Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment
Abstract
:1. Introduction
2. Methodology
2.1. Estimation Model Based on Gaussian Process Regression
2.2. Seismic Probabilistic Risk Assessment
2.3. Evaluation Criteria
3. Data Set
3.1. Feature Selection of Seismic Waves
3.2. Six- and Thirteen-Floor Buildings
4. Results
4.1. Six-Floor Building Analysis for Development of the Rapid Prediction Model
4.2. Thirteen Floor Building Analysis for Development of the Rapid Prediction Model
5. Discussion with Regional Seismic Damage Assessment
5.1. GIS Analysis
5.2. Estimation of Structural Responses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Performance-based metamodel for healthcare facilities. Earthq. Eng. Struct. Dyn. 2011, 40, 1197–1217. [Google Scholar] [CrossRef]
- Wang, Z.; Pedroni, N.; Zentner, I.; Zio, E. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Eng. Struct. 2018, 162, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Porter, K.A.; Kiremidjian, A.S.; LeGrue, J.S. Assembly-based vulnerability of buildings and its use in performance evaluation. Earthq. Spectra 2001, 17, 291–312. [Google Scholar] [CrossRef]
- Iervolino, I.; Giorgio, M. Stochastic modeling of recovery from seismic shocks. In Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering, Vancouver, BC, Canada, 12–15 July 2015. [Google Scholar]
- Burton, H.V.; Deierlein, G.; Lallemant, D.; Lin, T. Framework for incorporating probabilistic building performance in the assessment of community seismic resilience. J. Struct. Eng. 2016, 142, C4015007. [Google Scholar] [CrossRef] [Green Version]
- Shinozuka, M.; Feng, M.Q.; Lee, J.; Naganuma, T. Statistical analysis of fragility curves. J. Eng. Mech. 2000, 126, 1224–1231. [Google Scholar] [CrossRef] [Green Version]
- Shinozuka, M.; Feng, M.Q.; Kim, H.-K.; Kim, S.-H. Nonlinear static procedure for fragility curve development. J. Eng. Mech. 2000, 126, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Reed, J.W.; Kennedy, R.P. Methodology for Developing Seismic Fragilities; Final Report TR-103959; Electric Power Research Institute: Palo Alto, CA, USA, 1994. [Google Scholar]
- Kirçil, M.S.; Polat, Z. Fragility analysis of mid-rise R/C frame buildings. Eng. Struct. 2006, 28, 1335–1345. [Google Scholar] [CrossRef]
- Araya-Letelier, G.; Parra, P.; Lopez-Garcia, D.; Garcia-Valdes, A.; Candia, G.; Lagos, R. Collapse risk assessment of a Chilean dual wall-frame reinforced concrete office building. Eng. Struct. 2019, 183, 770–779. [Google Scholar]
- Shafei, B.; Zareian, F.; Lignos, D.G. A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems. Eng. Struct. 2011, 33, 1107–1116. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Estêvão, J.; Maio, R.; Vicente, R. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry. Front. Struct. Civ. Eng. 2020, 14, 609–622. [Google Scholar] [CrossRef]
- Yariyan, P.; Zabihi, H.; Wolf, I.D.; Karami, M.; Amiriyan, S. Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. Int. J. Disaster Risk Reduct. 2020, 50, 101705. [Google Scholar] [CrossRef]
- Hwang, S.H.; Mangalathu, S.; Shin, J.; Jeon, J.S. Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames. J. Build. Eng. 2021, 34, 101905. [Google Scholar] [CrossRef]
- Lagaros, N.D.; Fragiadakis, M. Fragility assessment of steel frames using neural networks. Earthq. Spectra 2007, 23, 735–752. [Google Scholar] [CrossRef]
- Unnikrishnan, V.; Prasad, A.; Rao, B. Development of fragility curves using high-dimensional model representation. Earthq. Eng. Struct. Dyn. 2013, 42, 419–430. [Google Scholar] [CrossRef]
