Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data
Abstract
:1. Introduction
2. The Molise Coast
3. Materials and Methods
3.1. Shoreline Changes along the Southern Molise Coast from 1954 to 2019
3.2. Short Term Changes of the Beach System in the Test Area
3.3. Coastal Vulnerability Assessment
4. Results
4.1. Shoreline Changes along the Southern Molise Coast from 1954 to 2019
4.2. Shoreline and Beach Morphology Changes in the Test Area from 2019 to 2020
4.2.1. Verification of the Correspondence between UAV and GNSS Altimetric Data 2019 and 2020
4.2.2. Analysis and Differences of 3D Models 2019 and 2020
4.2.3. Shoreline and Beach Morphology Changes 2019–2020 along Beach Profiles T1–T10
4.3. Long to Short-Term Shoreline Changes in the Test Area and Related Erosion Indexes
4.4. Coastal Vulnerability Index Assessment
5. Discussion
- Full verification of the correspondence between UAV and GNSS altimetric data acquired respectively in 2019 and 2020 in the test area, confirming the very good quality of acquired UAV z-data and the possibility to use them for high-resolution plano-altimetric beach change analyses.
- Rapid and precise estimation of short-term erosion trends and morphological changes of the beach-dune system in the test area.
- Estimation of volumetric changes from 2019 to 2020 related to beach morphology and shoreline changes, highlighting an overall land loss of about 780 m3 to confirm the persistence of coastal erosion in the test area.
- Verification that changes in shoreline and beach morphology from 2019 to 2020, despite the very short period, caused evident changes of some indexes that enter in the CVA approach for coastal vulnerability assessment. This highlights the importance of coastal monitoring performed at close intervals (at least annually) and carried out over several years, especially in erosion hot spot areas.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chust, G.; Grande, M.; Galparsoro, I.; Uriarte, A.; Borja, Á. Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: A case study within a Basque estuary. Estuar. Coast. Shelf Sci. 2010, 89, 200–213. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Rosser, N.J.; Petley, D.N.; Lim, M.; Dunning, S.A.; Allison, R.J. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 363–375. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of shoreline position and change using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Kaufmann, G. Geophysical mapping of solution and collapse sinkholes. J. Appl. Geophys. 2014, 111, 271–288. [Google Scholar] [CrossRef]
- Sabato, L.; Longhitano, S.G.; Gioia, D.; Cilumbriello, A.; Spalluto, L. Sedimentological and morpho-evolution maps of the ‘Bosco Pantano di Policoro’ coastal system (Gulf of Taranto, southern Italy). J. Maps 2012, 8, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Coveney, S.; Stewart Fotheringham, A.; Charlton, M.; McCarthy, T. Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS. Comput. Geosci. 2010, 36, 489–499. [Google Scholar] [CrossRef]
- Schmid, K.A.; Hadley, B.C.; Wijekoon, N. Vertical accuracy and use of topographic LIDAR data in coastal marshes. J. Coast. Res. 2011, 27, 116–132. [Google Scholar] [CrossRef]
- Oliveira, S.; Moura, D.; Boski, T.; Horta, J. Coastal paleokarst landforms: A morphometric approach via UAV for coastal management (Algarve, Portugal case study). Ocean Coast. Manag. 2019, 167, 245–261. [Google Scholar] [CrossRef]
- Nield, J.M.; Wiggs, G.F.; Squirrell, R.S. Aeolian sand strip mobility and protodune development on a drying beach: Examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surf. Process. Landf. 2011, 36, 513–522. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Rodríguez, G. Coastal vulnerability to wave storms of Sele littoral plain (southern Italy). Nat. Hazards 2014, 71, 1795–1819. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Flores-de-Santiago, F.; Valderrama-Landeros, L.; Rodríguez-Sobreyra, R.; Flores-Verdugo, F. Assessing the effect of flight altitude and overlap on orthoimage generation for UAV estimates of coastal wetlands. J. Coast. Conserv. 2020, 24, 35. [Google Scholar] [CrossRef]
