Implicit, Formal, and Powerful Semantics in Geoinformation
Abstract
:1. Introduction
- Implicit semantics
- is the semantics not explicitly represented, i.e., not directly usable by machines to derive new knowledge.
- Formal semantics
- when semantics is represented in some sort of formalism, in order to be machine readable and processable, e.g., in the form of ontologies.
- Powerful (soft) semantics
- when semantics is represented in forms that enable overcoming crisp set-based formalisms, allowing representing degrees of memberships and certainty, e.g., by using fuzzy approaches and contextual time-varying semantics.
2. Materials and Methods
2.1. Workflow
2.2. Three Shades of Semantics
2.3. A Meta-Analysis Perspective
2.4. Implicit Geosemantics
- (i)
- reconciling the place and space conceptualizations of geosemantics: while the “platial” (based on place) perspective is usually defined within texts by textual place names, linguistic descriptions, and the semantic relationships between places, the spatial perspective typical of georeferenced maps explicitly represents the geometries by their coordinates, distances, topology, and directions, but mostly lack descriptions of their meanings. This reconciliation from platial to spatial and vice-versa requires modeling uncertainty of the recognition process;
- (ii)
- increasing human perception of the semantics of geoinformation by considering users’ spatial, temporal, and content needs and preferences. This amounts to identifying and summarizing geographic contents on the basis of distinct spatial, temporal, and content granularities;
- (iii)
- enhancing interoperability of the geoinformation semantics representation in order to be able to re-use it within different contexts and applications. This is achieved by adopting standards and domain/task/application ontologies.
2.4.1. From “Place” to “Space”: Representing Uncertainty of Geoinformation within Texts to Support Geographic Information Retrieval
2.4.2. Detecting Periodic/Episodic Events from Social Networks with Desired Spatio-Temporal Granularity
2.4.3. Discovering and Summarizing Moving Object Trajectories from Twitter
2.4.4. Creation of Geographic Gazetteers by Volunteered Geographic Information Analysis
2.5. Formal Geosemantics
2.5.1. Holistic Map Representation with Geographic Scenarios
2.5.2. Ex-Ante and Ex-Post Semantic Characterization of Metadata
2.5.3. Exploiting Non-Rdf Data Structures for Semantic Metadata Creation
2.5.4. Semantic Mediation for FAIR Access to Resources
- identification of resources
- self-descriptive messages
- hypermedia as the engine of application state
2.6. Powerful Geosemantics
2.6.1. A Fuzzy Ontology to Support Volunteered Geographic Information Creation and Search
- doubt in interpreting the meaning of the descriptions in the ontology;
- difficulty to distinguish the characteristic aspects of a phenological stage in the observed crop sample, because of a deficiency of the observation means (e.g., a far point of view);
- hesitancy to select a unique growth stage for several observed crop samples close in space within the same parcel, because of variability of their characteristics.
2.6.2. Fuzzy Ontology to Support Remote Sensing Image Interpretation
2.6.3. State-Context-Property Framework to Model Human Interaction within a Geographic Information Retrieval System
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CS | Citizen Science |
CSW | Catalogue Service for the Web |
eLTER | European Long-Term Ecological Research |
FAIR | Findable, Accessible, Interoperable, and Reusable |
FOAF | Friend Of A Friend |
FOL | First-Order Logic |
GEOBIA | GEographic Object-Based Image Analysis |
GIR | Geographic Information Retrieval |
IGSN | International Geo-Sampling Number |
IRS | Information Retrieval System |
NDVI | Normalized Difference Vegetation Index |
NER | Named Entity Recognition |
PID | Persistent IDentifier |
POI | Point Of Interest |
REST | REpresentational State Transfer |
ROI | Region Of Interest |
SEM | Simple Event Model |
SI | Spectral Indexes |
WKT | Well-Known Text |
References
- Guha, R.; McCool, R.; Miller, E. Semantic search. In Proceedings of the WWW ’03, 12th international conference on World Wide Web, Budapest, Hungary, 20–24 May 2003; ACM Press: New York, NY, USA, 2003; pp. 700–709. [Google Scholar]
- Duval, E.; Hodgins, W. Metadata principles and practicalities. D-Lib Mag. 2002, 8, 1–10. [Google Scholar] [CrossRef]
- Nogueras-Iso, J.; Muro-Medrano, P.; Zarazaga-Soria, F. Geographic Information Metadata for Spatial Data Infrastructures: Resources, Interoperability and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sheth, A.; Ramakrishnan, C.; Thomas, C. Semantics for the Semantic Web: The Implicit, the Formal and the Powerful. Int. J. Semant. Web Inf. Syst. 2005, 1, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Uschold, M. Where are the semantics in the semantic web. AI Mag. 2003, 24, 25. [Google Scholar]
- Almeida, M.; Rocha Souza, R.; Fonseca, F. Semantics in the Semantic Web: A Critical Evaluation. Knowl. Organ. J. 2011, 38, 187–203. [Google Scholar] [CrossRef]
- Gärdenfors, P. How to make the Semantic Web more semantic. In Formal Ontology in Information Systems; Varzi, A., Vieu, L., Eds.; IOS Press: Amsterdam, The Netherlands, 2004; pp. 19–36. [Google Scholar]
- Lemmens, M. Geo-information, Technologies, Applications and the Environment. In Geotechnologies and the Environment (GEOTECH); Springer: Berlin/Heidelberg, Germany, 2013; Volume 5, p. 349. [Google Scholar]
- Ait-Ameur, Y.; Gibson, J.; Mery, D. On Implicit and Explicit Semantics: Integration Issues in Proof-Based Development of Systems. In Proceedings of the 6th International on Symposium Leveraging Applications of Formal Methods, Verification and Validation—ISoLA 2014, Corfu, Greece, 8–11 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 604–618. [Google Scholar]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Baader, F.; Calvanese, D.; Mcguinness, D.; Nardi, D.; Patel-Schneider, P. The Description Logic Handbook: Theory, Implementation, and Applications; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Caglioni, M.; Fusco, G. Formal Ontologies and Uncertainty. In geographical knowledge. TeMA J. Land Use Mobility Environ. 2014, 187–198. [Google Scholar] [CrossRef]
- Tambassi, T. (Ed.) The Philosophy of GIS; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Kokla, M.; Guilbert, E. A Review of Geospatial Semantic Information Modeling and Elicitation Approaches. ISPRS Int. J. Geo-Inf. 2020, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, W. Geospatial semantics: Why, of what, and how? In Journal on Data Semantics III; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–24. [Google Scholar]
