Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means
Abstract
:1. Introduction
2. Methodology and Data
2.1. Oblique Photography and Digital Surface Model Acquisition
2.1.1. UAV Tilt Photography
2.1.2. Digital Elevation Model and Digital Surface Model
2.1.3. Urban Wind Environment Analysis and Ventilated Corridor Model
Determination of Urban Dominant Wind Direction
Urban Ventilation Environment Analysis and Frontal Area Density Calculation
Definition of Urban Ventilated Corridors
- FAD ≤ 0.35 indicates that the natural wind enters smoothly;
- 0.35 < FAD ≤ 0.45 indicates that the natural wind is not smooth enough;
- 0.45 < FAD ≤ 0.65 indicated that natural wind was obstructed;
- FAD > 0.65 indicates a significant obstacle to natural wind entry.
- (1)
- FAD < 0.35;
- (2)
- VC length > 1000 m;
- (3)
- VC width ≮ 50 m;
- (4)
- θ (angle between VC strike and dominant wind direction) < 45°.
2.2. Ventilated Corridor Mining Method Based on K-means
2.2.1. K-Means Algorithm
- (a)
- Select the initial k category centers μ1, μ2 ……, μk−1, μk
- (b)
- For each sample, mark it as the category closest to the center of the category, i.e.,
- (c)
- Update the center of each category to the mean value of all samples belonging to the category.
- (d)
- Repeat the last two steps until the change in the category center is less than a certain threshold.
2.2.2. Interactive Mining of Urban Ventilated Corridors
2.2.3. Generation and Discrimination of Urban Ventilated Corridors
2.3. Data
2.3.1. Calculation of Data and Related Parameters in the Study Area
Roughness and Dominant Wind Direction in Zhuji Urban Area
FAD in Zhuji Urban Area
3. Result
3.1. Ventilated Corridor Mining Experiment
3.1.1. Experimental Environment
3.1.2. Mining Process of Ventilated Corridor
3.2. Mining Results of Ventilated Corridor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.-Y.; Li, L.; Liu, W.; Ren, C.; Wang, J.-W.; Cheng, C.; Yu, Y.; Zhang, S.; Du, W.-P.; Liu, Y.-H. Progress of researches and practices of urban ventilation corridor in China. Chin. J. Ecol. 2021, 40, 4088–4098. [Google Scholar] [CrossRef]
- Gu, K.K.; Fang, Y.H.; Qian, Z.; Sun, Z.; Wang, A. Spatial planning for urban ventilation corridors by urban climatology. Ecosyst. Health Sustain. 2020, 6, 1747946. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Ren, C.; Yang, R.; Cheng, C.; Xing, P.; Fang, X.; Zhang, S.; Wang, H.; Shi, Y.; Zhang, X.; Kwok, Y.T.; et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan—The implementation in Chinese cities. J. Wind. Eng. Ind. Aerodyn. 2018, 182, 170–188. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Carsjens, G.-J.; Brown, R.D.; Tavares, S.; Vanos, J.; Kim, Y.; Lee, K. Urban climate awareness and urgency to adapt: An international overview. Urban Clim. 2020, 33, 100667. [Google Scholar] [CrossRef]
- Kress, R. Regionale Luftaustausc Hprozesse und Ihre Bedeutung fur die Raumliche Planung; Institut for Umweltschutz der Universitat Dortmund: Dortmund, Germany, 1979. [Google Scholar]
- Xu, Y.; Wang, W.; Chen, B.; Chang, M.; Wang, X. Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustain. Cities Soc. 2021, 70, 102889. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Yu, L.L.; Ding, S.G. The application of urban ventilation channel for urban environment improvement. Urban Stud. 2008, 15, 46–49. [Google Scholar]
- Hsieh, C.M.; Huang, H.C. Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Comput. Environ. Urban Syst. 2016, 57, 130–143. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, D. Research on the Planning Methods of Mitigating Summer Urban Heat Island Effects among Basin Cities—A Case Study at Xi’an, China. Procedia Eng. 2016, 169, 248–255. [Google Scholar] [CrossRef]
- Su, N.; Zhou, D.; Jiang, X. Study on the Application of Ventilation Corridor Planning in Urban New Area-A Case Study of Xixian New Area. Procedia Eng. 2016, 169, 340–349. [Google Scholar] [CrossRef]
- Luo, Y.; He, J.; Ni, Y. Analysis of urban ventilation potential using rule-based modeling. Comput. Environ. Urban Syst. 2017, 66, 13–22. [Google Scholar] [CrossRef]
- Wang, X.; Gao, F.; Tan, Q.; Xiao, Z. Planning for Ventilation Corridor in City with High-Frequency Static Wind: A Case Study of Chengdu City. City Plan. Rev. 2020, 44, 129–136. [Google Scholar] [CrossRef]
- Lu, L.; Li, D.; Wang, Z.Y.; Wang, J.-K.; Yang, Z. Study on the numerical simulation and optimization setting for the city ventilation corridors. Zhejiang Constr. 2015, 32, 49–54. [Google Scholar] [CrossRef]
- Zeng, H. Research on the Theory of “Source-Flow-Sink” Ventilated Corridor System Construction and Planning Strategy—The Case of the Center Districts of Tianjin; Tianjin University: Tianjin, China, 2016. [Google Scholar]
- Wicht, M.; Wicht, A.; Osinskaskotak, K. Detection of ventilation corridors using a spatio-temporal approach aided by remote sensing data. Eur. J. Remote Sens. 2017, 50, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhan, Q. Urban Street Wind Path Research Based on GIS and CFD—A Case Study of Wuhan. Chin. Landsc. Archit. 2019, 35, 84–88. [Google Scholar] [CrossRef]
