Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Field Sampling and Laboratory Testing
2.3. Laboratory Testing
2.4. Data Analysis
2.5. Classification of Land Degradation Degree in Red Bed Area
3. Results
3.1. Descriptive Statistical Characteristics of SOM
3.2. Semivariogram Analysis
3.3. Correlation Analysis of Soil Organic Matter and Influencing Factors
3.4. Spatial Distribution Pattern of SOM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartley, I.P.; Ineson, P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol. Biochem. 2008, 40, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.F.; He, Z.B.; Du, J.; Yang, J.J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Michael, W.I.S.; Margaret, S.T.; Samuel, A.; Thorsten, D.; Georg, G.; Ivan, A.J.; Markus, K.; Ingrid, K.K.; Johannes, L.; David, A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar]
- Zhao, B.H.; Li, Z.B.; Li, P.; Xu, G.; Gao, Y.C.; Chang, E.; Yuan, S.L.; Feng, Z.H. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosystems 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of world. Eur. J. Soil Sci. 2014, 47, 151–163. [Google Scholar] [CrossRef]
- Yu, D.S.; Shi, X.Z.; Wang, H.J.; Sun, W.X.; Chen, J.M.; Liu, Q.H.; Zhao, Y.C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 2007, 85, 680–689. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China. Geoderma 2017, 305, 205–263. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhao, K.L.; Xu, J.M.; Zhang, M.H.; Si, B.; Wang, F. Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China. Environ. Geol. 2008, 53, 1139–1147. [Google Scholar] [CrossRef]
- Xin, Z.; Qin, Y.; Yu, X. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena 2016, 137, 660–669. [Google Scholar] [CrossRef]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Ross, C.W.; Harris, W.G.; Comerford, N.B. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci. Total Env. 2014, 493, 974–982. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Estimating soil organic carbon across a large-scale region: A state-space modeling approach. Soil Sci. 2012, 177, 607–618. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Zhou, Y. Spatial heterogeneity of soil organic carbon in a karst region under different land use patterns. Ecosphere 2020, 11, e03077. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Yu, K.Y.; Deng, Y.B.; Liu, J.; Lai, Z.J. Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of Southern China. J. For. Res. 2020, 31, 2385–2394. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Peng, H.; Yan, L.B.; Zhang, S.Y.; Chen, A.M.; Lin, K.R. Spatial variability in soil pH and land use as the main influential factor in the red beds of the Nanxiong Basin, China. PeerJ 2019, 7, e6342. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Yan, L.B.; Lin, K.R. Spatial variability of soil physical properties based on GIS and geo-statistical methods in the red beds of the Nanxiong Basin, China. Pol. J. Environ. Stud. 2019, 28, 2961–2972. [Google Scholar] [CrossRef]
- Yan, L.B.; He, R.X.; Kašanin-Grubin, M.; Luo, G.X.; Peng, H.; Qiu, J.X. The dynamic change of vegetation cover and associated driving forces in Nanxiong Basin, China. Sustainability 2017, 9, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shao, M.; Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric. Ecosyst. Environ. 2011, 142, 184–194. [Google Scholar] [CrossRef]
- Tonitto, C.; Goodale, C.L.; Weiss, M.S.; Frey, S.D.; Ollinger, S.V. The effect of nitrogen addition on soil organic matter dynamics: A model analysis of the harvard forest chronic nitrogen amendment study and soil carbon response to anthropogenic n deposition. Biogeochemistry 2014, 117, 431–454. [Google Scholar] [CrossRef]
- Yones, K.; Farshad, K.; Sohaila, E. The effect of land use change on soil and water quality in northern iran. J. Mt. Sci. 2012, 6, 74–92. [Google Scholar]
- Meersmans, J.; De Ridder, F.; Canters, F.; De Baets, S.; Van Molle, M. A multiple regression approach to assess the spatial distribution of soil organic carbon (soc) at the regional scale (flanders, belgium). Geoderma 2008, 143, 1–13. [Google Scholar] [CrossRef]
- Hu, P.L.; Liu, S.J.; Ye, Y.Y.; Wei, Z.; Su, Y.R. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degrad. Dev. 2018, 29, 387–398. [Google Scholar] [CrossRef]