- Saha, S.K.; Matsagar, V.; Chakraborty, S. Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models. Probabilistic Eng. Mech. 2016, 43, 20–35. [Google Scholar] [CrossRef]
- Calabrese, A.; Lai, C.G. Fragility functions of blockwork wharves using artificial neural networks. Soil Dyn. Earthq. Eng. 2013, 52, 88–102. [Google Scholar] [CrossRef]
- Gehl, P.; D’Ayala, D. Development of Bayesian Networks for the multi-hazard fragility assessment of bridge systems. Struct. Saf. 2016, 60, 37–46. [Google Scholar] [CrossRef]
- Jung, K.; Park, D.; Park, S. Development of Models for Prompt Responses from Natural Disasters. Sustainability 2020, 12, 7803. [Google Scholar] [CrossRef]
- Cummings, D.; Dalrymple, R.; Choi, K.; Jin, J. The Tide-Dominated Han River Delta, Korea: Geomorphology, Sedimentology, and Stratigraphic Architecture; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Han, J.; Kim, J.; Park, S.; Son, S.; Ryu, M. Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest. Sustainability 2020, 12, 7787. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, S.W. Recent tectonism in the Korean Peninsula and sea floor spreading. Econ. Environ. Geol. 1971, 4, 39–43. [Google Scholar]
- Park, S.C.; Yang, H.; Lee, D.K.; Park, E.H.; Lee, W.-J. Did the 12 September 2016 Gyeongju, South Korea earthquake cause surface deformation? Geosci. J. 2018, 22, 337–346. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Chalupka, K.; Williams Iain Murray, C.K.I. A framework for evaluating approximation methods for Gaussian progress regression. J. Mach. Learn. Res. 2013, 14, 333–350. [Google Scholar]
- Phan, H.N.; Paolacci, F.; Di Filippo, R.D.; Bursi, O.S. Seismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regression. Bull. Earthq. Eng. 2020, 18, 6883–6906. [Google Scholar] [CrossRef]
- Hoang, P.H.; Phan, H.N.; Nguyen, D.T.; Paolacci, F. Kriging Metamodel-Based Seismic Fragility Analysis of Single-Bent Reinforced Concrete Highway Bridges. Buildings 2021, 11, 238. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Nakamura, T.; TN, T.S.; Shinozuka, M. A study on failure probability of highway bridges by earthquake based on statistical method. In Proceedings of the 10th Japanese Earthquake Engineering Symposium, Minato City, Tokyo, Japan, 25–27 November 1998. [Google Scholar]
- Miller, R.G. A trustworthy jackknife. Ann. Math. Stat. 1964, 35, 1594–1605. [Google Scholar] [CrossRef]
- Shao, J.; Tu, D. The Jackknife and Bootstrap; Springer: Berlin, Germany, 2012. [Google Scholar]
- Shu, C.; Ouarda, T.B.M.J. Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Basilevsky, A.T. Statistical Factor Analysis and Related Methods: Theory and Applications; John Wiley & Sons Inc.: London, UK, 2009. [Google Scholar]
- Singh, G.; Panda, R.K. Daily sediment yield modelling with artificial neural network using 10-fold cross validation method: A small agricultural watershed, Kapgari, India. Int. J. Earth Sci. Eng. 2011, 4, 443–450. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef]
- Jung, K.; Ouarda, T.B.M.J.; Marpu, P.R. On the value of river network information in regional frequency analysis. J. Hydrometeorol. 2021, 22, 201–216. [Google Scholar] [CrossRef]
- Rahman, A.; Charron, C.; Ouarda, T.B.M.J.; Chebana, F. Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stoch. Environ. Res. Risk Assess. 2018, 32, 123–139. [Google Scholar] [CrossRef]