- Bryson, M.; Johnson-Roberson, M.; Murphy, R.J.; Bongiorno, D. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes. PLoS ONE 2013, 8, e73550. [Google Scholar] [CrossRef] [Green Version]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; McGarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- Özcan, O.; Akay, S.S. Modeling morphodynamic processes in meandering rivers with UAV-based measurements. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 7886–7889. [Google Scholar]
- Salesa, D.; Minervino Amodio, A.; Rosskopf, C.M.; Garfì, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264. [Google Scholar] [CrossRef]
- Gioia, D.; Amodio, A.M.; Maggio, A.; Sabia, C.A. Impact of land use changes on the erosion processes of a degraded rural landscape: An analysis based on high-resolution DEMs, historical images, and soil erosion models. Land 2021, 10, 673. [Google Scholar] [CrossRef]
- Peter, K.D.; d’Oleire-Oltmanns, S.; Ries, J.B.; Marzolff, I.; Ait Hssaine, A. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data. Catena 2014, 113, 24–40. [Google Scholar] [CrossRef]
- Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 2014, 214, 339–355. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological site monitoring: UAV photogrammetry can be an answer. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; ISPRS Council: Hannover, Germany, 2012; pp. 583–588. [Google Scholar]
- Rufino, G.; Moccia, A. Integrated VIS-NIR hyperspectral/thermal-IR electro-optical payload system for a mini-UAV. In Proceedings of the Collection of Technical Papers—InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, Arlington, TX, USA, 26–29 September 2005; pp. 915–923. [Google Scholar]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Cramer, M.; Bovet, S.; Gültlinger, M.; Honkavaara, E.; McGill, A.; Rijsdijk, M.; Tabor, M.; Tournadre, V. On the use of RPAS in national mapping—The EuroSDR point of view. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; ISPRS Council: Hannover, Germany, 2013; pp. 93–99. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- Gornitz, V.M.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. J. Coast. Res. 1994, 327–338. [Google Scholar]
- Adger, W.N.; Brooks, N.; Bentham, G.; Agnew, M.; Eriksen, S. New Indicators of Vulnerability and Adaptive Capacity; Technical Report 7; Tyndall Centre for Climate Research: Norwich, UK, 2004; pp. 1–122. [Google Scholar]
- Bracone, V.; Amorosi, A.; Aucelli, P.P.C.; Rosskopf, C.M.; Scarciglia, F.; Di Donato, V.; Esposito, P. The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence-stratigraphic perspective. Basin Res. 2012, 24, 213–233. [Google Scholar] [CrossRef]
- Rosskopf, C.M.; Di Paola, G.; Atkinson, D.E.; Rodríguez, G.; Walker, I.J. Recent shoreline evolution and beach erosion along the central Adriatic coast of Italy: The case of Molise region. J. Coast. Conserv. 2018, 22, 879–895. [Google Scholar] [CrossRef]
- Buccino, M.; Paola, G.D.; Ciccaglione, M.C.; Giudice, G.D.; Rosskopf, C.M. A medium-term study of molise coast evolution based on the one-line equation and “equivalent wave” concept. Water 2020, 12, 2831. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Environ. Earth Sci. 2018, 77, 371. [Google Scholar] [CrossRef]
- Scorpio, V.; Aucelli, P.P.C.; Giano, S.I.; Pisano, L.; Robustelli, G.; Rosskopf, C.M.; Schiattarella, M. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology 2015, 251, 77–90. [Google Scholar] [CrossRef]
- Crowell, M.; Leatherman, S.P.; Buckley, M. Shoreline change rate analysis: Long term versus short term data. Shore Beach 1993, 61, 13–20. [Google Scholar]
- Martínez Del Pozo, J.Á.; Anfuso, G. Spatial approach to medium-term coastal evolution in south Sicily (Italy): Implications for coastal erosion management. J. Coast. Res. 2008, 24, 33–42. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Data Analysis—Stazione Mareografica—Ortona (Pescara). Available online: https://www.mareografico.it/?session=0S329215273J799085TA7475&syslng=ita&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0&code=STAZ&idst=17 (accessed on 29 September 2021).
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report 2018-1179; U.S. Geological Survey: Reston, VA, USA, 2018.
