DEM- and GIS-Based Analysis of Soil Erosion Depth Using Machine Learning
Abstract
:1. Introduction
2. Materials
2.1. Environmental Factors and Erosion Pin Measurements
2.2. Morphometric Factors
3. Methods
3.1. Research Framework
3.2. Feature Selection
3.3. Machine Learning Models
3.4. Assessment of Models
4. Results
4.1. Feature Selection
4.2. Machine Learning
4.3. Model Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Eswaran, H.; Lal, R.; Reich, P.F. Land Degradation: An overview. In Response to Land Degradation, Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand, 25–29 January 1999; Bridges, E.M., Hannam, I.D., Oldeman, L.R., Pening de Vries, F.W.T., Scherr, S.J., Sompatpanit, S., Eds.; Oxford University Press: New Delhi, India, 2002. Available online: http://soils.usda.gov/use/worldsoils/papers/land-degradation-overview.html (accessed on 1 August 2013).
- Myers, N. Gaia: An Atlas of Planet Management; Anchor/DoubleDay: Garden City, NY, USA, 1993. [Google Scholar]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson: Harlow, UK, 2017; 1104p. [Google Scholar]
- Oldeman, L.R. The global extent of soil degradation. In Soil Resilience and Sustainable Land Use; Greenland, D.J., Szabolcs, I., Eds.; CAB International: Wallingford, UK, 1994; pp. 99–118. [Google Scholar]
- Daily, G. Restoring value to the world’s degraded lands. Science 1997, 269, 350–354. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Comparative Costs of Erosion and Sediment Control Construction Activities; EPA-430/9-73-016; U.S. Government Printing Office: Washington, DC, USA, 1973.
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons: New York, NY, USA, 1996; 378p. [Google Scholar]
- National Geosciences Database. 2017. Available online: www.ngdir.ir (accessed on 12 February 2019).
- Arabameri, A.; Tiefenbacher, J.P.; Blaschke, T.; Pradhan, B.; Bui, D.T. Morphometric analysis for soil erosion susceptibility mapping using novel gis-based ensemble model. Remote Sens. 2020, 12, 874. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Ayach Anache, J.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Chen, W.; Li, D.-H.; Yang, K.-J.; Tsai, F.; Seeboonruang, U. Identifying and comparing relatively high soil erosion sites with four DEMs. Ecol. Eng. 2018, 120, 449–463. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Li, D.-H.; Chen, W.; Lin, B.-S.; Seeboonruang, U.; Tsai, F. Soil erosion modeling and comparison using slope units and grid cells in Shihmen reservoir watershed in Northern Taiwan. Water 2018, 10, 1387. [Google Scholar] [CrossRef] [Green Version]
- Angileri, S.E.; Conoscenti, C.; Hochschild, V.; Märker, M.; Rotigliano, E.; Agnesi, V. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology 2016, 262, 61–76. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pal, S.C.; Sahana, M.; Mondal, A.; Dou, J.; Pham, B.T.; Yunus, A.P. Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Nat. Hazards 2020, 104, 1259–1294. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Yousefi, S.; Kornejady, A.; Cerdà, A. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci. Total Environ. 2017, 609, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Svoray, T.; Michailov, E.; Cohen, A.; Rokah, L.; Sturm, A. Predicting gully initiation: Comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf. Process. Landf. 2012, 37, 607–619. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Chen, W.; Lin, B.-S.; Seeboonruang, U.; Thomas, K. Predicting sheet and rill erosion of Shihmen reservoir watershed in Taiwan using machine learning. Sustainability 2019, 11, 3615. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.; Chen, W.; Lin, B.-S.; Seeboonruang, U. Using machine learning-based algorithms to analyze erosion rates of a watershed in Northern Taiwan. Sustainability 2020, 12, 2022. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.; Chen, W.; Lin, B.-S.; Seeboonruang, U. Comparison of Ensemble Machine Learning Methods for Soil Erosion Pin Measurements. ISPRS Int. J. Geo-Inf. 2021, 10, 42. [Google Scholar] [CrossRef]
- Tsai, F.; Lai, J.-S.; Nguyen, K.A.; Chen, W. Determining Cover Management Factor with Remote Sensing and Spatial Analysis for Improving Long-Term Soil Loss Estimation in Watersheds. ISPRS Int. J. Geo-Inf. 2021, 10, 19. [Google Scholar] [CrossRef]
- Huang, C.L.; Hsu, N.S.; Wei, C.C. Coupled Heuristic Prediction of Long Lead-Time Accumulated Total Inflow of a Reservoir during Typhoons Using Deterministic Recurrent and Fuzzy Inference-Based Neural Network. Water 2015, 7, 6516–6550. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.S.; Thomas, K.; Chen, C.K.; Ho, H.C. Evaluation of soil erosion risk for watershed management in Shenmu watershed, central Taiwan using USLE model parameters. Paddy Water Environ. 2016, 14, 19–43. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Morphometric Analysis. 2009. Available online: https://www.britannica.com/science/morphometric-analysis (accessed on 4 May 2021).