- Janowicz, K. Observation-Driven Geo-Ontology Engineering. Trans. GIS 2012, 16, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, W. Semantic engineering. In Research Trends in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 63–76. [Google Scholar]
- Kuhn, W. Core concepts of spatial information for transdisciplinary research. Int. J. Geogr. Inf. Sci. 2012, 26, 2267–2276. [Google Scholar] [CrossRef]
- Hu, Y. 1.07—Geospatial Semantics. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; pp. 80–94. [Google Scholar] [CrossRef] [Green Version]
- Janowicz, K.; Hitzler, P. The Digital Earth as knowledge engine. Semant. Web J. 2012, 3, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Shadbolt, N.; Smart, P. Knowledge Elicitation: Methods, Tools and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kavouras, M.; Kokla, M. Theories of Geographic Concepts: Ontological Approaches to Semantic Integration; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Casati, R.; Smith, B.; Varzi, A.C. Ontological Tools for Geographic Representation; IOS Press: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hu, Y.; Janowicz, K. Enriching top-down geo-ontologies using bottom-up knowledge mined from linked data. Adv. Geogr. Inf. Sci. Past Next Twenty Years 2016, 183–198. [Google Scholar]
- Hong, J.H.; Kuo, C. A semi-automatic lightweight ontology bridging for the semantic integration of cross-domain geospatial information. Int. J. Geogr. Inf. Sci. 2015, 29, 2223–2247. [Google Scholar] [CrossRef]
- Gandon, F.L. A survey of the first 20 years of research on semantic Web and linked data. Ingénierie des Systèmes d Inf. 2018, 23, 11–38. [Google Scholar] [CrossRef]
- Giunchiglia, F.; Zaihrayeu, I. Lightweight Ontologies. In Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Gangemi, A.; Presutti, V. Ontology design patterns. In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009; pp. 221–243. [Google Scholar]
- Martinez-Rodriguez, J.L.; Hogan, A.; Lopez-Arevalo, I. Information extraction meets the semantic web: A survey. Semant. Web 2020, 11, 1–81. [Google Scholar] [CrossRef]
- Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. arXiv 2017, arXiv:1707.02919. [Google Scholar]
- Monteiro, B.R.; Davis, C.A., Jr.; Fonseca, F. A survey on the geographic scope of textual documents. Comput. Geosci. 2016, 96, 23–34. [Google Scholar] [CrossRef]
- Purves, R.S.; Clough, P.; Jones, C.B.; Hall, M.H.; Murdock, V. Geographic information retrieval: Progress and challenges in spatial search of text. Found. Trends Inf. Retr. 2018, 12, 164–318. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Aryal, J.; Osborn, J.; Musk, R.; Lucieer, A. Benchmarking the applicability of ontology in geographic object-based image analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 386. [Google Scholar] [CrossRef] [Green Version]
- Guilbert, É.; Moulin, B. Towards a Common Framework for the Identification of Landforms on Terrain Models. ISPRS Int. J. Geo Inf. 2017, 6, 12. [Google Scholar] [CrossRef]
- Arvor, D.; Belgiu, M.; Falomir, Z.; Mougenot, I.; Durieux, L. Ontologies to interpret remote sensing images: Why do we need them? GISci. Remote Sens. 2019, 56, 911–939. [Google Scholar] [CrossRef] [Green Version]
- Ballatore, A. Prolegomena for an Ontology of Place. In Advancing Geographic Information Science; GSDI Association Press: Needham, MA, USA, 2016. [Google Scholar]
- Garbacz, P.; Lawrynowicz, A.; Szady, B. Identity Criteria for Localities. In Proceedings of the FOIS, Cape Town, South Africa, 19–21 September 2018. [Google Scholar]
- Krisnadhi, A.; Hu, Y.; Janowicz, K.; Hitzler, P.; Arko, R.; Carbotte, S.; Chandler, C.; Cheatham, M.; Fils, D.; Finin, T.; et al. The GeoLink modular oceanography ontology. In Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 301–309. [Google Scholar]
- Gould, N.; Mackaness, W. From taxonomies to ontologies: Formalizing generalization knowledge for on-demand mapping. Cartogr. Geogr. Inf. Sci. 2016, 43, 208–222. [Google Scholar] [CrossRef]
- Yan, J.; Guilbert, É.; Saux, E. An ontology-driven multi-agent system for nautical chart generalization. Cartogr. Geogr. Inf. Sci. 2017, 44, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Varanka, D.; Usery, E.L. The map as knowledge base. Int. J. Cartogr. 2018, 4, 201–223. [Google Scholar] [CrossRef]
- Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Auer, S.; Lehmann, J.; Hellmann, S. LinkedGeoData: Adding a Spatial Dimension to the Web of Data. In Proceedings of the International Semantic Web Conference, Chantilly, VA, USA, 25–29 October 2009. [Google Scholar]
- Vatant, B.; Wick, M. GeoNames Ontology. 2012. Available online: http://www.geonames.org/ontology/ (accessed on 1 April 2021).
- J. Paul Getty Trust [Los Angeles, CA]. Getty Thesaurus of Geographic Names. [Software, E-Resource] Retrieved from the Library of Congress. 1999. Available online: https://lccn.loc.gov/99483604 (accessed on 1 April 2021).
- Derungs, C.; Purves, R. Mining nearness relations from an n-grams Web corpus in geographical space. Spat. Cogn. Comput. 2016, 16, 301–322. [Google Scholar] [CrossRef] [Green Version]
- Ballatore, A. Extracting Place Emotions from Travel Blogs. In Proceedings of the AGILE, Helsinki, Finland, 25–29 May 2015. [Google Scholar]
- Strapparava, C.; Valitutti, A. WordNet Affect: An Affective Extension of WordNet. In Proceedings of the LREC, Lisbon, Portugal, 26–28 May 2004. [Google Scholar]
- Derungs, C.; Purves, R. From text to landscape: Locating, identifying and mapping the use of landscape features in a Swiss Alpine corpus. Int. J. Geogr. Inf. Sci. 2014, 28, 1272–1293. [Google Scholar] [CrossRef]
- Wartmann, F.; Acheson, E.; Purves, R. Describing and comparing landscapes using tags, texts, and free lists: An interdisciplinary approach. Int. J. Geogr. Inf. Sci. 2018, 32, 1572–1592. [Google Scholar] [CrossRef] [Green Version]
- Ilarri, S.; Stojanovic, D.; Ray, C. Semantic management of moving objects: A vision towards smart mobility. Expert Syst. Appl. 2015, 42, 1418–1435. [Google Scholar] [CrossRef] [Green Version]
- Fileto, R.; May, C.; Renso, C.; Pelekis, N.; Klein, D.; Theodoridis, Y. The Baquara2 knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl. Eng. 2015, 98, 104–122. [Google Scholar] [CrossRef]
- Han, L.; Kashyap, A.L.; Finin, T.W.; Mayfield, J.; Weese, J. UMBC-EBIQUITY-CORE: Semantic Textual Similarity Systems. In Proceedings of the *SEM@NAACL-HLT, Atlanta, GA, USA, 13–14 June 2013. [Google Scholar]