- Eltner, A.; Baumgart, P.; Maas, H.G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. Landf. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Amodio, A.M.; Aucelli, P.P.C.; Garfì, V.; Rosskopf, C.M. Digital photogrammetric analysis approaches for the realization of detailed terrain models. Rend. Online Soc. Geol. Ital. 2020, 52, 69–75. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from Internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast. Conserv. 2018, 22, 1001–1015. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Kriebel, D.L.; Dean, R.G. Convolution method for time-dependent beach-profile response. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 204–226. [Google Scholar] [CrossRef]
Approaches | References |
---|---|
Airborne LIDAR | Chust et al., 2010 [1]; Stockdon et al., 2002 [4]; Coveney et al., 2010 [7]; Schmid et al., 2011 [8] |
Satellite | Tralli et al., 2005 [2] |
Terrestrial Laser Scanner | Rosser et al., 2005 [3]; Nield et al., 2011 [10] |
GNSS | Coveney et al., 2010 [7]; Di Paola et al., 2014 [11]; Di Luccio et al., 2018 [12] |
UAV | Bryson et al., 2013 [16]; Mancini et al., 2013 [13]; Turnet et al., 2016 [17]; Manfreda et al., 2018 [14]; Flores-de-Santiago et al., 2020 [15] |
Recording Period (Ortona Buoy) | Main Wave Direction (°N) | Secondary Wave Direction (°N) | Effective Fetch (km) | Hs (m) | Ts (s) | Ht (m) | Tt (s) |
---|---|---|---|---|---|---|---|
1990–2006 | 340–10 | 70–100 | 476 | 0.7 | 3.5 | 3.5 | 6.6 |
Date | Data Source | Scale | RMSE (m) |
---|---|---|---|
1954 | Aerial photo | 1:36,000 | 5 |
2004 | Orthophoto map | 1:2500 | 3 |
2014 | Google Earth image | 1:500 | 1 |
2016 | Google Earth image | 1:500 | 1 |
2019 | Google Earth image | 1:500 | 1 |
GCPs Error | East | North | Altitude |
---|---|---|---|
2019 | 1.6 cm | 1.5 cm | 1.6 cm |
2020 | 1.5 cm | 1.2 cm | 1.7 cm |
Variable | 1 | 2 | 3 | 4 |
---|---|---|---|---|
IR (%) | ≤15 | 16 ÷ 30 | 31 ÷ 50 | >50 |
IRu (%) | ≤40 | 41 ÷ 60 | 61 ÷ 80 | >80 |
E (m/y) | ≥−0.5 | −0.6 ÷ −1.0 | −1.1 ÷ −2.0 | <−2.0 |
Low | Medium | High | Very high | |
CVA | ≤6 | 7 ÷ 9 | 10 ÷ 12 | ≥13 |
Segment | 1954–2019 | 1954–2004 | 2004–2016 | 2016–2019 | ||||
---|---|---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | NSM (m) | LRR (m/y) | NSM (m) | LRR (m/y) | NSM (m) | LRR (m/y) | |
S6 | 76.41 | 1.07 | 49.86 | 1.00 | 9.06 | 0.75 | 17.49 | 5.84 |
S7 | −166.78 | −2.71 | −169.80 | −3.40 | −14.00 | −1.17 | 1.26 | 0.42 |
S8 | 36.66 | 0.53 | 26.66 | 0.53 | 3.72 | 0.31 | 6.29 | 2.10 |
S9 | 5.76 | 0.09 | 9.76 | 0.20 | −5.65 | −0.47 | 1.65 | 0.55 |
