A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm
Abstract
:1. Introduction
2. Related Work
2.1. Landslide Domain Knowledge Discovery
2.2. Network Community Knowledge Discovery
3. Method
3.1. Overall Research Concept
3.2. Construction of the K-Sub Map of the Cooccurrence Network of Landslide Monitoring
3.2.1. Calculation of the Pruning Standard Based on the K-Core
3.2.2. Generating a K-Core Map for Landslide Monitoring
3.3. Community Topic Hierarchy and Fine-Scale Knowledge Discovery
3.3.1. Knowledge Detection among Landslide Monitoring Communities
3.3.2. Evaluation Index Modularity Q
4. Experiments and Analysis of Results
4.1. Data Collection and Preprocessing
4.2. Experimental Environment
4.3. Analysis of Experimental Results
4.3.1. Construction of the K-Nucleon Diagram
4.3.2. Community Theme Mining
4.3.3. Comparative Evaluation of Methods
5. Conclusions and Prospects
- To explore topic hierarchy and fine-scale knowledge in the landslide monitoring field, the degree value characteristics, subgraph density, betweenness and community structure of nodes in the keyword co-occurrence network are quantitatively analyzed. Using time series to analyze the central changes in keywords, the hot spots in landslide monitoring are identified. Compared with existing research, we quantitatively reveal the subject structure, research status and hot spots of landslide monitoring by using the central trend of the co-occurrence network and community structure and obtained rigorous and convincing research results.
- K-core decomposition is used to generate subgraphs, and the optimal subset is selected by considering the correlations among nodes through the pruning index value; this approach is convenient for analyzing the subject-level and fine-scale knowledge in the landslide monitoring field. In the process of community partitioning, the ΔQ threshold is set according to the resolution’s degree. During processing, if the modularity value is greater than the threshold, community division occurs so that the internal nodes of the community are composed of closely related topic keywords. Compared with methods in previous studies, such as the high-frequency keyword feature selection method, the proposed method considers the co-occurrence relationships among keyword nodes and the topic structures and fine-scale knowledge in different communities, retains the community structure and reduces the overall run time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Boyd, J.; Cimpoiasu, M.O.; Holmes, J.L.; Inauen, C.M.; Watlet, A.; Hawley-Sibbett, L.R.; Sujitapan, C.; et al. Landslide monitoring using seismic refraction tomography—The importance of incorporating topographic variations. Eng. Geol. 2020, 268, 105525–105551. [Google Scholar] [CrossRef]
- Lollino, P.; Giordan, D.; Allasia, P.; Fazio, N.L.; Perrotti, M.; Cafaro, F. Assessment of post-failure evolution of a large earthflow through field monitoring and numerical modelling. Landslides 2020, 17, 2013–2026. [Google Scholar] [CrossRef]
- Hou, W.; Lu, X.; Wu, P.; Xue, A.; Li, L. An Integrated Approach for Monitoring and Information Management of the Guanling Landslide (China). ISPRS Int. J. Geo-Inf. 2017, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhu, J.; Zhang, Y.; Fu, L.; Gong, Y.; Hu, Y.; Cao, Y. An on-demand construction method of disaster scenes for multilevel users. Nat. Hazards 2020, 101, 409–428. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Raspini, F.; Bianchini, S.; Ciampalini, A.; Montalti, R.; Ferretti, A.; Pellegrineschi, V.; Casagli, N. Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Wang, Y.; Xu, J.; Nishyirimbere, A.; Li, Z. Geo-Hazard Detection and Monitoring Using SAR and Optical Images in a Snow-Covered Area: The Menyuan (China) Test Site. ISPRS Int. J. Geo-Inf. 2017, 6, 293. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; George, D.L.; Kim, J.; Lu, Z.; Riley, M.; Griffin, T.; de la Fuente, J. Landslide monitoring and runout hazard assessment by integrating multi-source remote sensing and numerical models: An application to the Gold Basin landslide complex. Landslides 2021, 18, 1131–1141. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of satellite interferometry for landslide detection in italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical monitoring of moisture-induced landslides: A review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef] [Green Version]
- Aubaud, C.; Athanase, J.E.; Clouard, V.; Barras, A.V.; Sedan, O.A. A review of historical lahars, floods, and landslides in the precheur river catchment. Bull. Soc. Geol. Fr. 2019, 184, 137–154. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Forliano, C.; Bernardi, P.D.; Yahiaoui, D. Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technol. Forecast. Soc. Chang. 2021, 165, 120522. [Google Scholar] [CrossRef]
- Niu, J.; Tang, W.; Xu, F.; Zhou, X.; Song, Y. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Z.; Sun, Q.; Yan, J. Research Review on Algorithms of Community Detection in Complex Networks. J. Phys. Conf. Ser. 2018, 1069, 012124. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics Theory Exp. 2008, 2008, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Orman, G.K.; Labatut, V.; Cherifi, H. Qualitative comparison of community detection algorithms. Digit. Inf. Commun. Technol. Its Appl. 2011, 167, 265–279. [Google Scholar]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Generalized Louvain method for community detection in large networks. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications, Córdoba, Spain, 22–24 November 2011. [Google Scholar]
- Daud, A.; Muhammad, F. Group topic modeling for academic knowledge discovery. Appl. Intell. 2012, 36, 870–886. [Google Scholar] [CrossRef]
- Dai, S.; Duan, X.; Zhang, W. Knowledge map of environmental crisis management based on keywords network and co-word analysis, 2005–2018. J. Clean. Prod. 2020, 262, 121168. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Hong, X. Knowledge structure of technology licensing based on co-keywords network: A review and future directions. Int. Rev. Econ. Financ. 2020, 66, 154–165. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, G.; Sun, J.; Han, S.; Zhang, C. Exploring the topic hierarchy of digital library research in china using keyword networks: A k-core decomposition approach. Scientometrics 2016, 108, 1085–1101. [Google Scholar] [CrossRef]
- Zhao, S.X.; Zhang, P.L.; Jiang, L.; Tan, A.M.; Ye, F.Y. Abstracting the core subnet of weighted networks based on link strengths. J. Assoc. Inf. Sci. Tech. 2014, 65, 984–994. [Google Scholar] [CrossRef]
- Seidman, S.B. Network structure and minimum degree. Soc. Netw. 1983, 5, 269–287. [Google Scholar] [CrossRef]
- Ai, J.; Liu, Y.; Su, Z.; Zhao, F.; Peng, D. K-core decomposition in recommender systems improves accuracy of rating prediction. Int. J. Mod. Phys. C 2021, 32, 2150087. [Google Scholar] [CrossRef]
- Kong, Y.X.; Shi, G.Y.; Wu, R.J.; Zhang, Y.C. K-core: Theories and applications. Phys. Rep. 2019, 832, 1–32. [Google Scholar] [CrossRef]
- Sun, S.; Liu, X.; Wang, L.; Xia, C. New link attack strategies of complex networks based on k -core decomposition. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3157–3161. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, J.; Sun, R.; Chen, C.; Wang, X. Efficient Personalized Influential Community Search in Large Networks. Data Sci. Eng. 2020, 6, 310–322. [Google Scholar] [CrossRef]
- Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Morone, F.; Ferraro, G.D.; Makse, H.A. The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat. Phys. 2019, 15, 95–102. [Google Scholar] [CrossRef]
- Orman, G.K.; Labatut, V. A comparison of community detection algorithms on artificial networks. Algorithms Artif. Netw. 2009, 5805, 242–256. [Google Scholar]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S. Geographical landslide early warning systems. Earth-Sci. Rev. 2019, 200, 102973. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of lidar in landslide investigations: A review. Nat. Hazards 2010, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Phengsuwan, J.; Shah, T.; James, P.; Thakker, D.; Barr, S.; Ranjan, R. Ontology-based discovery of time-series data sources for landslide early warning system. Computing 2019, 102, 745–763. [Google Scholar] [CrossRef] [Green Version]
- Sufi, F.K.; Alsulami, M. Knowledge Discovery of Global Landslides Using Automated Machine Learning Algorithms. IEEE Access 2021, 9, 131400–131419. [Google Scholar] [CrossRef]
- Angeli, M.G.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eng. Geol. 2010, 55, 133–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Tannant, D.D.; Zhang, G.; Tan, F. Field monitoring and deformation characteristics of a landslide with piles in the three gorges reservoir area. Landslides 2018, 15, 581–592. [Google Scholar] [CrossRef]
- Aydinoglu, A.C.; Alturk, G. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taslidere Basin Example 1. J. Geogr. 2021, 43, 159–176. [Google Scholar]
- Yang, J.; Liu, X.J.; Qu, Z.; Chang, H. Retrieval keywords complex networks for analyzing legal complexity of stem cell research. EPL (Europhys. Lett.) 2020, 130, 68001. [Google Scholar] [CrossRef]
- Gan, J.; Cai, Q.; Galer, P.; Ma, D.; Chen, X.; Huang, J.; Bao, S.; Luo, R. Mapping the knowledge structure and trends of epilepsy genetics over the past decade: A co-word analysis based on medical subject headings terms. Medicine 2019, 98, e16782. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Hu, T.; Wang, J.; Feng, D.; Fang, H.; Wang, M.; Tang, S.; Yuan, F.; Feng, Z. A bibliometric analysis of malaria research in china during 2004–2014. Malar. J. 2015, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Han, M. Incorporating content beyond text: A high reliable twitter-based disaster information system. Int. Conf. Comput. Data Soc. Netw. 2019, 11917, 282–292. [Google Scholar]
- Musaev, A.; Hou, Q. Gathering High Quality Information on Landslides from Twitter by Relevance Ranking of Users and Tweets. In Proceedings of the IEEE International Conference on Collaboration & Internet Computing, Pittsburgh, PA, USA, 1–3 November 2016. [Google Scholar]
- Shehara, P.L.; Siriwardana, C.S.; Amaratunga, D.; Haigh, R. Application of Social Network Analysis (SNA) to Identify Communication Network Associated with Multi-Hazard Early Warning (MHEW) in Sri Lanka. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019. [Google Scholar]
- Zhang, Y.; Zhu, J.; Zhu, Q.; Xie, Y.; Li, W.; Fu, L.; Zhang, J.; Tan, J. The construction of personalized virtual landslide disaster environments based on knowledge graphs and deep neural networks. Int. J. Digit. Earth 2020, 13, 1637–1655. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Potenza, M.R. The scientific landscape of november 23rd, 1980 irpinia-basilicata earthquake: Taking stock of (almost) 40 years of studies. Geosciences 2020, 10, 482. [Google Scholar] [CrossRef]
- Yong, C.; Jinlong, D.; Fei, G.; Bin, T.; Tao, Z.; Hao, F.; Li, W.; Qinghua, Z. Review of landslide susceptibility assessment based on knowledge mapping. Stoch. Environ. Res. Risk Assess. 2022, 1436–3240. [Google Scholar] [CrossRef]