- Jiang, Y.; Li, Y.; Yang, C.; Liu, K.; Armstrong, E.; Huang, T.; Moroni, D.; Finch, C. A comprehensive methodology for discovering semantic relationships among geospatial vocabularies using oceanographic data discovery as an example. Int. J. Geogr. Inf. Sci. 2017, 31, 2310–2328. [Google Scholar] [CrossRef]
- Li, W.; Bhatia, V.; Cao, K. Intelligent polar cyberinfrastructure: Enabling semantic search in geospatial metadata catalogue to support polar data discovery. Earth Sci. Inform. 2015, 8, 111–123. [Google Scholar] [CrossRef]
- Hu, Y. Geospatial Semantics. Compr. Geogr. Inf. Syst. 2018, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Hakimpour, F.; Timpf, S. Using Ontologies for resolution of Semantic Heterogeneity in GIS. In Proceedings of the 4th AGILE Conference on Geographic Information Science, Brno, Czech Republic, 19–21 April 2001. [Google Scholar]
- Fallahi, G.; Frank, A.; Mesgari, M.; Rajabifard, A. An ontological structure for semantic interoperability of GIS and environmental modeling. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 342–357. [Google Scholar] [CrossRef]
- Fonseca, F.; Câmara, G.; Monteiro, A. A Framework for Measuring the Interoperability of Geo-Ontologies. Spat. Cogn. Comput. 2006, 6, 309–331. [Google Scholar] [CrossRef]
- Brodaric, B. The design of GSC FieldLog: Ontology-based software for computer aided geological field mapping. Comput. Geosci. 2004, 30, 5–20. [Google Scholar] [CrossRef]
- Schuurman, N. Social Dimensions of Object Definition in GIS. In Re-Presenting GIS; Fisher, P., Unwin, D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Baglioni, M.; Masserotti, M.V.; Renso, C.; Spinsanti, L. Building Geospatial Ontologies from Geographical Databases. In Proceedings of the GeoS, Mexico City, Mexico, 29–30 November 2007. [Google Scholar]
- Scheider, S. Grounding Geographic Information in Perceptual Operations. In Frontiers in Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Worboys, M.; Stewart, K. From Objects to Events: GEM, the Geospatial Event Model. In Proceedings of the GIScience, Adelphi, MD, USA, 20–23 October 2004. [Google Scholar]
- Raskin, R.G.; Pan, M.J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput. Geosci. 2005, 31, 1119–1125. [Google Scholar] [CrossRef]
- Couclelis, H. Ontologies of geographic information. Int. J. Geogr. Inf. Sci. 2010, 24, 1785–1809. [Google Scholar] [CrossRef]
- Hu, Y.; Janowicz, K.; Carral, D.; Scheider, S.; Kuhn, W.; Berg-Cross, G.; Hitzler, P.; Dean, M.; Kolas, D. A Geo-ontology Design Pattern for Semantic Trajectories. In Proceedings of the COSIT, Scarborough, UK, 2–6 September 2013. [Google Scholar]
- Carral, D.; Scheider, S.; Janowicz, K.; Vardeman, C.; Krisnadhi, A.A.; Hitzler, P. An Ontology Design Pattern for Cartographic Map Scaling. In Proceedings of the ESWC, Montpellier, France, 26–30 May 2013. [Google Scholar]
- Cruz, I.; Sunna, W.; Makar, N.; Bathala, S. A visual tool for ontology alignment to enable geospatial interoperability. J. Vis. Lang. Comput. 2007, 18, 230–254. [Google Scholar] [CrossRef]
- Goodchild, M. Formalizing Place in Geographic Information Systems; Springer: New York, NY, USA, 2011. [Google Scholar]
- Goodchild, M.; Hill, L. Introduction to digital gazetteer research. Int. J. Geogr. Inf. Sci. 2008, 22, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Alani, H.; Jones, C.; Tudhope, D. Voronoi-based region approximation for geographical information retrieval with gazetteers. Int. J. Geogr. Inf. Sci. 2001, 15, 287–306. [Google Scholar] [CrossRef]
- Rice, M.T.; Aburizaiza, A.O.; Jacobson, R.; Shore, B.M.; Paez, F.I. Supporting Accessibility for Blind and Vision-impaired People With a Localized Gazetteer and Open Source Geotechnology. Trans. GIS 2012, 16, 177–190. [Google Scholar] [CrossRef]
- Schlieder, C.; Vögele, T.; Visser, U. Qualitative Spatial Representation for Information Retrieval by Gazetteers. In Proceedings of the COSIT, Morro Bay, CA, USA, 19–23 September 2001. [Google Scholar]
- Janowicz, K.; Keßler, C. The role of ontology in improving gazetteer interaction. Int. J. Geogr. Inf. Sci. 2008, 22, 1129–1157. [Google Scholar] [CrossRef]
- Davies, C.; Holt, I.; Green, J.; Harding, J.; Diamond, L. User Needs and Implications for Modelling Vague Named Places. Spat. Cogn. Comput. 2009, 9, 174–194. [Google Scholar] [CrossRef]
- Hollenstein, L.; Purves, R. Exploring place through user-generated content: Using Flickr tags to describe city cores. J. Spat. Inf. Sci. 2010, 1, 21–48. [Google Scholar]
- Grothe, C.; Schaab, J. Automated Footprint Generation from Geotags with Kernel Density Estimation and Support Vector Machines. Spat. Cogn. Comput. 2009, 9, 195–211. [Google Scholar] [CrossRef]
- Keßler, C.; Maué, P.; Heuer, J.T.; Bartoschek, T. Bottom-up gazetteers: Learning from the implicit semantics of geotags. In Proceedings of the International Conference on GeoSpatial Sematics, Mexico City, Mexico, 3–4 December 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 83–102. [Google Scholar]
- Li, L.; Goodchild, M.F. Constructing places from spatial footprints. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, Redondo Beach, CA, USA, 7–9 November 2012; pp. 15–21. [Google Scholar]
- Gao, S.; Li, L.; Li, W.; Janowicz, K.; Zhang, Y. Constructing gazetteers from volunteered Big Geo-Data based on Hadoop. Comput. Environ. Urban Syst. 2017, 61, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Uryupina, O. Semi-supervised learning of geographical gazetteers from the internet. In Proceedings of the HLT-NAACL 2003, Edmonton, AB, Canada, 27 May–1 June 2003. [Google Scholar]
- Zhu, R.; Hu, Y.; Janowicz, K.; McKenzie, G. Spatial signatures for geographic feature types: Examining gazetteer ontologies using spatial statistics. Trans. GIS 2016, 20, 333–355. [Google Scholar] [CrossRef]
- Samal, A.; Seth, S.; Cueto, K. A feature-based approach to conflation of geospatial sources. Int. J. Geogr. Inf. Sci. 2004, 18, 459–489. [Google Scholar] [CrossRef]
- Sehgal, V.; Getoor, L.; Viechnicki, P. Entity resolution in geospatial data integration. In Proceedings of the GIS ’06, Arlington, VA, USA, 10–11 November 2006. [Google Scholar]
- Hastings, J. Automated conflation of digital gazetteer data. Int. J. Geogr. Inf. Sci. 2008, 22, 1109–1127. [Google Scholar] [CrossRef]
- Jones, C.; Purves, R. Geographical information retrieval. Int. J. Geogr. Inf. Sci. 2008, 22, 219–228. [Google Scholar] [CrossRef]
- Jones, R.; Zhang, W.; Rey, B.; Jhala, P.; Stipp, E. Geographic intention and modification in web search. Int. J. Geogr. Inf. Sci. 2008, 22, 229–246. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Kohler, J. Analyzing geographic queries. In Proceedings of the SIGIR Workshop on Geographic Information Retrieval, Sheffield, UK, 25–29 July 2004. [Google Scholar]
