House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China
Abstract
:1. Introduction
2. Study Area, Data Sources and Research Methods
2.1. Shenzhen House Price Profile
2.2. Experimental Data
- 1.
- Latitude and longitude: The latitude and longitude range between 22.484310° N and 22.788011° N and between 113.814605° E and 114.498340° E, respectively. The latitude and longitude coordinates used for GNNWR are converted to the WGS 1984 50N coordinate system after projection conversion.
- 2.
- Endogenous variables: These variables include the age of the building (AB), number of parking spots (NPS), management fee (MF), green ratio (GR), and plot ratio (PR). AB is calculated as the difference between 2021 and the construction year. If the construction age is a range, the completion time is considered. If MF is a range, it is calculated as the average of the upper and lower bounds. GR and PR are defined as follows:
- 3.
- Environment-related variables: These variables include distance from the sea (SD), quality of available public schools (QAPS), number of subway stations within a radius of 1 km (NSS), and distance to the nearest subway station (DSS). SD is calculated with reference to the location of the nearest coast, and DSS is indicated in units of meters. QAPS is calculated using the following process: We divide schools into four types (provincial key schools, city key schools, district key schools, and ordinary schools) and assign points to each category (1–4 for ordinary, district key, city key, and provincial key junior high schools, respectively; and 1.5, 2.5, 3.5, and 4.5 for ordinary, district key, city key, and provincial key elementary schools, respectively). The points of the best school in a school district are set as the QAPS. The QAPS is designed considering the following aspects. First, according to the real-estate agencies in Shenzhen and Hangzhou, key schools correspond to higher weights than common schools. Second, the real-estate agencies indicate that elementary schools correspond to higher weights than junior high schools because parents are more likely to choose a better school in the early stages of child development. Third, according to comparative analyses, the QAPS is a metric with high statistical significance.
2.3. Research Methodology
2.4. Indicators of Model Performance
2.5. Neural Network Design and Implementation
3. Results
3.1. Data Set Analysis and Descriptive Statistics
3.2. Comparison of Indicators of House Price Valuation Models
4. Comparative Analysis and Discussion
4.1. Comparison of Prediction Performances of House Price Valuation Models
4.2. Analysis of Variables Related to House Prices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OLS | Ordinary Least Squares |
GWR | Geographical Weighted Regression |
GNNWR | Geographically Neural Network Weighted Regression |
Appendix A. Tables Related to Experiment Results
GWR Kernel Type 1 | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | MAPE | AICc | Correlation Coefficient | R2 | Correlation Coefficient | |
Bi-square (105) | 0.8861 | 7655.203 | 5623.454 | 0.094994 | 51,842.0 | 0.941789 | 0.7935 | 0.892818 |
Gaussian (101) | 0.7471 | 11,408.08 | 8372.857 | 0.141284 | 52,790.3 | 0.865382 | 0.6120 | 0.783185 |
Train Set 1 | Model 2 | R2 | RMSE | MAE | MAPE | Pearson Cor. Coe. | AICc |
---|---|---|---|---|---|---|---|
0 | GNNWR | 0.9130 | 6665.74 | 4907.16 | 0.084455 | 0.955890 | 44,935.93 |
GWR (108) | 0.8806 | 7810.28 | 5722.90 | 0.096476 | 0.938932 | 46,711.89 | |
1 | GNNWR | 0.9145 | 6698.92 | 4945.16 | 0.084418 | 0.956290 | 44,923.25 |
GWR (101) | 0.8881 | 7662.40 | 5624.61 | 0.095042 | 0.942811 | 46,714.44 | |
2 | GNNWR | 0.9168 | 6516.65 | 4849.38 | 0.084081 | 0.957767 | 44,799.69 |
GWR (101) | 0.8835 | 7713.28 | 5663.39 | 0.095898 | 0.940476 | 46,751.67 | |
3 | GNNWR | 0.9068 | 6923.85 | 5118.84 | 0.087057 | 0.952315 | 45,066.73 |