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Faniran, A. The index of drainage intensity: A provisional new drainage factor. Aust. J. Sci. 1968, 31, 326–330. [Google Scholar]
- Arango, M.I.; Aristizábal, E.; Gómez, F. Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Nat. Hazards 2021, 105, 983–1012. [Google Scholar] [CrossRef]
- Melton, M.A. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J. Geol. 1965, 73, 1–38. [Google Scholar] [CrossRef]
- Melton, M.A. An Analysis of the Relation among Elements of Climate, Surface Properties and Geomorphology; Tech. Rep. II; Office of Navy Research, Department of Geology, Columbia University: New York, NY, USA, 1957; 102p. [Google Scholar]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Jothimani, M.; Abebe, A.; Dawit, Z. Mapping of soil erosion-prone sub-watersheds through drainage morphometric analysis and weighted sum approach: A case study of the Kulfo River basin, Rift valley, Arba Minch, Southern Ethiopia. Model. Earth Syst. Environ. 2020, 6, 2377–2389. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-Basin Characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Corps of Engineers; Civil Works Inv., Project CW 153; Department of the Army, Washington District, The Unit Hydrograph Compilations: Washington, DC, USA, 1949.
- Morisawa, M. Measurement of Drainage-Basin Outline Form. J. Geol. 1958, 66, 587–591. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Chen, W.; Chen, A. A statistical test of erosion pin measurements. In Proceedings of the 39th Asian Conference on Remote Sensing (ACRS 2018), Kuala Lumpur, Malaysia, 15–19 October 2018; Volume 4, pp. 2439–2443. [Google Scholar]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A system for feature selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, C.; Yang, D.; Gao, S.; Zhang, Y.; Chen, L.; Wang, B.; Mo, Z.; Yang, Y.; Hei, Z.; Zhou, S. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation. Respir. Res. 2021, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, Y.; Park, S.; Jang, H.; Kim, H.J.; Na, D.L.; Lee, H.; Seo, S.W. Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach. Sci. Rep. 2021, 11, 5706. [Google Scholar] [CrossRef]
- Mamun, O.; Wenzlick, M.; Hawk, J.; Devanathan, R. A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys. Sci. Rep. 2021, 11, 5466. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
Morphometric Factor | Unit | Formula/Software | |
---|---|---|---|
1 | Subwatershed area (A) | km2 | ArcGIS (Calculate Geometry) |
2 | Subwatershed perimeter (P) | km | ArcGIS (Calculate Geometry) |
3 | Stream order (U) | - | ArcGIS (Calculate Geometry) |
4 | ) | - | ArcGIS (Stream Order) |
5 | ) | km | ArcGIS (Calculate Geometry) |
6 | Mean subwatershed slope (S) | Degree | ArcGIS (Slope) |
7 | Mean stream length (Lsm) | km | |
8 | Subwatershed length (Lb) | km | ArcGIS |
9 | Stream frequency (Fs) | 1/km2 | |
10 | Drainage density (Dd) | 1/km | |
11 | Constant of channel maintenance (C) | km | |
12 | Length of overland flow (Lo) | km | |
13 | Infiltration number (If) | 1/km3 | |
14 | Subwatershed relief (H) | km | |
15 | Relief ratio (R) | - | |
16 | Melton index (M) | - | |
17 | Ruggedness number (Rn) | - | |
18 | Bifurcation ratio (Rb) | - | |
19 | Stream length ratio (Rl) | - | |
20 | Ratio Rho (ρ) | - | |
21 | Elongation ratio (Re) | - | |
22 | Circularity ratio (Rc) | - | |
23 | Form factor (Ff) | - | |
24 | Shape factor (Bs) | - | |
25 | Compactness coefficient (Cc) | - | |
26 | Texture ratio (T) | 1/km |
meanImp | medianImp | minImp | maxImp | Decision | |
---|---|---|---|---|---|
Type of slope | 8.162273 | 8.243055 | 3.952560 | 10.425924 | Confirmed |
Subwatershed area | 5.019874 | 5.052494 | 2.343560 | 7.383705 | Confirmed |
Shape factor | 4.976153 | 5.010055 | 2.159306 | 7.532354 | Confirmed |
Elevation | 4.988711 | 5.000990 | 2.069170 | 7.789953 | Confirmed |
Total number of streams | 4.907324 | 4.938526 | 2.276170 | 7.150461 | Confirmed |