- Papazafeiropoulos, G.; Plevris, V. OpenSeismoMatlab: A new open-source software for strong ground motion data processing. Heliyon 2018, 4, e00784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunnath, S.K.; Nghiem, Q.; El-Tawil, S. Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings. Earthq. Spectra 2004, 20, 883–915. [Google Scholar] [CrossRef]
- Kalkan, E.; Kunnath, S.K. Effects of fling step and forward directivity on seismic response of buildings. Earthq. Spectra 2006, 22, 367–390. [Google Scholar] [CrossRef]
- Kalkan, E.; Chopra, A.K. Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures. US Geol. Surv. Open-File Rep. 2010, 1068, 126. [Google Scholar]
- Uang, C.-M. Performance of a 13-Story Steel Moment-Resisting Frame Damaged in the 1994 Northridge Earthquake; Structural Systems Research; University of California: San Diego, CA, USA, 1995. [Google Scholar]
- Song, S.; Qian, C.; Qian, Y.; Bao, H.; Lin, P. Canonical Correlation Analysis of Selecting Optimal Ground Motion Intensity Measures for Bridges. KSCE J. Civ. Eng. 2019, 23, 2958–2970. [Google Scholar] [CrossRef]
- ASCE/SEI 41-06. Seismic Rehabilitation of Existing Buildings; Ameriacan Society of Civil Engineers: Reston, VA, USA, 2007. [Google Scholar]
- Rezaei, S.; Akbari Hamed, A.; Basim, M.C. Seismic performance evaluation of steel structures equipped with dissipative columns. J. Build. Eng. 2020, 29, 101227. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kyung, J.-B. An analysis of the sensitivity of input parameters for the seismic hazard analysis in the Korean Peninsula. J. Korean Earth Sci. Soc. 2015, 36, 351–359. [Google Scholar] [CrossRef]
- Noh, M.H.; Lee, K.H. Estimation of Peak Ground Motions in the Southeastern Part of the Korean peninsula (II): Development of Predictive Equations. J. Geol. Soc. Korea 1995, 31, 175–187. [Google Scholar]
- Toro, G.R.; Abrahamson, N.A.; Schneider, J.F. Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismol. Res. Lett. 1997, 68, 41–57. [Google Scholar] [CrossRef]
- Jo, N.; Baag, C. Estimation of spectrum decay parameter k and stochastic prediction of strong ground motions in southeastern Korea. J. Earthq. Eng. Soc. Korea 2003, 7, 59–70. [Google Scholar]
Name | Min | Max | Average |
---|---|---|---|
Arias Intensity (m/s2) | 5.584 × 10−12 | 1.903 | 0.104 |
CAV (g.sec) | 0.017 | 16.428 | 3.264 |
Characteristic Intensity (m/s2) | 3.550 × 10−9 | 2.545 | 0.234 |
Abs Min/Max difference of PGA | 0.00083 | 3.029 | 0.309 |
Cumulative Energy | 5.744 × 10−5 | 12.913 | 1.142 |
Mean Frequency (Hz) | 0.668 | 9.710 | 3.666 |
PGA (g) | 0.020 | 3.500 | 0.894 |
PGV (m/s) | 1.724 × 10−6 | 0.005 | 0.00061 |
PGD (m) | 7.340 × 10−10 | 5.825 × 10−5 | 3.341 × 10−6 |
PVA ratio | 8.620 × 10−5 | 0.007 | 0.00087 |
Total Duration (sec) | 3.560 | 147.590 | 19.353 |
Significant duration (sec) | 3.570 | 147.595 | 19.361 |
Mean period (Hz) | 0.165 | 2.076 | 0.557 |
ID | Feature Name |
---|---|
1 | Arias intensity |
2 | CAV |
3 | Characteristic intensity |
4 | Difference between min and max |
5 | ECUM |
6 | FM |
7 | PGA |
8 | PGV |
9 | PGD |
10 | PVA ratio |
11 | Duration (5% and 95%) |
12 | Td |
13 | Tm |
ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 | ID10 | ID11 | ID12 | ID13 | Use | |
ID1 | 1.00 | 0.76 | 0.97 | 0.48 | 0.86 | 0.20 | 0.70 | 0.47 | 0.28 | 0.15 | 0.03 | 0.03 | 0.28 | O |
ID2 | 1.00 | 0.75 | 0.56 | 0.89 | 0.25 | 0.78 | 0.59 | 0.40 | 0.11 | 0.17 | 0.17 | 0.27 | O | |
ID3 | 1.00 | 0.53 | 0.84 | 0.23 | 0.75 | 0.51 | 0.30 | 0.17 | 0.07 | 0.07 | 0.31 | × | ||