- Janowicz, K.; Raubal, M.; Kuhn, W. The semantics of similarity in geographic information retrieval. J. Spat. Inf. Sci. 2011, 2, 29–57. [Google Scholar] [CrossRef]
- Hu, Y.; Janowicz, K.; Prasad, S. Improving wikipedia-based place name disambiguation in short texts using structured data from DBpedia. In Proceedings of the GIR ’14, Dallas, TX, USA, 4 November 2014. [Google Scholar]
- Cucerzan, S. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In Proceedings of the EMNLP-CoNLL, Prague, Czech Republic, 28–30 June 2007. [Google Scholar]
- Overell, S.; Rüger, S. Using co-occurrence models for placename disambiguation. Int. J. Geogr. Inf. Sci. 2008, 22, 265–287. [Google Scholar] [CrossRef]
- Leidner, J.L. Toponym Resolution in Text: Annotation, Evaluation and Applications of Spatial Grounding of Place Names; Universal-Publishers: Irvine, CA, USA, 2008. [Google Scholar]
- Ju, Y.; Adams, B.; Janowicz, K.; Hu, Y.; Yan, B.; McKenzie, G. Things and Strings: Improving Place Name Disambiguation from Short Texts by Combining Entity Co-Occurrence with Topic Modeling. In Proceedings of the EKAW, Bologna, Italy, 19–23 November 2016. [Google Scholar]
- Gelernter, J.; Balaji, S. An algorithm for local geoparsing of microtext. GeoInformatica 2013, 17, 635–667. [Google Scholar] [CrossRef]
- Vasardani, M.; Winter, S.; Richter, K.F. Locating place names from place descriptions. Int. J. Geogr. Inf. Sci. 2013, 27, 2509–2532. [Google Scholar] [CrossRef]
- Hu, Y.; Janowicz, K.; Prasad, S.; Gao, S. Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals: A Case Study Using ArcGIS Online. Trans. GIS 2015, 19, 398–416. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Goodchild, M.F.; Raskin, R. Towards geospatial semantic search: Exploiting latent semantic relations in geospatial data. Int. J. Digit. Earth 2014, 7, 17–37. [Google Scholar] [CrossRef]
- Amitay, E.; Har’El, N.; Sivan, R.; Soffer, A. Web-a-where: Geotagging web content. In Proceedings of the SIGIR ’04, Sheffield, UK, 25–29 July 2004. [Google Scholar]
- Silva, M.; Martins, B.; Chaves, M.; Afonso, A.; Cardoso, N. Adding geographic scopes to web resources. Comput. Environ. Urban Syst. 2006, 30, 378–399. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xie, X.; Wang, L.; Lu, Y.; Ma, W. Detecting geographic locations from web resources. In Proceedings of the GIR ’05, Bremen, Germany, 4 November 2005. [Google Scholar]
- Frontiera, P.; Larson, R.; Radke, J. A comparison of geometric approaches to assessing spatial similarity for GIR. Int. J. Geogr. Inf. Sci. 2008, 22, 337–360. [Google Scholar] [CrossRef]
- Jones, C.; Purves, R.; Ruas, A.; Sanderson, M.; Sester, M.; Kreveld, M.V.; Weibel, R. Spatial information retrieval and geographical ontologies an overview of the SPIRIT project. In Proceedings of the SIGIR ’02, Tampere, Finland, 11–15 August 2002. [Google Scholar]
- Keßler, C.; Janowicz, K.; Bishr, M. An agenda for the next generation gazetteer: Geographic information contribution and retrieval. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2009; pp. 91–100. [Google Scholar]
- Gey, F.; Larson, R.; Sanderson, M.; Joho, H.; Clough, P.D. GeoCLEF: The CLEF 2005 Cross-Language Geographic Information Retrieval Track. In Proceedings of the CLEF, Vienna, Austria, 21–23 September 2005. [Google Scholar]
- Egenhofer, M. Toward the semantic geospatial web. In Proceedings of the GIS ’02, McLean, VA, USA, 8–9 November 2002. [Google Scholar]
- Hart, G.; Dolbear, C. Linked Data: A Geographic Perspective; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kuhn, W.; Kauppinen, T.; Janowicz, K. Linked data-a paradigm shift for geographic information science. In Proceedings of the International Conference on Geographic Information Science, Vienna, Austria, 24–26 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 173–186. [Google Scholar]
- Goodwin, J.; Dolbear, C.; Hart, G. Geographical Linked Data: The Administrative Geography of Great Britain on the Semantic Web. Trans. Gis 2008, 12, 19–30. [Google Scholar] [CrossRef]
- Patroumpas, K.; Alexakis, M.; Giannopoulos, G.; Athanasiou, S. TripleGeo: An ETL Tool for Transforming Geospatial Data into RDF Triples. In Proceedings of the Edbt/Icdt Workshops, Citeseer, Athens, Greece, 24–28 March 2014; pp. 275–278. [Google Scholar]
- Janowicz, K.; Scheider, S.; Pehle, T.; Hart, G. Geospatial semantics and linked spatiotemporal data–Past, present, and future. Semant. Web 2012, 3, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Battle, R.; Kolas, D. GeoSPARQL: Enabling a Geospatial Semantic Web. Semant. Web J. 2011, 3, 355–370. [Google Scholar] [CrossRef]
- Athanasis, N.; Kalabokidis, K.; Vaitis, M.; Soulakellis, N. Towards a semantics-based approach in the development of geographic portals. Comput. Geosci. 2009, 35, 301–308. [Google Scholar] [CrossRef]
- Purves, R.; Edwardes, A.; Wood, J. Describing place through user generated content. First Monday 2011, 16. [Google Scholar] [CrossRef] [Green Version]
- Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.R.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural language processing toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, MD, USA, 23–24 June 2014; pp. 55–60. [Google Scholar]
- Adams, B.; McKenzie, G.; Gahegan, M. Frankenplace: Interactive Thematic Mapping for Ad Hoc Exploratory Search. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15, Florence, Italy, 18–22 May 2015; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2015; pp. 12–22. [Google Scholar] [CrossRef]
- Kim, J.; Vasardani, M.; Winter, S. Similarity matching for integrating spatial information extracted from place descriptions. Int. J. Geogr. Inf. Sci. 2017, 31, 56–80. [Google Scholar] [CrossRef]
- Ye, M.; Shou, D.; Lee, W.; Yin, P.; Janowicz, K. On the semantic annotation of places in location-based social networks. In Proceedings of the KDD, San Diego, CA, USA, 21–24 August 2011. [Google Scholar]
- Rattenbury, T.; Naaman, M. Methods for extracting place semantics from Flickr tags. ACM Trans. Web (TWEB) 2009, 3, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [Google Scholar] [CrossRef]
- Klippel, A.; Tappe, H.; Kulik, L.; Lee, P.U. Wayfinding choremes—A language for modeling conceptual route knowledge. J. Vis. Lang. Comput. 2005, 16, 311–329. [Google Scholar] [CrossRef]