- Karimi-Majd, A.M.; Fathian, M.; Amiri, B. A hybrid artificial immune network for detecting communities in complex networks. Computing 2015, 97, 483–507. [Google Scholar] [CrossRef]
- Yuan, C.; Rong, C.; Yao, Q. Boundary-connection deletion strategy based method for community detection in complex networks. Appl. Intell. 2020, 50, 3570–3589. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks: Conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
No. | Citation Frequency | Keywords | Betweenness | Keywords | Degree | Keywords |
---|---|---|---|---|---|---|
1 | 187 | ‘remote sensing’ | 118,378.172 | ‘remote sensing’ | 328 | ‘remote sensing’ |
2 | 155 | ‘InSAR’ | 94,352.602 | ‘rainfall’ | 260 | ‘rainfall’ |
3 | 147 | ‘rainfall’ | 93,265.320 | ‘slope stability’ | 250 | ‘slope stability’ |
4 | 143 | ‘slope stability’ | 61,160.973 | ‘debris flow’ | 228 | ‘InSAR’ |
5 | 129 | ‘GPS’ | 52,054.520 | ‘InSAR’ | 190 | ‘debris flow’ |
6 | 112 | ‘debris flow’ | 48,070.133 | ‘ deformation ‘ | 158 | ‘GPS’ |
7 | 109 | ‘deformation monitoring’ | 44,625.008 | ‘ slope engineering ‘ | 131 | ‘earthquake’ |
8 | 99 | ‘early warning’ | 42,595.09 | ‘GIS’ | 121 | ‘numerical simulation’ |
9 | 99 | ‘GIS’ | 40,889.879 | ‘early warning’ | 113 | ‘field monitoring’ |
K-Value (≥) | Number of Keywords | Number of Links |
---|---|---|
0-core | 2589 | 19,305 |
1-core | 2582 | 19,262 |
2-core | 2541 | 19,009 |
3-core | 2419 | 18,291 |
4-core | 2180 | 16,955 |
5-core | 1782 | 15,317 |
Community | Keywords |
---|---|
1 | ‘landslide monitoring’, ‘InSAR’, ‘deformation’, ‘interferometry’, ‘synthetic aperture radar’, ‘persistent scatterers’, ‘Earth observation’, ‘offset tracking’ |
4 | ‘slope stability’, ‘field monitoring’, ‘heavy rainfall’, ‘rainfall infiltration’ |
3 | ‘rainfall’, ‘numerical simulation’, ‘stability’, ‘slope engineering’, ‘groundwater’ |
2 | ‘remote sensing’, ‘LiDAR’, ‘risk assessment’, ‘change detection’, ‘photogrammetry’ |
0 | ‘early warning system’, ‘deformation prediction’, ‘laser scanning’, ‘forecast’ |
6 | ‘debris flow’, ‘erosion’, ‘climate change’, ‘soil moisture’, ‘permafrost’ |
9 | ‘landslide prediction’, ‘machine learning’, ‘data processing’, ‘risk analysis’ |
5 | ‘deformation monitoring’, ‘inclinometer’, ‘terrestrial laser scanning’ |
8 | ‘earthquake’, ‘tsunami’, ‘dynamic monitoring’, ‘volcano’, ‘outburst flood’ |
11 | ‘electrical resistivity tomography’, ‘time series analysis’, ‘tomography’ |
K-Core | Our Method | High-Frequency Keyword Pruning | ||
---|---|---|---|---|
Modularity | Time | Modularity | Time | |
0-core | 0.417 | 1 | 0.417 | 1 |
1-core | 0.414 | 0.724 | 0.413 | 0.904 |
2-core | 0.413 | 0.675 | 0.413 | 0.877 |
3-core | 0.409 | 0.746 | 0.409 | 0.807 |
4-core | 0.403 | 0.588 | 0.403 | 0.746 |
5-core | 0.389 | 0.478 | 0.385 | 0.539 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Deng, X.; Liu, Y.; Guo, L.; Zhu, J.; Fu, L.; Xie, Y.; Li, W.; Lai, J. A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm. ISPRS Int. J. Geo-Inf. 2022, 11, 217. https://doi.org/10.3390/ijgi11040217
Wang P, Deng X, Liu Y, Guo L, Zhu J, Fu L, Xie Y, Li W, Lai J. A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm. ISPRS International Journal of Geo-Information. 2022; 11(4):217. https://doi.org/10.3390/ijgi11040217
Chicago/Turabian StyleWang, Ping, Xingdong Deng, Yang Liu, Liang Guo, Jun Zhu, Lin Fu, Yakun Xie, Weilian Li, and Jianbo Lai. 2022. "A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm" ISPRS International Journal of Geo-Information 11, no. 4: 217. https://doi.org/10.3390/ijgi11040217
APA StyleWang, P., Deng, X., Liu, Y., Guo, L., Zhu, J., Fu, L., Xie, Y., Li, W., & Lai, J. (2022). A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm. ISPRS International Journal of Geo-Information, 11(4), 217. https://doi.org/10.3390/ijgi11040217