Profiles | Backshore Width—L (m) | Backshore Slope—βb (%) | Foreshore Slope—βf (%) | Total Slope—m0 (%) | Berm—B (m) | Dune Front Retreat (m) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | - | |
T1 | 8.92 | 11.91 | 9.8 | 12.8 | 8.6 | 12.2 | 9.3 | 12.6 | 0.60 | 0.85 | −0.31 |
T2 | 8.44 | 11.64 | 10.7 | 11.1 | 12.2 | 12.0 | 11.3 | 11.3 | 0.61 | 0.54 | −0.29 |
T3 | 7.25 | 9.88 | 9.4 | 4.4 | 10.9 | 14.6 | 10.0 | 8.5 | 0.54 | 0.99 | −0.79 |
T4 | 22.33 | 22.41 | 5.7 | 4.6 | 11.2 | 13.6 | 6.4 | 6.4 | 0.36 | 0.77 | −0.04 |
T5 | 26.14 | 25.33 | 4.2 | 4.5 | 10.0 | 17.8 | 5.1 | 6.2 | 0.48 | 0.67 | −0.01 |
T6 | 11.01 | 9.66 | 6.4 | 7.0 | 15.3 | 18.3 | 8.4 | 10.4 | 0.49 | 0.75 | −0.14 |
T7 | 7.20 | 6.00 | 8.9 | 9.8 | 14.9 | 28.3 | 10.6 | 17.6 | 0.45 | 1.22 | −0.81 |
T8 | 6.71 | 7.79 | 15.8 | 19.6 | 7.1 | 20.1 | 11.9 | 19.7 | 0.38 | 0.65 | −0.85 |
T9 | 4.89 | 8.98 | 15.8 | 13.6 | 3.5 | 11.6 | 9.5 | 12.9 | 0.18 | 0.56 | −1.42 |
T10 | 3.99 | 8.22 | 21.0 | 12.8 | 5.2 | 25.5 | 13.1 | 15.7 | 0.21 | 0.62 | −2.59 |
Transects | 1954–2016 | 2004–2016 | ||||
---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | E1 | NSM (m) | LRR (m/y) | E2 | |
T1 | 11.42 | 0.24 | 1 | −7.86 | −0.65 | 2 |
T2 | 11.58 | 0.23 | 1 | −7.67 | −0.64 | 2 |
T3 | 14.91 | 0.29 | 1 | −6.64 | −0.55 | 2 |
T4 | 18.45 | 0.37 | 1 | −5.49 | −0.46 | 1 |
T5 | 20.46 | 0.41 | 1 | −4.95 | −0.41 | 1 |
T6 | 1.80 | 0.22 | 1 | −31.39 | −2.62 | 4 |
T7 | 0.38 | 0.21 | 1 | −34.85 | −2.90 | 4 |
T8 | 1.59 | 0.24 | 1 | −36.61 | −3.05 | 4 |
T9 | 0.12 | 0.22 | 1 | −37.41 | −3.12 | 4 |
T10 | −2.02 | 0.20 | 1 | −37.77 | −3.15 | 4 |
Transects | 2016–2019 | 2016–2020 | 2019–2020 | ||||
---|---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | E2019 | NSM (m) | LRR (m/y) | E2020 | NSM (m) | |
T1 | −4.55 | −1.52 | 3 | −3.68 | −0.92 | 2 | 0.87 |
T2 | −5.49 | −1.83 | 3 | −5.14 | −1.28 | 3 | 0.36 |
T3 | −6.80 | −2.27 | 4 | −6.46 | −1.61 | 3 | 0.34 |
T4 | −8.27 | −2.76 | 4 | −7.65 | −1.91 | 3 | 0.62 |
T5 | −9.70 | −3.24 | 4 | −8.87 | −2.22 | 4 | 0.84 |
T6 | −7.36 | −2.46 | 4 | −9.81 | −2.45 | 4 | −2.45 |
T7 | −7.50 | −2.50 | 4 | −9.88 | −2.47 | 4 | −2.38 |
T8 | −10.12 | −3.38 | 4 | −12.02 | −3.09 | 4 | −1.90 |
T9 | −14.01 | −4.67 | 4 | −12.52 | −3.13 | 4 | 1.49 |
T10 | −15.10 | −5.04 | 4 | −12.63 | −3.16 | 4 | 2.47 |
Transects | 2019 | 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hs = 0.7 m | Ht = 3.5 m | Hs = 0.7 m | Ht = 3.5 m | |||||||||
XRu2% (m) | XRu2%/L (%) | IRu2% | XRu2% (m) | XRu2%/L (%) | IRu2% | XRu2% (m) | XRu2%/L (%) | IRu2% | XRu2% (m) | XRu2%/L (%) | IRu2% | |
T1 | 3.51 | 39.4 | 1 | 14.82 | 166.1 | 4 | 3.23 | 27.1 | 1 | 13.61 | 114.3 | 4 |
T2 | 3.23 | 38.2 | 1 | 13.61 | 161.3 | 4 | 3.24 | 27.8 | 1 | 13.65 | 117.3 | 4 |