- Renz, J.; Nebel, B. Qualitative Spatial Reasoning Using Constraint Calculi. In Handbook of Spatial Logics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gao, S.; Janowicz, K.; McKenzie, G.; Li, L. Towards Platial Joins and Buffers in Place-Based GIS. In Proceedings of the COMP ’13, London, UK, 12–13 March 2013. [Google Scholar]
- Janowicz, K.; Scheider, S.; Adams, B. A Geo-semantics Flyby. In Proceedings of the Reasoning Web. Semantic Technologies for Intelligent Data Access, Reasoning Web 2013, Mannheim, Germany, 30 July–2 August 2013; Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8067, pp. 230–250. [Google Scholar] [CrossRef]
- Bateman, J.; Farrar, S. Towards a generic foundation for spatial ontology. In Proceedings of the Third International Conference on Formal Ontology in Information Systems; IOS Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bittner, T.; Donnelly, M.; Smith, B. A spatio-temporal ontology for geographic information integration. Int. J. Geogr. Inf. Sci. 2009, 23, 765–798. [Google Scholar] [CrossRef] [Green Version]
- Brodaric, B.; Gahegan, M. Experiments to Examine the Situated Nature of Geoscientific Concepts. Spat. Cogn. Comput. 2007, 7, 61–95. [Google Scholar] [CrossRef]
- Bennett, B.; Mallenby, D.; Third, A. An Ontology for Grounding Vague Geographic Terms. In Proceedings of the FOIS, Saarbrücken, Germany, 31 October–3 November 2008. [Google Scholar]
- Chrisman, N. Exploring Geographic Information Systems; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kuhn, W. Semantic reference systems. Int. J. Geogr. Inf. Sci. 2003, 17, 405–409. [Google Scholar] [CrossRef]
- Mark, D.M.; Smith, B.; Egenhofer, M.; Hirtle, S. Ontological foundations for geographic information science. Res. Challenges Geogr. Inf. Sci. 2004, 335–350. [Google Scholar]
- Kauppinen, T.; Hyvönen, E. Modeling and Reasoning About Changes in Ontology Time Series. In Ontologies: A Handbook of Principles, Concepts and Applications in Information Systems; Sharman, R., Kishore, R., Ramesh, R., Eds.; Springer: Boston, MA, USA, 2007; pp. 319–338. [Google Scholar] [CrossRef] [Green Version]
- Christakos, G.; Bogaert, P.; Serre, M. Temporal GIS: Advanced Functions for Field-Based Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Galton, A.; Mizoguchi, R. The water falls but the waterfall does not fall: New perspectives on objects, processes and events. Appl. Ontol. 2009, 4, 71–107. [Google Scholar] [CrossRef]
- Hage, W.V.; Malaisé, V.; Segers, R.; Hollink, L.; Schreiber, G. Design and use of the Simple Event Model (SEM). J. Web Semant. 2011, 9, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Montello, D.R.; Goodchild, M.F.; Gottsegen, J.; Fohl, P. Where’s downtown?: Behavioral methods for determining referents of vague spatial queries. Spat. Cogn. Comput. 2003, 3, 185–204. [Google Scholar]
- Abdelmoty, A.I.; Smart, P.; Jones, C.B. Building Place Ontologies for the Semantic Web: Issues and Approaches. In Proceedings of the 4th ACM Workshop on Geographical Information Retrieval, GIR’07, Lisbon, Portugal, 9 November 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 7–12. [Google Scholar] [CrossRef]
- Lutz, M.; Klien, E. Ontology-based retrieval of geographic information. Int. J. Geogr. Inf. Sci. 2006, 20, 233–260. [Google Scholar] [CrossRef]
- Jones, C.; Alani, H.; Tudhope, D. Geographical Information Retrieval with Ontologies of Place. In Proceedings of the COSIT, Morro Bay, CA, USA, 19–23 September 2001. [Google Scholar]
- Jordan, T.; Raubal, M.; Gartrell, B.; Egenhofer, M. An Affordance-Based Model of Place in GIS. 1999. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.8628&rep=rep1&type=pdf (accessed on 1 April 2021).
- Alazzawi, A.; Abdelmoty, A.; Jones, C. What can I do there? Towards the automatic discovery of place-related services and activities. Int. J. Geogr. Inf. Sci. 2012, 26, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Lee, W.; Weng, T.C.; Tseng, V.S. Semantic trajectory mining for location prediction. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011. [Google Scholar]
- Harvey, F.; Kuhn, W.; Pundt, H.; Bishr, Y.; Riedemann, C. Semantic interoperability: A central issue for sharing geographic information. Ann. Reg. Sci. 1999, 33, 213–232. [Google Scholar] [CrossRef]
- Dou, D.; McDermott, D.; Qi, P. Ontology Translation on the Semantic Web. J. Data Semant. 2005, 2, 35–57. [Google Scholar]
- Raubal, M. Formalizing conceptual spaces. Formal ontology in information systems. In Proceedings of the Third International Conference (FOIS 2004), Torino, Italy, 4–6 November 2004; Volume 114, pp. 153–164. [Google Scholar]
- Rodriguez, M.A.; Egenhofer, M. Comparing geospatial entity classes: An asymmetric and context-dependent similarity measure. Int. J. Geogr. Inf. Sci. 2004, 18, 229–256. [Google Scholar] [CrossRef]
- Schwering, A.; Raubal, M. Measuring Semantic Similarity Between Geospatial Conceptual Regions. In Proceedings of the GeoS, Mexico City, Mexico, 29–30 November 2005. [Google Scholar]
- Li, B.; Fonseca, F. TDD: A comprehensive model for qualitative spatial similarity assessment. Spat. Cogn. Comput. 2006, 6, 31–62. [Google Scholar] [CrossRef]
- Martin, D.; Burstein, M.; McDermott, D.; McIlraith, S.; Paolucci, M.; Sycara, K.; McGuinness, D.L.; Sirin, E.; Srinivasan, N. Bringing semantics to web services with OWL-S. World Wide Web 2007, 10, 243–277. [Google Scholar] [CrossRef] [Green Version]
- Fensel, D.; Bussler, C. The Web Service Modeling Framework WSMF. Electron. Commer. Res. Appl. 2002, 1, 113–137. [Google Scholar] [CrossRef]
- Vaccari, L.; Shvaiko, P.; Marchese, M. A geo-service semantic integration in Spatial Data Infrastructures. Int. J. Spat. Data Infrastruct. Res. 2009, 4, 24–51. [Google Scholar]
- Lemmens, R.; Wytzisk, A.; de By, R.; Granell, C.; Gould, M.; Van Oosterom, P. Integrating semantic and syntactic descriptions to chain geographic services. IEEE Internet Comput. 2006, 10, 42–52. [Google Scholar] [CrossRef]
- Lutz, M. Ontology-based descriptions for semantic discovery and composition of geoprocessing services. Geoinformatica 2007, 11, 1–36. [Google Scholar] [CrossRef]
- Janowicz, K.; Schade, S.; Bröring, A.; Keßler, C.; Maué, P.; Stasch, C. Semantic Enablement for Spatial Data Infrastructures. Trans. GIS 2010, 14, 111–129. [Google Scholar] [CrossRef]
- Klien, E. A Rule-Based Strategy for the Semantic Annotation of Geodata. Trans. GIS 2007, 11, 437–452. [Google Scholar] [CrossRef]
- Kuhn, W. Cognitive and Linguistic Ideas in Geographic Information Semantics. In Cognitive and Linguistic Aspects of Geographic Space; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 159–174. [Google Scholar] [CrossRef]