- Hu, J.; Xie, J.; Wang, Y. Simulation of Wind Environment and Exploration of Landscape Design Strategy in Qiantang River Block of Hangzhou Based on CFD Digital Technology. Gard. Gard. 2020, 17, 122–123. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Ng, E.Y.Y.; Raasch, S. Evaluation of satellite-derived building height extraction by CFD simulations: Acase study of neighborhood-scale ventilation in Hong Kong. Landsc. Urban Plan. 2018, 170, 90–102. [Google Scholar] [CrossRef]
- Yang, T.S.; Wang, W.W.; Chang, M.; Wang, X. Numerical simulation and comprehensive identification of potential wind corridors in Beijing. J. Geo-Inf. Sci. 2020, 22, 1996–2009. [Google Scholar] [CrossRef]
- Wang, W.-W.; Li, F.-N.; Wang, D.; Wang, Q. Urban ventilation corridor construction based on ventilation potential and quantitative analysis of wind characteristics. J. Zhejiang Univ. (Eng. Sci.) 2019, 53, 69–80. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, X.; Wu, F.; Luo, W.; Wang, F.; Liu, L.; Sun, Z. Urban ventilation network model: A case study of the core zone of capital function in Beijing metropolitan area. J. Clean. Prod. 2017, 168, 526–535. [Google Scholar] [CrossRef]
- Man, S.W.; Niched, J.E.; To, P.H.; Wang, J. A Simple Method for Designation of Urban Ventilation Corridors and Its Application to Urban Heat Island Analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar]
- Yuan, Z. The Research of Multi-Scale Urban Ventilation Channel Construction Method and Planning Strategy: A Case Study of Xian; Xibei University: Shanxi, China, 2017. [Google Scholar]
- Xie, P.; Liu, D.; Liu, Y.; Liu, Y. A Least Cumulative Ventilation Cost Method for Urban Ventilation Environment Analysis. Complexity 2020, 2020, 9015923. [Google Scholar] [CrossRef]
- Zhang, H. Ventilation Paths Excavation and Design Strategy of Coastal Mountainous City Based on Frontal Area. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2020. [Google Scholar]
- Zeng, S.; Qin, Y.; Chen, Y. Analysis of the Identification and Impact of Urban Ventilation Corridors in Shanghai. J. Donghua Univ. (Nat. Sci.) 2018, 44, 107–111. [Google Scholar]
- Shen, X.J.; Zhao, R.; He, R.Z.; Wang, Q.; Guo, Y. Research on Urban Wind Environment Simulation: A Case Study of Zhengzhou Central Area. J. Geo-Inf. Sci. 2020, 22, 1349–1357. [Google Scholar] [CrossRef]
- Ai, J. Application of Aerial Photogrammetry Technology in Fanjiagedi Topographic Survey Project. Huabei Nat. Resour. 2020, 5, 99–101. [Google Scholar]
- Li, Y.; Su, G.; Lin, Z. Study on the Method of Extracting High Precision DEM from Oblique Image. Bull. Surv. Mapp. 2017, 2, 30–34. [Google Scholar] [CrossRef]
- Bing, D.; Zhaoyin, Y.; Wupeng, D.; Xiaoyi, F.; Yonghong, L.; Chen, C.; Yan, L. Cooling the city with “natural wind”: Construction strategy of Urban Ventilation Corridors in China. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 012009. [Google Scholar] [CrossRef]
CCI | CCII | CCIII | |
---|---|---|---|
VC length (m) | Well versed | ≥2000 | (1000, 2000) |
VC width (m) | ≥200 | (80, 200) | (50, 80) |
θ | <30° | <45° | <45° |
CCII-1 | CCII-2 | CCII-3 | CCIII-1 | CCIII-2 | CCIII-3 | CCIII-4 | CCIII-5 | |
---|---|---|---|---|---|---|---|---|
Length (m) | 4212 | 4192 | 3701 | 1810 | 1805 | 2002 | 1088 | 1819 |
Direction (°) | NE 4.15 | NE 0.78 | NW 2.8 | NW 20 | NE 2.6 | NW 1.1 | NW 21.7 | NW 5.1 |
Width (m) | (80,200) | (80,200) | (80,200) | (50,80) | (50,80) | (50,80) | (50,80) | (50,80) |
Number of First-Level Corridors | Number of Second-Level Corridors | Number of Third-Level Corridors | Corridor Location Consistency | Corridor Length Consistency | |
---|---|---|---|---|---|
System | 0 | 3 | 5 | 100% | 100% |
Expert 1 | 0 | 3 | 5 | 94.3% | 95.7% |
Expert 2 | 0 | 3 | 5 | 95.2% | 94.8% |
Expert 3 | 0 | 3 | 5 | 95.4% | 96.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Ye, S.; Bai, Z.; Wang, J.; Nedzved, A.; Ablameyko, S. Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means. ISPRS Int. J. Geo-Inf. 2022, 11, 216. https://doi.org/10.3390/ijgi11040216
Chen C, Ye S, Bai Z, Wang J, Nedzved A, Ablameyko S. Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means. ISPRS International Journal of Geo-Information. 2022; 11(4):216. https://doi.org/10.3390/ijgi11040216
Chicago/Turabian StyleChen, Chaoxiang, Shiping Ye, Zhican Bai, Juan Wang, Alexander Nedzved, and Sergey Ablameyko. 2022. "Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means" ISPRS International Journal of Geo-Information 11, no. 4: 216. https://doi.org/10.3390/ijgi11040216
APA StyleChen, C., Ye, S., Bai, Z., Wang, J., Nedzved, A., & Ablameyko, S. (2022). Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means. ISPRS International Journal of Geo-Information, 11(4), 216. https://doi.org/10.3390/ijgi11040216