- Kong, X.B.; Zhang, F.R.; Wei, Q.; Xu, Y.; Hui, J.G. Influence of land use change on soil nutrients in an intensive agricultural region of North China. Soil Tillage Res. 2006, 88, 85–94. [Google Scholar] [CrossRef]
- Mao, Y.M.; Sang, S.X.; Liu, S.Q.; Jia, J.L. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. Comptes Rendus Biol. 2014, 337, 332–337. [Google Scholar] [CrossRef]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Spatial dependence and interpolation of soil properties in west Sumatra, Indonesia. 1. Anisotropic variation. Soil Sci. Soc. Am. J. 1986, 50, 1391–1395. [Google Scholar] [CrossRef]
- Qiu, W.; Curtin, D.; Johnstone, P.; Beare, M.; Hernandez-Ramirez, G. Small-scale spatial variability of plant nutrients and soil organic matter: An arable cropping case study. Commun. Soil Sci. Plant Anal. 2016, 47, 2189–2199. [Google Scholar] [CrossRef]
- Phesheya, D.; Pauline, C.; Alan, M.; Vincent, C. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in south africa—Sciencedirect. Geoderma 2014, 235, 372–381. [Google Scholar]
- Martinsen, V.; Mulder, J.; Austrheim, G.; Mysterud, A. Carbon storage in low-alpine grassland soils: Effects of different grazing intensities of sheep. Eur. J. Soil Sci. 2011, 62, 822–833. [Google Scholar] [CrossRef]
- Steffens, M.; Kölbl, A.; Totsche, K.U.; Kögel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 2008, 143, 63–72. [Google Scholar] [CrossRef]
- Luo, G.S.; Peng, H.; Zhang, S.Y.; Yan, L.B.; Dong, Y.X. Exploring the variations of redbed badlands and their driving forces in the nanxiong basin, southern china: A geographically weighted regression with gridded data. J. Sens. 2021, 2021, 6694407. [Google Scholar] [CrossRef]
- Tao, D.; Singh, N.; Goswami, C. Spatial Variability of Soil Organic Carbon and Available Nutrients under Different Topography and Land Uses in Meghalaya, India. Int. J. Plant Soil Sci. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Sheng, M.Y.; Xiong, K.N.; Wang, L.J.; Li, X.N.; Li, R.; Tian, X.J. Response of soil physical and chemical properties to Rocky desertification succession in South China Karst. Carbonates Evaporites 2018, 33, 15–28. [Google Scholar] [CrossRef]
- Teng, M.J.; Zeng, L.X.; Xiao, W.F.; Huang, Z.L.; Zhou, Z.X.; Yan, Z.G.; Wang, P.C. Spatial variability of soil organic carbon in three gorges reservoir area, china. Sci. Total Environ. 2017, 599, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Negrete-Yankelevich, S.; Porter-Bolland, L.; Blanco-Rosas, J.L.; Barois, I. Historical roots of the spatial, temporal, and diversity scales of agricultural decision-making in sierra de santa marta, los tuxtlas. Environ. Manag. 2013, 52, 45–60. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Rodríguez-Caballero, E.; Domingo, F.; Escudero, A. Runoff at contrasting scales in a semiarid ecosystem: A complex balance between biological soil crust features and rainfall characteristics. J. Hydrol. 2012, 452, 130–138. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; Vanzyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? a case study in south africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Dregne, H.E.; Kassas, M.; Rozanov, B. A new assessment of the world status of desertification. Desertif. Control Bull. 1991, 20, 6–19. [Google Scholar]
- Justice, C.O.; Dugdale, G.; Townshend, J.R.G.; Narracott, A.S.; Kumar, M. Synergism between NOAAAVHRR and Meteosat data for studying vegetation development in semi-arid West Africa. Int. J. Remote Sens. 1991, 12, 1349–1368. [Google Scholar] [CrossRef]
- Clarke, M.L.; Rendell, H.M. Process–form relationships in southern italian badlands: Erosion rates and implications for landform evolution. Earth Surf. Process. Landf. 2006, 31, 15–29. [Google Scholar] [CrossRef]
- Kevin, H.; Marie-Franoise, A. New insights into rock weathering from high-frequency rock temperature data: An antarctic study of weathering by thermal stress. Geomorphology 2001, 41, 23–35. [Google Scholar]
- Nadal-Romero, E.; Martinez-Murillo, J.F.; Vanmaercke, M.; Poesen, J. Scale-dependency of sediment yield from badland areas in mediterranean environments. Prog. Phys. Geogr. 2011, 35, 297–332. [Google Scholar] [CrossRef]
Grading Standard | Naked Features | Soil Characteristics | Vegetation Characteristics | Land Production Potential |
---|---|---|---|---|