- Zhu, Y. Geospatial semantics, ontology and knowledge graphs for big Earth data. Big Earth Data 2019, 3, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Di Donato, P. Geospatial Semantics: A Critical Review. In Computational Science and Its Applications—ICCSA 2010; Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6016. [Google Scholar] [CrossRef]
- Schuurman, N. Formalization Matters: Critical GIS and Ontology Research. Ann. Assoc. Am. Geogr. 2006, 96, 726–739. [Google Scholar] [CrossRef]
- Wang, C.; Kantor, C.M.; Mitchell, J.T.; Bacastow, T.S. Digital Earth Education. In Manual of Digital Earth; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 755–783. [Google Scholar]
- Goffi, A.; Bordogna, G.; Stroppiana, D.; Boschetti, M.; Brivio, P.A. Knowledge and Data-Driven Mapping of Environmental Status Indicators from Remote Sensing and VGI. Remote Sens. 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, G.; Ghisalberti, G.; Psaila, G. Geographic information retrieval: Modeling uncertainty of user’s context. Fuzzy Sets Syst. FSS 2012, 196. [Google Scholar] [CrossRef]
- Zadrozny, S.; Kacprzyk, J. Bipolar Queries Using Various Interpretations of Logical Connectives. In Proceedings of the Foundations of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems Association World Congress, IFSA 2007, Cancun, Mexico, 18–21 June 2007; Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4529, pp. 181–190. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 2008, 23, 866–877. [Google Scholar] [CrossRef]
- Dujmović, J.; Larsen, H. Generalized conjunction/disjunction. Int. J. Approx. Reason. 2007, 46, 423–446. [Google Scholar] [CrossRef] [Green Version]
- Arcaini, P.; Bordogna, G.; Ienco, D.; Sterlacchini, S. User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks. Inf. Sci. 2016, 340–341, 122–143. [Google Scholar] [CrossRef] [Green Version]
- Fellbaum, C. (Ed.) WordNet: An Electronic Lexical Database; Language, Speech, and Communication; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Psaila, G.; Toccu, M.; Bordogna, G.; Frigerio, L.; Cuzzocrea, A. An Interoperable Open Data Framework for Discovering Popular Tours Based on Geo-Tagged Tweets. Int. J. Intell. Inf. Database Syst. 2017, 10, 1. [Google Scholar] [CrossRef]
- Miles, A.; Bechhofer, S. SKOS Simple Knowledge Organization System Reference. In Proceedings of the W3C Recommendation, W3C, Maputo, Mozambique, 1–2 April 2009. [Google Scholar]
- Perego, A.; Fugazza, C.; Vaccari, L.; Lutz, M.; Smits, P.; Kanellopoulos, I.; Schade, S. Harmonization and Interoperability of EU Environmental Information and Services. IEEE Intell. Syst. 2012, 27, 33–39. [Google Scholar] [CrossRef]
- Brickley, D.; Miller, L. The Friend Of A Friend (FOAF) Vocabulary Specification. 2007. Available online: http://xmlns.com/foaf/spec/ (accessed on 1 April 2021).
- Santoro, M.; Mazzetti, P.; Nativi, S.; Fugazza, C.; Granell, C.; Díaz, L. Methodologies for augmented discovery of geospatial resources. In Discovery of Geospatial Resources: Methodologies, Technologies, and Emergent Applications; Díaz, L., Granell, C., Huerta, J., Eds.; IGI Global: Hershey, PA, USA, 2012; Chapter 9; pp. 172–203. [Google Scholar]
- Sporny, M.; Longley, D.; Kellogg, G.; Lanthaler, M.; Champin, P.A.; Lindström, N. JSON-LD 1.1 A JSON-Based Serialization for Linked Data. Ph.D. Thesis, W3C Recommendation, W3C, Cambridge, MA, USA, 2020. [Google Scholar]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yuan, M.; Sheng, Y.; Min, X.; Cao, Y. Using Geographic Ontologies and Geo-Characterization to Represent Geographic Scenarios. ISPRS Int. J. Geo-Inf. 2019, 8, 566. [Google Scholar] [CrossRef] [Green Version]
- Lü, G.; Batty, M.; Strobl, J.; Lin, H.; Zhu, A.X.; Chen, M. Reflections and speculations on the progress in Geographic Information Systems (GIS): A geographic perspective. Int. J. Geogr. Inf. Sci. 2019, 33, 346–367. [Google Scholar] [CrossRef]
- Bertalanffy, L.V. General Systems Theory: Foundations, Development, Applications / by Ludwig von Bertalanffy, rev. ed.; Braziller: New York, NY, USA, 1968. [Google Scholar]
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Memb. Submiss. 2004, 21, 1–31. [Google Scholar]
- Fugazza, C.; Menegon, S.; Pepe, M.; Oggioni, A.; Carrara, P. The RITMARE Starter Kit—Bottom-up Capacity Building for Geospatial Data Providers. In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT), INSTICC, Vienna, Austria, 29–31 August 2014; SciTePress: Setúbal, Portugal, 2014; Volume 1, pp. 169–176. [Google Scholar] [CrossRef]
- Fugazza, C.; Basoni, A.; Menegon, S.; Oggioni, A.; Pavesi, F.; Pepe, M.; Sarretta, A.; Carrara, P. RITMARE: Semantics-aware Harmonisation of Data in Italian Marine Research. Procedia Comput. Sci. 2014, 33, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Tagliolato, P.; Fugazza, C.; Oggioni, A.; Carrara, P. Semantic Profiles for Easing SensorML Description: Review and Proposal. ISPRS Int. J. Geo-Inf. 2019, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Pavesi, F.; Basoni, A.; Fugazza, C.; Menegon, S.; Oggioni, A.; Pepe, M.; Tagliolato, P.; Carrara, P. EDI – A Template-Driven Metadata Editor for Research Data. JORS J. Open Res. Softw. 2016, 4, e40. [Google Scholar] [CrossRef]
- SPARQL Working Group. SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013, World Wide Web Consortium. 2013. Available online: http://www.w3.org/TR/sparql11-query/ (accessed on 1 April 2021).
- Fugazza, C.; Pepe, M.; Oggioni, A.; Tagliolato, P.; Pavesi, F.; Carrara, P. Describing Geospatial Assets in the Web of Data: A Metadata Management Scenario. ISPRS Int. J. Geo-Inf. 2016, 5, 229. [Google Scholar] [CrossRef] [Green Version]
- Fugazza, C.; Tagliolato, P.; Frigerio, L.; Carrara, P. Web-Scale Normalization of Geospatial Metadata Based on Semantics-Aware Data Sources. ISPRS Int. J. Geo-Inf. 2017, 6, 354. [Google Scholar] [CrossRef] [Green Version]
- Fugazza, C.; Pepe, M.; Oggioni, A.; Tagliolato, P.; Carrara, P. Raising Semantics-Awareness in Geospatial Metadata Management. ISPRS Int. J. Geo-Inf. 2018, 7, 370. [Google Scholar] [CrossRef] [Green Version]
- Lefrançois, M.; Zimmermann, A.; Bakerally, N. A SPARQL extension for generating RDF from heterogeneous formats. In Proceedings of the Extended Semantic Web Conference (ESWC’17), Portorož, Slovenia, 28 May–1 June 2017. [Google Scholar]
- Prud’hommeaux, E.; Harris, S.; Seaborne, A. SPARQL 1.1 Query Language; Technical Report W3C. 2013. Available online: https://www.w3.org/TR/sparql11-query/ (accessed on 1 April 2021).
- Lehnert, K. IGSN: International Geo Sample Number. Unambiguous Citation of Physical Samples. 2015. Available online: https://zenodo.org/record/31788 (accessed on 1 April 2021).