T3 | 3.30 | 45.6 | 2 | 13.93 | 192.2 | 4 | 3.13 | 31.7 | 1 | 13.20 | 133.6 | 4 |
T4 | 3.28 | 14.7 | 1 | 13.85 | 62.0 | 3 | 3.17 | 14.1 | 1 | 13.35 | 59.6 | 2 |
T5 | 3.37 | 12.9 | 1 | 14.22 | 54.4 | 2 | 3.05 | 12.0 | 1 | 12.85 | 50.7 | 2 |
T6 | 3.11 | 28.2 | 1 | 13.11 | 119.0 | 4 | 3.04 | 31.4 | 1 | 12.81 | 132.6 | 4 |
T7 | 3.12 | 43.3 | 2 | 13.16 | 182.7 | 4 | 2.90 | 48.4 | 2 | 12.25 | 204.1 | 4 |
T8 | 3.75 | 55.8 | 2 | 15.80 | 235.4 | 4 | 3.00 | 38.6 | 1 | 12.67 | 162.7 | 4 |
T9 | 5.34 | 109.3 | 4 | 22.53 | 460.8 | 4 | 3.26 | 36.3 | 1 | 13.75 | 153.1 | 4 |
T10 | 4.28 | 107.3 | 4 | 18.05 | 452.4 | 4 | 2.93 | 35.7 | 1 | 12.37 | 150.5 | 4 |
Transects | 2019 | 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hs = 0.7 m | Ht = 3.5 m | Hs = 0.7 m | Ht = 3.5 m | |||||||||
R (m) | (R/L) % | IR | R (m) | (R/L) % | IR | R (m) | (R/L) % | IR | R (m) | (R/L) % | IR | |
T1 | 1.30 | 14.56 | 1 | 11.11 | 124.6 | 4 | 2.73 | 22.89 | 2 | 12.43 | 104.34 | 4 |
T2 | 3.12 | 36.98 | 3 | 13.72 | 162.5 | 4 | 3.51 | 30.17 | 3 | 14.04 | 120.64 | 4 |
T3 | 2.73 | 37.61 | 3 | 13.35 | 184.2 | 4 | 3.12 | 31.54 | 3 | 12.90 | 130.61 | 4 |
T4 | 3.59 | 16.06 | 2 | 14.82 | 66.4 | 4 | 3.39 | 15.12 | 2 | 13.52 | 60.33 | 4 |
T5 | 2.39 | 9.15 | 1 | 13.08 | 50.0 | 3 | 4.86 | 19.21 | 2 | 15.63 | 61.72 | 4 |
T6 | 4.80 | 43.64 | 3 | 15.94 | 144.8 | 4 | 4.64 | 47.99 | 3 | 15.33 | 158.71 | 4 |
T7 | 4.89 | 67.93 | 4 | 16.08 | 223.3 | 4 | 4.28 | 71.30 | 4 | 15.34 | 255.65 | 4 |
T8 | 0.55 | 8.20 | 1 | 10.57 | 157.5 | 4 | 5.42 | 69.60 | 4 | 16.38 | 210.30 | 4 |
T9 | 12.43 | 254.11 | 4 | 2.38 | 48.6 | 3 | 3.25 | 36.20 | 3 | 13.68 | 152.30 | 4 |
T10 | 5.52 | 138.27 | 4 | 4.13 | 103.4 | 4 | 6.39 | 77.78 | 4 | 17.68 | 215.02 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minervino Amodio, A.; Di Paola, G.; Rosskopf, C.M. Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data. ISPRS Int. J. Geo-Inf. 2022, 11, 155. https://doi.org/10.3390/ijgi11030155
Minervino Amodio A, Di Paola G, Rosskopf CM. Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data. ISPRS International Journal of Geo-Information. 2022; 11(3):155. https://doi.org/10.3390/ijgi11030155
Chicago/Turabian StyleMinervino Amodio, Antonio, Gianluigi Di Paola, and Carmen Maria Rosskopf. 2022. "Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data" ISPRS International Journal of Geo-Information 11, no. 3: 155. https://doi.org/10.3390/ijgi11030155
APA StyleMinervino Amodio, A., Di Paola, G., & Rosskopf, C. M. (2022). Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data. ISPRS International Journal of Geo-Information, 11(3), 155. https://doi.org/10.3390/ijgi11030155