Mild land degradation | Spotty bedrock exposed | Most of the soil layers are more than 50 cm thick, with complete ABC soil layer and slight soil erosion. | About 50–70% vegetation coverage, and the community structure is complex, forming an obvious interlayer structure of arbor, shrub and grass. | Biological production capacity is high, and can be used for forestry or agricultural land. |
Moderate land degradation | Patchy bare rock outcropping | Most of the soil layer is 20–50 cm thick, only BC layer, humus (A) development is not obvious, soil erosion is strong. | 30–50% vegetation coverage, the arbor layer is destroyed to form shrub grass communiteis, with artificially planted Pinus massoniana and Schima superba forests. | The potential productivity of land is relatively low, and can be developed as irrigated land, dry land or artificial economic forest land. |
Severe land degradation | Exposure of flaky bare rock | Most of the soil layer is 5–20 cm thick, with thin eluvial layer (B), and the soil erosion is severe. | 10–30% vegetation coverage, and the community is dominated by grass slope meadow with few plant species and interspersed with drought tolerant thorny shrubs. | The potential productivity of land is scant, can mainly be used for uncultivated dry land, artificial eucalyptus, leucaena shelter forest land and so on. |
Extreme land degradation | Continuous bedrock exposure | The thickness of the soil layer is less than 5 cm, with only weathered debris. The process of soil formation is not obvious, the loss is rapid, and the weathering erosion of the bedrock is strong. | Less than 10% vegetation coverage, with only a few extremely drought-tolerant shrubs and herbs distributed. | There is basically no biological production potential. |
Types of Land Degradation | Samples | Minimum | Maximum | Average | Standard Deviation | Coefficient of Variation | Skewness | K-S L-Test |
---|---|---|---|---|---|---|---|---|
Total | 225 | 9.11 | 34.80 | 19.84 | 2.64 | 13.31 | 0.42 | 1.65 |
Mild land degradation | 57 | 24.25 | 34.80 | 27.70 | 2.49 | 8.98 | 0.56 | 1.66 |
Moderate land degradation | 56 | 18.36 | 24.21 | 21.11 | 1.68 | 7.96 | 0.36 | 1.61 |
Severe land degradation | 55 | 15.42 | 18.36 | 17.02 | 0.96 | 5.64 | −1.51 | 0.93 |
Extreme land degradation | 57 | 9.11 | 15.39 | 13.45 | 1.83 | 13.61 | −0.78 | 0.62 |
Types of Land Degradation | Number of Samples | Model | Nugget | Sill | Nugget/Sill | Rang (m) | R2 |
---|---|---|---|---|---|---|---|
Mild land degradation | 57 | Gaussian | 0.15 | 1.42 | 10.56 | 2824.97 | 0.98 |
Moderate land degradation | 56 | Gaussian | 0.56 | 7.13 | 7.85 | 2805.92 | 0.86 |
Severe land degradation | 55 | Gaussian | 0.46 | 5.93 | 7.76 | 2769.55 | 0.95 |
Extreme land degradation | 57 | Gaussian | 0.01 | 3.01 | 0.33 | 2646.57 | 0.96 |
Soil Impact Factors | Types of Land Degradation | |||
---|---|---|---|---|
Mild Land Degradation | Moderate Land Degradation | Severe Land Degradation | Extreme Land Degradation | |
Altitude | 0.877 ** | 0.800 ** | 0.843 * | 0.781 * |
Slope | −0.710 * | −0.739 ** | −0.737 ** | −0.793 ** |
Aspect | 0.949 ** | 0.836 ** | 0.948 ** | 0.732 ** |
Surface temperature | 0.800 ** | 0.915 ** | 0.930 ** | 0.821 ** |
Bulk density | −0.689 * | −0.700 * | −0.952 ** | −0.841 ** |
pH | −0.684 * | −0.890 * | −0.758 ** | −0.774 ** |
Total nitrogen | 0.694 ** | 0.731 ** | 0.864 ** | 0.836 ** |
Total phosphorus | 0.844 ** | 0.780 ** | 0.852 ** | 0.861 ** |
Total potassium | 0.714 ** | 0.711 ** | 0.873 ** | 0.796 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Lin, K.; Wang, Y.; Tu, X.; Bai, C.; Yan, L. Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods. ISPRS Int. J. Geo-Inf. 2021, 10, 366. https://doi.org/10.3390/ijgi10060366
Yan P, Lin K, Wang Y, Tu X, Bai C, Yan L. Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods. ISPRS International Journal of Geo-Information. 2021; 10(6):366. https://doi.org/10.3390/ijgi10060366
Chicago/Turabian StyleYan, Ping, Kairong Lin, Yiren Wang, Xinjun Tu, Chunmei Bai, and Luobin Yan. 2021. "Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods" ISPRS International Journal of Geo-Information 10, no. 6: 366. https://doi.org/10.3390/ijgi10060366
APA StyleYan, P., Lin, K., Wang, Y., Tu, X., Bai, C., & Yan, L. (2021). Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods. ISPRS International Journal of Geo-Information, 10(6), 366. https://doi.org/10.3390/ijgi10060366