- Wohner, C.; Peterseil, J.; Poursanidis, D.; Kliment, T.; Wilson, M.; Mirtl, M.; Chrysoulakis, N. DEIMS-SDR—A web portal to document research sites and their associated data. Ecol. Inform. 2019, 51, 15–24. [Google Scholar] [CrossRef]
- Zilioli, M.; Oggioni, A.; Tagliolato, P.; Pugnetti, A.; Carrara, P. Feeding Essential Biodiversity Variables (EBVs): Actual and potential contributions from LTER-Italy. Nat. Conserv. 2019, 34, 477–503. [Google Scholar] [CrossRef]
- Percivall, G. OGC’s Open Standards for Geospatial Interoperability. In Encyclopedia of GIS; Springer International Publishing: Cham, Switzerland, 2017; pp. 1466–1473. [Google Scholar] [CrossRef]
- Richardson, L.; Amundsen, M.; Ruby, S. RESTful Web APIs; O’Reilly Media, Inc.: Newton, MA, USA, 2013. [Google Scholar]
- Fielding, R.T. REST: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Thesis, University of California, Irvine, CA, USA, 2000. [Google Scholar]
- Wilkinson, M.; Verborgh, R.; Bonino da Silva Santos, L.O.; Clark, T.; Swertz, M.; Kelpin, F.; Gray, A.; Schultes, E.; van Mulligen, E.M.; Ciccarese, P.; et al. Interoperability and FAIRness through a novel combination of Web technologies. PeerJ Comput. Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Trani, L.; Atkinson, M.; Bailo, D.; Paciello, R.; Filgueira, R. Establishing Core Concepts for Information-Powered Collaborations. Future Gener. Comput. Syst. 2018, 89, 421–437. [Google Scholar] [CrossRef]
- Trani, L.; Paciello, R.; Sbarra, M.; Ulbricht, D. Representing Core Concepts for solid-Earth sciences with DCAT—The EPOS-DCAT Application Profile. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 9797. [Google Scholar]
- Lanthaler, M.; Gütl, C. Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In Proceedings of the WWW2013 Workshop on Linked Data on the Web, Rio de Janeiro, Brazil, 14 May 2013; Volume 996. [Google Scholar]
- Lanucara, S.; Fugazza, C.; Tagliolato, P.; Oggioni, A. Information Systems for Precision Agriculture: Monitoring Computation of Prescription Maps. ERCIM News 2018, 113, 24–25. [Google Scholar]
- Ventura, D.; Verborgh, R.; Catania, V.; Mannens, E. Autonomous Composition and Execution of REST APIs for Smart Sensors. In Proceedings of the Joint Proceedings of the 1st Joint International Workshop on Semantic Sensor Networks and Terra Cognita and the 4th International Workshop on Ordering and Reasoning, CEUR Workshop Proceedings, Bethlehem, PA, USA, 11–12 October 2015; Volume 1488, pp. 25–30. [Google Scholar]
- Cross, V.; Chen, S. Fuzzy Information Processing; Communications in Computer and Information Science; Chapter Fuzzy Ontologies: The State of the Art revised; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bobillo, F.; Straccia, U. The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 2016, 95, 12–34. [Google Scholar] [CrossRef]
- Safia, B.-B.; Aicha, M. Poss-OWL 2: Possibilistic Extension of OWL 2 for an uncertain geographic ontology. In Proceedings of the 18th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems—KES2014, Gdynia, Poland, 16–18 September 2014; Elsevier Procedia: Amsterdam, The Netherlands, 2014; pp. 407–416. [Google Scholar]
- Aerts, D.; Gabora, L. A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes 2005, 34, 192–221. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, G.; Kliment, T.; Frigerio, L.; Brivio, P.A.; Crema, A.; Stroppiana, D.; Boschetti, M.; Sterlacchini, S. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture. ISPRS Int. J. Geo-Inf. 2016, 5, 73. [Google Scholar] [CrossRef]
- Bordogna, G.; Frigerio, L.; Kliment, T.; Brivio, P.; Hossard, L.; Manfron, G.; Sterlacchini, S. Contextualized VGI Creation and Management to Cope with Uncertainty and Imprecision. ISPRS Int. J. Geo-Inf. 2016, 5, 234. [Google Scholar] [CrossRef] [Green Version]
- Hahn, J.; Frank, A.U. Select the appropriate map depending on context in a hilbert space model (scop). In International Symposium on Quantum Interaction; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8369. [Google Scholar] [CrossRef]
- Slonneger, K.; Kurtz, B. Formal Syntax and Semantics of Programming Languages: A Laboratory Based Approach, 1st ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1995. [Google Scholar]
- Miller, G. The Magical Number Seven, Plus Or Minus Two: Some Limits on Our Capacity for Processing Information; Bobbs-Merrill Reprint Series in the Social Sciences; P-241, College Division of Bobbs-Merrill Company: Indianapolis, IN, USA, 1975. [Google Scholar]
Subsection | Name | Description | Input Data | Method Classification | Output Data | Potential Use |
---|---|---|---|---|---|---|
Section 2.4.1 | GeoFinder | GIR extracting and modeling uncertainty of geofootprints in textual documents | textual documents from etherogeneous sources (tested on a collection of articles about Energy power stations and on CLEF2008 collection) | fuzzy computational intelligence | uncertain geofootprints of textual documents, i.e., fuzzy sets of geographic points with uncertainty degrees in [0,1] associated with the index terms of textual documents | Performing spatial queries (expressing metrical and topological conditions) in combination with content-based queries on textual collections |
Section 2.4.2 | Events spatio-temporal footprint | footprint detection of events’ popularity (from Twitter) | semi-structured text (Twitter) messages with explìcit geotags | unsupervised learning | clusters of punctual geo-temporal footprints of an event or topic identified by a set of keywords in a given time-lapse | geo temporal analysis of events reported in social networks |
Section 2.4.3 | Tour miner | mining popular tourists’ tours (from Twitter) | semi-structured text (Twitter) messages with explicit geotags | knowledge-based semi-supervised learning | popular tours identified by a hierarchy of clusters containing sets of “close” paths (a path being an ordered lists of geographic entity names) | geo temporal analysis of tourists’ mobility based on social network messages |
Section 2.4.4 | Eliciting Geographic Gazetteer | Extracting place names and their footprints from social networks | images, captions and metadata from Flickr | unsupervised learning | geographic gazetteer of place names | updating or creating geographic gazetteer |
Subsection | Name | Description | Input Data | Method Classification | Output Data | Potential Use |
---|---|---|---|---|---|---|
Section 2.5.1 | Holistic map representation with Geographic Scenarios | Ontology-based ingestion of geo-entities into graph databases. | relational databases | rule-based system | graph databases | express diacronic relations and causalities with respect to traditional GIS |
Section 2.5.2 | EDI/Liftboy | semantic augmentation of geospatial metadata | structured text (metadata documents, XML Schema-based) | information retrieval in a graph database | metadata enriched (aka annotated) with links to RDF entities (often defined by authoritative sources) in semantic-web (RDF) resources (organized in graphs) | semantic discovery (e.g., multilingualism, semantic expansion); disambiguation and preservation of information meaning (in the future and with respect to different audiences) |