Melton index | 4.409082 | 4.469957 | 1.627233 | 7.206727 | Confirmed |
Total stream length | 4.447973 | 4.438060 | 1.872146 | 6.785887 | Confirmed |
Relief ratio | 4.348566 | 4.412615 | 0.893647 | 6.730493 | Confirmed |
Form factor | 4.209047 | 4.230464 | 1.780136 | 6.776284 | Confirmed |
Subwatershed perimeter | 4.064281 | 4.095632 | 0.925774 | 6.298489 | Confirmed |
Lithology | 3.898596 | 3.915257 | 0.934244 | 6.630224 | Confirmed |
Elongation ratio | 3.788302 | 3.794716 | 1.129358 | 5.898901 | Confirmed |
Epoch | 3.517687 | 3.528155 | 0.622912 | 6.683233 | Confirmed |
Subwatershed length | 3.421194 | 3.444065 | 0.453943 | 6.157326 | Confirmed |
Texture ratio | 3.420789 | 3.421103 | 0.778195 | 5.719445 | Confirmed |
Subwatershed | 2.952157 | 2.983119 | −0.229199 | 5.487332 | Tentative |
Subwatershed relief | 2.355625 | 2.315015 | −0.156997 | 4.560039 | Rejected |
Bifurcation ratio | 2.122521 | 2.217065 | 0.894857 | 3.185164 | Rejected |
Mean subwatershed slope | 1.990054 | 2.069925 | 0.119557 | 3.807072 | Rejected |
Slope class | 1.999188 | 2.035054 | −0.586225 | 4.019329 | Rejected |
Infiltration number | 1.761100 | 1.736976 | −0.027713 | 3.775921 | Rejected |
Length of overland flow | 1.757534 | 1.690870 | −0.044952 | 3.617237 | Rejected |
Drainage density | 1.674382 | 1.671754 | 0.212803 | 2.613970 | Rejected |
Constant of channel maintenance | 1.412327 | 1.563865 | −1.125096 | 2.720770 | Rejected |
Stream order | 1.460165 | 1.537092 | −0.199118 | 2.561430 | Rejected |
Compactness coefficient | 1.492243 | 1.527261 | −0.460479 | 2.733053 | Rejected |
Rainfall | 1.601451 | 1.490486 | 0.124088 | 3.313065 | Rejected |
Stream frequency | 1.359127 | 1.464677 | −0.542830 | 2.702161 | Rejected |
Stream length ratio | 1.090233 | 1.124972 | −1.164121 | 2.851477 | Rejected |
Distance to road | 0.998904 | 0.815334 | −0.609436 | 2.881991 | Rejected |
Circularity ratio | 0.975395 | 0.711048 | −0.379865 | 2.311318 | Rejected |
Ratio Rho | 0.518910 | 0.549485 | −0.944962 | 2.122957 | Rejected |
Slope direction | 0.692622 | 0.536967 | −0.820490 | 2.884595 | Rejected |
Ruggedness number | 0.183690 | 0.291990 | −2.038411 | 1.565565 | Rejected |
Mean stream length | 0.486127 | 0.288427 | −1.123192 | 1.989272 | Rejected |
Distance to river | −0.937049 | −0.925128 | −2.557384 | 0.647234 | Rejected |
Model and Factors | No. of Factors | Average RMSE (mm/yr) | Average NSE | ||
---|---|---|---|---|---|
Training | Test | Training | Test | ||
RF (all) | 36 | 0.96 | 2.01 | 0.83 | 0.25 |
GBM (all) | 36 | 0.88 | 1.84 | 0.84 | 0.39 |
RF (confirmed) | 15 | 1.08 | 1.91 | 0.79 | 0.31 |
GBM (confirmed) | 15 | 0.79 | 1.50 | 0.88 | 0.59 |
RF (nonrejected) | 16 | 1.09 | 1.96 | 0.79 | 0.27 |
GBM (nonrejected) | 16 | 0.82 | 1.52 | 0.87 | 0.57 |
Erosion Depth (mm/yr) | Min (mm/yr) | Mean (mm/yr) | Max (mm/yr) |
---|---|---|---|
RF (all) | 4.60 | 6.77 | 9.33 |
GBM (all) | 3.79 | 6.73 | 9.73 |
RF (confirmed) | 4.65 | 6.68 | 10.10 |
GBM (confirmed) | 3.25 | 6.68 | 11.53 |
RF (nonrejected) | 4.63 | 6.67 | 10.14 |
GBM (nonrejected) | 3.22 | 6.67 | 11.60 |
Erosion Pin measurements | 2.17 | 6.50 | 13.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, K.A.; Chen, W. DEM- and GIS-Based Analysis of Soil Erosion Depth Using Machine Learning. ISPRS Int. J. Geo-Inf. 2021, 10, 452. https://doi.org/10.3390/ijgi10070452
Nguyen KA, Chen W. DEM- and GIS-Based Analysis of Soil Erosion Depth Using Machine Learning. ISPRS International Journal of Geo-Information. 2021; 10(7):452. https://doi.org/10.3390/ijgi10070452
Chicago/Turabian StyleNguyen, Kieu Anh, and Walter Chen. 2021. "DEM- and GIS-Based Analysis of Soil Erosion Depth Using Machine Learning" ISPRS International Journal of Geo-Information 10, no. 7: 452. https://doi.org/10.3390/ijgi10070452
APA StyleNguyen, K. A., & Chen, W. (2021). DEM- and GIS-Based Analysis of Soil Erosion Depth Using Machine Learning. ISPRS International Journal of Geo-Information, 10(7), 452. https://doi.org/10.3390/ijgi10070452