321–326. [Google Scholar]
- Huang, X.; Zhang, L.P. Road Centreline Extraction from High-Resolution Imagery Based on Multiscale Structural Features and Support Vector Machines. Int. J. Remote Sens. 2009, 30, 1977–1987. [Google Scholar] [CrossRef]
- Shi, W.Z.; Miao, Z.; Debayle, J. An Integrated Method for Urban Main-Road Centerline Extraction from Optical Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3359–3372. [Google Scholar] [CrossRef]
- Huang, Z.J.; Xu, F.J.; Lu, L.; Nie, H.S. Object-based Conditional Random Fields for Road Extraction from Remote Sensing Image. Iop Conf. Ser. Earth Environ. Sci. 2014, 17, 012276. [Google Scholar] [CrossRef] [Green Version]
- Maboudi, M.; Amini, J.; Malihi, S.; Hahn, M. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images. ISPRS J. Photogramm. Remote Sens. 2018, 138, 151–163. [Google Scholar] [CrossRef]
- Lu, X.Y.; Zhong, Y.F.; Zheng, Z.; Liu, Y.F.; Zhao, J.; Ma, A.L.; Yang, J. Multi-Scale and Multi-Task Deep Learning Framework for Automatic Road Extraction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9362–9377. [Google Scholar] [CrossRef]
- Lian, R.; Huang, L. DeepWindow: Sliding Window Based on Deep Learning for Road Extraction From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1905–1916. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zhong, Y.F.; Qin, Q.Q. Scene Classification Based on Multiscale Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7109–7121. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.Q.; Zhong, Y.F.; Zhang, L.P.; Li, D.R. Adaptive Deep Sparse Semantic Modeling Framework for High Spatial Resolution Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6180–6195. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, W.; Zhang, Y.Z.; Sun, S.K.; Sang, L.Z. Road Extraction from Multi-source High-resolution Remote Sensing Image Using Convolutional Neural Network. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 16–17 July 2018; pp. 201–204. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, Z.X.; Liu, Q.J.; Wang, Y.H. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Rezaee, M.; Zhang, Y. Road Detection Using Deep Neural Network in High Spatial Resolution Images. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Cheng, G.L.; Wang, Y.; Xu, S.B.; Wang, H.Z.; Xiang, S.M.; Pan, C.H. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322–3337. [Google Scholar] [CrossRef]
- Tao, C.; Qi, J.; Li, Y.; Wang, H.; Li, H. Spatial Information Inference Net: Road Extraction Using Road-Specific Contextual Information. ISPRS J. Photogramm. Remote Sens. 2019, 158, 155–166. [Google Scholar] [CrossRef]
- Li, Y.X.; Peng, B.; He, L.; Fan, K.L.; Li, Z.X.; Tong, L. Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks. Sensors 2019, 19, 4115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.F.; Li, X.T.; Ye, Y.M.; Lau, R.Y.K.; Zhang, X.F.; Huang, X.H. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Alamri, A. VNet: An End-to-End Fully Convolutional Neural Network for Road Extraction from High-Resolution Remote Sensing Data. IEEE Access 2020, 8, 179424–179436. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, X.; Zhang, Z.; Fang, W. Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet. Remote Sens. 2019, 11, 2499. [Google Scholar] [CrossRef] [Green Version]
- Wegner, J.D.; Montoya-Zegarra, J.A.; Schindler, K. A Higher-Order CRF Model for Road Network Extraction. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, OR, USA, 23–28 June 2013; pp. 1698–1705. [Google Scholar]
- Chen, L.; Zhu, Q.; Xie, X.; Hu, H.; Zeng, H. Road Extraction from VHR Remote-Sensing Imagery via Object Segmentation Constrained by Gabor Features. ISPRS Int. J. Geo-Inf. 2018, 7, 362. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.; Li, Y.X.; Guan, J.T.; Xiong, A. Multi-Scale Visual Attention Deep Convolutional Neural Network for Multi-Focus Image Fusion. IEEE Access 2019, 7, 114385–114399. [Google Scholar] [CrossRef]