ID4 | 1.00 | 0.62 | 0.50 | 0.76 | 0.73 | 0.49 | 0.05 | 0.19 | 0.19 | 0.41 | × | |||
ID5 | 1.00 | 0.29 | 0.83 | 0.57 | 0.37 | 0.17 | 0.06 | 0.06 | 0.35 | O | ||||
ID6 | 1.00 | 0.47 | 0.14 | 0.09 | 0.35 | 0.29 | 0.29 | 0.66 | O | |||||
ID7 | 1.00 | 0.59 | 0.28 | 0.28 | 0.21 | 0.21 | 0.46 | O | ||||||
ID8 | 1.00 | 0.83 | 0.35 | 0.06 | 0.06 | 0.14 | ▲ | |||||||
ID9 | 1.00 | 0.45 | 0.05 | 0.05 | 0.08 | ▲ | ||||||||
ID10 | 1.00 | 0.30 | 0.30 | 0.56 | × | |||||||||
ID11 | 1.00 | 0.99 | 0.46 | × | ||||||||||
ID12 | 1.00 | 0.46 | × | |||||||||||
ID13 | 1.00 | O |
100 | 150 | 200 | 250 | 300 | 350 | 400 | ||
---|---|---|---|---|---|---|---|---|
RMSE | 6 params | 5.4300 | 5.2541 | 3.8081 | 3.2979 | 3.2358 | 2.2118 | 0.0774 |
13 params | 5.5045 | 5.4602 | 5.0244 | 4.8633 | 3.3894 | 2.6728 | 0.1866 | |
R2 | 6 params | 0.6881 | 0.7214 | 0.7839 | 0.8235 | 0.8325 | 0.9121 | 0.9999 |
13 params | 0.6991 | 0.7183 | 0.7219 | 0.7461 | 0.8330 | 0.8866 | 0.9999 | |
NASH | 6 params | 0.4389 | 0.4730 | 0.7232 | 0.7926 | 0.8017 | 0.9067 | 0.9999 |
13 params | 0.4216 | 0.4312 | 0.5181 | 0.5490 | 0.7807 | 0.8636 | 0.9993 | |
BIAS | 6 params | −1.2174 | −0.8205 | −0.7758 | −0.6096 | −0.2774 | 0.0073 | 0.0006 |
13 params | −1.0639 | −1.0049 | −0.9237 | −0.6630 | −0.4363 | −0.3272 | 0.0000 |
100 | 150 | 200 | 250 | 300 | 350 | 400 | ||
---|---|---|---|---|---|---|---|---|
RMSE | 6 params | 61.7917 | 54.1377 | 22.3553 | 18.4622 | 16.5705 | 12.3378 | 0.3505 |
13 params | 46.6716 | 22.7955 | 21.4977 | 17.6729 | 14.3694 | 7.3180 | 1.0307 | |
R2 | 6 params | 0.5297 | 0.5402 | 0.6232 | 0.6643 | 0.7003 | 0.7828 | 0.9997 |
13 params | 0.5711 | 0.6528 | 0.6594 | 0.7131 | 0.7297 | 0.8961 | 0.9976 | |
NASH | 6 params | −7.6522 | −5.7187 | −0.1437 | 0.2195 | 0.3714 | 0.6520 | 0.9997 |
13 params | −3.6343 | −0.1890 | −0.0562 | 0.2852 | 0.5276 | 0.8774 | 0.9976 | |
BIAS | 6 params | −8.9402 | −8.8389 | −3.4629 | −3.4605 | −1.3888 | −0.3119 | 0.0008 |
13 params | −14.7187 | −5.0456 | −4.0346 | −1.9865 | −1.1869 | −0.4691 | −0.0017 |
100 | 150 | 200 | 250 | 300 | 350 | 400 | ||
---|---|---|---|---|---|---|---|---|
RMSE | 6 floors | 5.4300 | 5.2541 | 3.8081 | 3.2979 | 3.2358 | 2.2118 | 0.0774 |
13 floors | 61.7917 | 54.1377 | 22.3553 | 18.4622 | 16.5705 | 12.3378 | 0.3505 | |
R2 | 6 floors | 0.6881 | 0.7214 | 0.7839 | 0.8235 | 0.8325 | 0.9121 | 0.9999 |
13 floors | 0.5297 | 0.5402 | 0.6232 | 0.6643 | 0.7003 | 0.7828 | 0.9997 | |
NASH | 6 floors | 0.4389 | 0.4730 | 0.7232 | 0.7926 | 0.8017 | 0.9067 | 0.9999 |
13 floors | −3.6343 | −0.1890 | −0.0562 | 0.2852 | 0.5276 | 0.8774 | 0.9976 | |
BIAS | 6 floors | −1.2174 | −0.8205 | −0.7758 | −0.6096 | −0.2774 | 0.0073 | 0.0006 |
13 floors | −8.9402 | −8.8389 | −3.4629 | −3.4605 | −1.3888 | −0.3119 | 0.0008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Jung, K. Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment. ISPRS Int. J. Geo-Inf. 2021, 10, 574. https://doi.org/10.3390/ijgi10090574
Park S, Jung K. Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment. ISPRS International Journal of Geo-Information. 2021; 10(9):574. https://doi.org/10.3390/ijgi10090574
Chicago/Turabian StylePark, Sangki, and Kichul Jung. 2021. "Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment" ISPRS International Journal of Geo-Information 10, no. 9: 574. https://doi.org/10.3390/ijgi10090574
APA StylePark, S., & Jung, K. (2021). Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment. ISPRS International Journal of Geo-Information, 10(9), 574. https://doi.org/10.3390/ijgi10090574