A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery
Abstract
:1. Introduction
2. Methods
2.1. Overall Processes
2.1.1. Preprocessing
2.1.2. Initial Classification
2.1.3. Classification Refinement
2.1.4. Reclassification
2.2. Natural Shoreline Prediction
Algorithm 1: Natural Shoreline Prediction. |
1. Define the shore polygon edge as a line vector L. 2. Divide L equally into n sections from to . 3. Calculate the slope of each l as , and obtain the slope change curve. 4. Calculate the change rate of as , and obtain the slope change rate curve. 5. Set a threshold T and when , l is predicted as a natural shoreline. |
2.3. Range and Standard Deviation Description
- (1)
- Clip the high-resolution images by polygons of the refined tidal flat wetlands, and reserve the blue band and the near-infrared band.
- (2)
- Traverse each band by a window of , and calculate the standard deviation of each window as and the range of each window as R. Then, assign the standard deviation and range value to all pixels in the window so that we can get four dispersion measurement images.
- (3)
- The four images were added together by influence weights to obtain the final measures of the dispersion image. In order to evaluate the contribution of each dispersion measurement image, the information entropy was estimated asThen, the weights were calculated as
- (4)
- The Marr edge detection operator was used in the final measures of the dispersion image to determine the RMS edge so that the RMS was extracted.
2.4. Tidal Correction
3. Results and Discussions
3.1. Research Data
3.2. Performance of NSP
3.3. Effectiveness of Tidal Correction
3.4. Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batzer, D.P. Wetland ecology: Principles and conservation. Wilson Bull. 2001, 113, 354–361. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.F.; Spencer, T.; Reed, D.J.; Saintilan, N. Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls. In Wetlands and Natural Resource Management; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bellio, M.; Kingsford, R.T. Alteration of wetland hydrology in coastal lagoons: Implications for shorebird conservation and wetland restoration at a Ramsar site in Sri Lanka. Biol. Conserv. 2013, 167, 57–68. [Google Scholar] [CrossRef]
- David, M.M.; Meli, P.; Maria, I.V.R.; Aronson, J. Ecosystem response to interventions: Lessons from restored and created wetland ecosystems. J. Appl. Ecol. 2015, 52, 1528–1537. [Google Scholar]
- Klemas, V. Remote Sensing of Riparian and Wetland Buffers: An Overview. J. Coast. Res. 2014, 297, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Kuklinski, P. Ecology of stone-encrusting organisms in the Greenland Sea—A review. Polar Res. 2009, 28, 222–237. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P.K. Assessment of pan-sharpened very high-resolution WorldView-2 images. Int. J. Remote Sens. 2013, 34, 8336–8359. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Carle, M.V.; Wang, L.; Sasser, C.E. Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery. Int. J. Remote Sens. 2014, 35, 4698–4716. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xiang, S.; Duan, J.; Zhu, F.; Pan, C.; Com, H. A label propagation method using spatial-spectral consistency for hyperspectral image classification. Int. J. Remote Sens. 2016, 37, 191–211. [Google Scholar] [CrossRef]
- Lahet, F.; Ouillon, S.; Forget, P. Colour classification of coastal waters of the Ebro river plume from spectral reflectances. Int. J. Remote Sens. 2001, 22, 1639–1664. [Google Scholar] [CrossRef]
- Kong, D.; Xu, J.; Yin, J.; Yan, H. Classification of MODIS images combining surface temperature and texture features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai Bay, China. Int. J. Remote Sens. 2015, 36, 2734–2750. [Google Scholar]
- Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Wang, J.; Ting, H. Application of Hyperion data to land degradation mapping in the Hengshan region of China. Int. J. Remote Sens. 2010, 31, 5145–5161. [Google Scholar] [CrossRef]
- Benferhat, S.; Boudjelida, A.; Tabia, K.; Drias, H. An intrusion detection and alert correlation approach based on revising probabilistic classifiers using expert knowledge. Appl. Intell. 2013, 38, 520–540. [Google Scholar] [CrossRef]