Section 2.5.3 | Semantic twins | augmentation of geospatial metadata based on heterogeneous sources | structured and semi-structured data, JSON- and HTML-based) | information retrieval in a graph database | metadata enriched (i.e., annotated) with links to json entities (exploiting semantic twins that grant consistency of metadata items) | same as previous |
Section 2.5.4 | Semantic mediation for FAIR access to resources | machine-actionable search of geospatial resources [once geospatial service interfaces (e.g., standard CSW) has been extended to semantic machine actionable API] | REST service interface (API) definitions enriched with semantics | information retrieval based on a task-ontology | machine-actionable semantic augmentation of REST API definitions expressed in Hydra | enablement of semantic agent |
Subsection | Name | Description | Input Data | Method Classification | Output Data | Potential Use |
---|---|---|---|---|---|---|
Section 2.6.1 | Fuzzy ontology supporting VGI | VGI quality assurance and assessment by modeling both imprecision/vagueness of domain knowledge and uncertainty of volunteer’s perceptions | VGI items created by selecting linguistic predicates from a fuzzy ontology and by associating uncertainty of observations | fuzzy computational intelligence | VGI quality assessment based on qualitative reasoning (level-based uncertainty reasoning) | quality assurance and assessment; ontology enrichment |
Section 2.6.2 | Environmental status indicator mapping | fuzzy classification of standing water from remote sensing images | remote sensing images and in situ observations plus incomplete (fuzzy) ontology (contributing factors and their (soft) constraints to derive partial evidence of watered water) | fuzzy computational intelligence+ machine learning | identification of watered areas and the fuzzy ontology enrichment | monitoring water bodies; ontology enrichment |
Section 2.6.3 | Modeling user interaction in GIR | modeling user intention and concepts’ status | State-Context-Property representation of concepts and user queries | context-sensitive measurement of conceptual distance | identification of collapsed states representing answers to the user intention | modeling evolving and context dependent geographic concepts |
Subsection | Name | Complexity Degree of Input Data Explicit Semantics | Incremental Semantic Function (Methods, Techniques) | Complexity Degree of Output Data Explicit Semantics | Added Semantic Value | Keywords in Geosemantics (cfr.Sankey Diagram in Figure 2) |
---|---|---|---|---|---|---|
Section 2.4.1 | GeoFinder | 1 | euristic rules and explicit geographic information in gazetteer | 3 | 2 | Geographic Information Retrieval; semantic enrichment/tagging/annotation; gazetteer; geoparsing; geonames; place-based information systems; geo-comparison; extraction of spatio-temporal information |
Section 2.4.2 | Events spatio-temporal footprint | 2 | clustering | 4 | 2 | semantic enrichment/tagging/annotation; geo-comparison; extraction of spatio-temporal information; events, change discovery; thematic/spatial and temporal perspective |
Section 2.4.3 | Tour miner | 2 | knowledge-based clustering | 5 | 3 | geo-comparison; folksonomies; semantic enrichment/tagging/annotation; extraction of spatio-temporal information; events, change discovery; thematic/spatial and temporal perspective; (Geographic) Knowledge graph; geospatial statistics |
Section 2.4.4 | Eliciting Geographic Gazetteer | 2 | statistic analysis and clustering | 4 | 2 | Geographic Information Retrieval; semantic enrichment/tagging/annotation; gazetteer; place-based information systems; folksonomies; geo-comparison; extraction of spatio-temporal information; Place location, identity, meaning; geospatial statistics; top-level ontologies |
Section 2.5.1 | Holistic map representation with Geographic Scenarios | 4 | SWRL rules combining relational data and ontologies | 5 | 1 | Ontology for modeling; Domain ontologies; Ontology-based info extraction; Semantic enrichment/tagging/ annotation; Thematic, spatial, and temporal perspectives; Knowledge representation languages (OWL) |
Section 2.5.2 | EDI/Liftboy | 5 | entity annotation. Specific metadata profile specifying where and how to find the Semantic Web (RDF) resources | 7 | 2 | Domain ontologies; Linked Geo Data/LOD/Linked Sensor Data; Gazetteers (GeoNames)/temporal gazetters; Spatial RDF and SPARQL; Ontology-based info extraction; Semantic enrichment/tagging/ annotation; Knowledge representation languages (OWL); Semantics-driven user interfaces/interaction paradigms/Semantic engineering of human communications |
Section 2.5.3 | Semantic twins | 4 | same as example EDI/Liftboy, but to grant consistency of metadata items the semantic twins of JSON entities is exploited | 7 | 3 | Domain ontologies; Linked Geo Data/LOD/Linked Sensor Data; Gazetteers (GeoNames)/temporal gazetters; Spatial RDF and SPARQL; Ontology-based info extraction; Semantic enrichment/tagging/ annotation; Knowledge representation languages (OWL) |
Section 2.5.4 | Semantic mediation for FAIR access to resources | 5 | information retrieval based on an application ontology | 7 | 2 | Ontology for encoding; Application ontologies; Geographic Information Retrieval; Linked Geo Data/LOD/Linked Sensor Data; Semantic enrichment/tagging/ annotation; Knowledge representation languages (OWL); Semantics-driven user interfaces/interaction paradigms/Semantic engineering of human communications; Semantic markups for Web services |
Section 2.6.1 | Fuzzy ontology supporting VGI | 6 | fuzzy rule based inference engine | 7 | 1 | task-ontology; ontology for modeling; ontology for encoding; sensor and observation ontology; qualitative reasoning; application ontologies; ontology design pattern; ontology-based information extraction; semantics-driven user interfaces |
Section 2.6.2 | Environmental status indicator mapping | 5 | incomplete (fuzzy) ontology + machine learning exploiting in situ classified data | 7 | 2 | task ontology; ontology for modeling; ontology for encoding; qualitative reasoning; application ontologies; ontology design pattern; ontology-based information extraction |
Section 2.6.3 | Modeling user interaction in GIR | 5 | inference in SCOP framework | 7 | 2 | conceptual space; semantic engineering of human communications; qualitative reasoning; Non-representational formalisms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordogna, G.; Fugazza, C.; Tagliolato Acquaviva d’Aragona, P.; Carrara, P. Implicit, Formal, and Powerful Semantics in Geoinformation. ISPRS Int. J. Geo-Inf. 2021, 10, 330. https://doi.org/10.3390/ijgi10050330
Bordogna G, Fugazza C, Tagliolato Acquaviva d’Aragona P, Carrara P. Implicit, Formal, and Powerful Semantics in Geoinformation. ISPRS International Journal of Geo-Information. 2021; 10(5):330. https://doi.org/10.3390/ijgi10050330
Chicago/Turabian StyleBordogna, Gloria, Cristiano Fugazza, Paolo Tagliolato Acquaviva d’Aragona, and Paola Carrara. 2021. "Implicit, Formal, and Powerful Semantics in Geoinformation" ISPRS International Journal of Geo-Information 10, no. 5: 330. https://doi.org/10.3390/ijgi10050330
APA StyleBordogna, G., Fugazza, C., Tagliolato Acquaviva d’Aragona, P., & Carrara, P. (2021). Implicit, Formal, and Powerful Semantics in Geoinformation. ISPRS International Journal of Geo-Information, 10(5), 330. https://doi.org/10.3390/ijgi10050330