- Wei, Z.; Song, H.; Chen, L.; Li, Q.; Han, G. Attention-Based DenseUnet Network with Adversarial Training for Skin Lesion Segmentation. IEEE Access 2019, 7, 136616–136629. [Google Scholar] [CrossRef]
- Hu, H.J.; Li, Z.; Li, L.; Yang, H.; Zhu, H.H. Classification of Very High-Resolution Remote Sensing Imagery Using a Fully Convolutional Network With Global and Local Context Information Enhancements. IEEE Access 2020, 8, 14606–14619. [Google Scholar] [CrossRef]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. Adv. Neural Inf. 2014, 27, 2204–2212. [Google Scholar]
- Zhao, H.S.; Shi, J.P.; Qi, X.J.; Wang, X.G.; Jia, J.Y. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Jetley, S.; Lee, N.; Torr, P.; Golodetz, S. Learn to Pay Attention. In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Ye, Z.R.; Fu, Y.Y.; Gan, M.Y.; Deng, J.S.; Comber, A.; Wang, K. Building Extraction from Very High Resolution Aerial Imagery Using Joint Attention Deep Neural Network. Remote Sens. 2019, 11, 2970. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; Mcdonagh, S.; Hammerla, N.Y.; Kainz, B. Attention U-Net: Learning Where to Look for the Pancreas. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Ma, Y.D.; Liu, Q.; Qian, Z.B. Automated Image Segmentation Using Improved PCNN Model Based on Cross-Entropy. In Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, 20–22 October 2004; pp. 743–746. [Google Scholar]
- Zhou, M.; Sui, H.; Chen, S.; Wang, J.; Chen, X. BT-RoadNet: A Boundary and Topologically-aware Neural Network for Road Extraction from High-resolution Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 168, 288–306. [Google Scholar] [CrossRef]
- Mnih, V.; Hinton, G.E. Learning to Detect Roads in High-Resolution Aerial Images. In Proceedings of the Computer Vision–ECCV 2010, Crete, Greece, 5–11 September 2010; pp. 210–223. [Google Scholar]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Bast, S.; Hughes, F.; Tuia, D.; Raskar, R. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–181. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR 2015, San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- He, H.; Yang, D.F.; Wang, S.C.; Wang, S.Y.; Li, Y.F. Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss. Remote Sens. 2019, 11, 1015. [Google Scholar] [CrossRef] [Green Version]
Model Name | OA | Recall | Precision | F1-Score | IoU |
---|---|---|---|---|---|
U-Net | 97.82% | 73.29% | 77.91% | 75.40% | 59.86% |
DeepLab V3+ | 97.80% | 72.30% | 78.15% | 74.89% | 60.23% |
DenseUNet | 97.64% | 76.29% | 72.67% | 74.64% | 59.96% |
CDenseUNet | 97.80% | 74.97% | 76.49% | 75.55% | 61.08% |
GDenseUnet | 97.84% | 75.90% | 76.79% | 76.17% | 61.91% |
CADUNet | 98.00% | 76.55% | 79.45% | 77.89% | 64.12% |
Model Name | OA | Recall | Precision | F1-Score | IoU |
---|---|---|---|---|---|
U-Net | 96.89% | 72.52% | 74.98% | 73.16% | 58.25% |
DeepLab V3+ | 96.64% | 74.27% | 70.54% | 71.73% | 56.51% |
DenseUNet | 96.94% | 77.78% | 72.79% | 74.61% | 59.97% |
CDenseUNet | 96.96% | 77.30% | 71.47% | 73.63% | 58.75% |
GDenseUnet | 97.04% | 77.15% | 72.17% | 73.93% | 59.16% |
CADUNet | 97.09% | 78.66% | 74.89% | 76.28% | 62.08% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, Y.; Zhang, Y.; Zhang, Y. Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images. ISPRS Int. J. Geo-Inf. 2021, 10, 329. https://doi.org/10.3390/ijgi10050329
Li J, Liu Y, Zhang Y, Zhang Y. Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images. ISPRS International Journal of Geo-Information. 2021; 10(5):329. https://doi.org/10.3390/ijgi10050329
Chicago/Turabian StyleLi, Jing, Yong Liu, Yindan Zhang, and Yang Zhang. 2021. "Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images" ISPRS International Journal of Geo-Information 10, no. 5: 329. https://doi.org/10.3390/ijgi10050329
APA StyleLi, J., Liu, Y., Zhang, Y., & Zhang, Y. (2021). Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images. ISPRS International Journal of Geo-Information, 10(5), 329. https://doi.org/10.3390/ijgi10050329