- Muchoney, D.; Borak, J.; Chi, H.; Friedl, M.; Gopal, S.; Hodges, J.; Morrow, N.; Strahler, A. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. Int. J. Remote Sens. 2000, 21, 1115–1138. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, I.B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Raju, P.V. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871–4890. [Google Scholar]
- Carr, J.R. Spatial Statistics for Remote Sensing. Math. Geosci. 2005, 37, 549–550. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osman, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Porwal, A.; Holden, E.J.; Dentith, M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45, 229–239. [Google Scholar] [CrossRef]
- Maulik, U.; Chakraborty, D. A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognit. 2011, 44, 615–623. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2017, 18, 1527–1554. [Google Scholar] [CrossRef]
- Lin, L.; Dong, H.; Song, X. DBN-Based Classification of Spatial-Spectral Hyperspectral Data; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Qayyum, A.; Malik, A.S.; Saad, N.M.; Iqbal, M.; Abdullah, M.F.; Rasheed, W. Scene classification for aerial images based on CNN using sparse coding technique. Int. J. Remote Sens. 2017, 38, 2662–2685. [Google Scholar] [CrossRef]
- Shunping, J.; Chi, Z.; Anjian, X.; Yun, S.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar]
- Han, X.; Zhong, Y.; Zhao, B.; Zhang, L. Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery. Int. J. Remote Sens. 2017, 38, 514–536. [Google Scholar] [CrossRef]
- Othman, E.; Bazi, Y.; Alajlan, N.; Alhichri, H.; Melgani, F. Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 2016, 37, 1977–1995. [Google Scholar] [CrossRef]
- Gao, B. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Name | Description |
---|---|
NDWI | (RGREEN-RNIR)/(RGREEN + RNIR) [33] |
NDVI | (RNIR-RRED)/(RNIR + RRED) [34] |
Area | Pixel numbers of target object multiply area of every single pixel |
Buffer | Whether the target object is within the buffer area |
Size | |||||
---|---|---|---|---|---|
OA (%) | 77.04 | 80.22 | 83.53 | 80.37 | 80.90 |
Name | Parameters | |
---|---|---|
Satellite | WorldView-2 (including multispectral and panchromatic sensors) | |
The regression period | 1.1 days | |
Wavelength (nm) | 450–1040 (panchromatic), 450–510 (blue), 510–580 (green), | |
630–690 (red), and 770–895 (NIR) | ||
Original resolutions | 2015.10.21 — 1.891 (multispectral) and 0.473 (panchromatic) | |
Spatial resolution (nm) | 2017.11.01 — 1.321 (multispectral) and 0.330 (panchromatic) | |
2018.01.15 — 1.332 (multispectral) and 0.333 (panchromatic) | ||
Fusion method | Gram–Schmidt spectral sharpening method | |
Resampling method | Cubic convolution method |
PA (%) | UA (%) | OA (%) | ||
---|---|---|---|---|
Image1 | 94.25 | 89.70 | 99.64 | 0.9161 |
Image2 | 88.00 | 93.53 | 99.41 | 0.9050 |
RMSE | MAE | SD | |
---|---|---|---|
Area 1 | 1.98 | 1.70 | 2.41 |
Area 2 | 1.08 | 0.97 | 0.38 |
Area 3 | 1.28 | 1.14 | 0.58 |
Area 4 | 1.88 | 1.81 | 0.58 |
SVM | RF | ResNet | Proposed | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | OA (%) | OA (%) | OA (%) | OA (%) | |||||
Image 1 | 2015 | 51.25 | 0.34 | 66.50 | 0.51 | 53.25 | 0.37 | 88.50 | 0.84 |
2017 | 53.00 | 0.10 | 69.25 | 0.46 | 75.00 | 0.46 | 92.75 | 0.84 | |
2018 | 53.75 | 0.28 | 64.75 | 0.33 | 76.00 | 0.55 | 93.50 | 0.87 | |
Image 2 | 2015 | 71.43 | 0.49 | 44.86 | 0.24 | 57.71 | 0.37 | 96.29 | 0.93 |
2017 | 72.29 | 0.52 | 63.14 | 0.44 | 57.43 | 0.35 | 95.71 | 0.92 | |
2018 | 76.57 | 0.58 | 73.14 | 0.56 | 48.00 | 0.24 | 92.86 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Jia, Y.; Zhao, D.; Xiu, T.; Duan, F. A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 451. https://doi.org/10.3390/ijgi10070451
Pan H, Jia Y, Zhao D, Xiu T, Duan F. A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery. ISPRS International Journal of Geo-Information. 2021; 10(7):451. https://doi.org/10.3390/ijgi10070451
Chicago/Turabian StylePan, Hong, Yonghong Jia, Dawei Zhao, Tianyu Xiu, and Fuzhi Duan. 2021. "A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery" ISPRS International Journal of Geo-Information 10, no. 7: 451. https://doi.org/10.3390/ijgi10070451
APA StylePan, H., Jia, Y., Zhao, D., Xiu, T., & Duan, F. (2021). A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery. ISPRS International Journal of Geo-Information, 10(7), 451. https://doi.org/10.3390/ijgi10070451