GWR (101) | 0.8887 | 7566.31 | 5594.39 | 0.094180 | 0.943155 | 46,666.59 | |
4 | GNNWR | 0.9180 | 6489.22 | 4784.29 | 0.080781 | 0.958206 | 44,776.13 |
GWR (101) | 0.8842 | 7711.99 | 5656.98 | 0.095410 | 0.940830 | 46,748.33 | |
5 | GNNWR | 0.9109 | 6777.58 | 4990.82 | 0.086299 | 0.954517 | 44,972.38 |
GWR (101) | 0.8849 | 7702.18 | 5664.53 | 0.095798 | 0.941220 | 46,744.85 | |
6 | GNNWR | 0.9175 | 6538.53 | 4796.90 | 0.082787 | 0.958058 | 44,850.11 |
GWR (106) | 0.8814 | 7839.84 | 5715.71 | 0.096394 | 0.939293 | 46,751.99 | |
7 | GNNWR | 0.9183 | 6529.28 | 4827.74 | 0.081521 | 0.958488 | 44,795.06 |
GWR (101) | 0.8871 | 7675.50 | 5658.68 | 0.095299 | 0.942348 | 46,730.64 | |
8 | GNNWR | 0.9077 | 6868.49 | 5104.66 | 0.087495 | 0.953352 | 45,038.13 |
GWR (104) | 0.8825 | 7749.99 | 5713.72 | 0.096287 | 0.939906 | 46,735.51 | |
9 | GNNWR | 0.9082 | 6814.82 | 4998.50 | 0.086338 | 0.953331 | 45,025.80 |
GWR (107) | 0.8796 | 7802.49 | 5714.57 | 0.096653 | 0.938439 | 46,719.31 |
Validation Set | R2 | RMSE | MAE | MAPE | Pearson Cor. Coe. |
---|---|---|---|---|---|
0 | 0.836963 | 9454.353 | 6876.564 | 0.115830 | 0.915256 |
1 | 0.821430 | 8697.789 | 6277.030 | 0.105508 | 0.907206 |
2 | 0.855282 | 8930.441 | 6546.944 | 0.109760 | 0.924835 |
3 | 0.812268 | 9812.707 | 6643.969 | 0.112837 | 0.901745 |
4 | 0.871563 | 8189.907 | 5944.871 | 0.104658 | 0.933591 |
5 | 0.837077 | 9098.732 | 6577.607 | 0.111918 | 0.915711 |
6 | 0.840490 | 8783.315 | 6620.163 | 0.113857 | 0.917376 |
7 | 0.813833 | 9034.993 | 6549.102 | 0.115053 | 0.902763 |
8 | 0.840247 | 9332.620 | 6836.936 | 0.117101 | 0.916725 |
9 | 0.854961 | 9260.348 | 6713.113 | 0.113130 | 0.925135 |
Appendix B. Indicators of Significance Test Statistics for Spatial Nonstationarity
Appendix C. Spatial Nonstationarity Diagnosis of House Price Regression Relationship
F1 Hypothesis Test | F1 | Distribution | Significant Level | ||
---|---|---|---|---|---|
Best Fitting Model | 0.071602 | 4439.122 | 4,871,141 | F(4.0454, 2186) | 1 × 10 |
Worst Fitting Model | 0.117877 | 3118.766 | 804,246.6 | F(12.094, 2186) | 1 × 10 |
Model | Variable | Intercept | AB | NPS | MF | SD | GR | PR | QAPS | NSS | DSS |
---|---|---|---|---|---|---|---|---|---|---|---|
Best Fitting Model | F Value | 614.58 | 234.48 | 381.14 | 562.52 | 537.77 | 503.31 | 385.10 | 418.17 | 646.79 | 502.37 |
0.0198 | 0.0893 | 0.4068 | 0.4108 | 0.4200 | 0.4560 | 0.5951 | 0.6102 | 0.6753 | 0.6692 | ||
0.0004 | 0.0057 | 0.1095 | 0.1085 | 0.1108 | 0.1120 | 0.1629 | 0.1595 | 0.1789 | 0.1824 | ||
Significant Level | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | |
Worst Fitting Model | F2 | 1017.10 | 471.84 | 573.85 | 872.23 | 845.57 | 774.72 | 344.85 | 367.06 | 560.84 | 432.05 |
0.0289 | 0.1302 | 0.5264 | 0.5279 | 0.5338 | 0.5990 | 1.3826 | 1.3973 | 1.5010 | 1.4639 | ||
0.0008 | 0.0115 | 0.1760 | 0.1741 | 0.1758 | 0.1807 | 0.9202 | 0.9138 | 0.9341 | 0.8760 | ||
Significant Level | 0 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 | 1 × 10 |
Appendix D. Comparison of GNNWR and GWR Coefficients
Coefficients of Variables | AB | NPS | MF | GR | PR | SD | QAPS | NSS | DSS | Intercept |
---|---|---|---|---|---|---|---|---|---|---|
Mean | −0.281 | 0.191 | 0.420 | 0.125 | 0.000 | −0.278 | 0.030 | 0.009 | −0.240 | 0.460 |
Maximum | 0.189 | 0.872 | 2.369 | 0.676 | 0.194 | 4.920 | 0.396 | 0.560 | 6.202 | 1.534 |
Minimum | −0.926 | −0.275 | −0.656 | −0.073 | −0.236 | −4.456 | −0.240 | −0.819 | −7.993 | −0.731 |
Std. Dev. | 0.193 | 0.176 | 0.589 | 0.104 | 0.068 | 1.090 | 0.094 | 0.190 | 1.814 | 0.356 |
References
- Second-hand residential sales price index for 70 large and medium-sized cities in May 2021. China Real Estate 2021, 80. (In Chinese)
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Butler, R.V. The specification of hedonic indexes for urban housing. Land Econ. 1982, 58, 96–108. [Google Scholar] [CrossRef]
- Mok, H.M.; Chan, P.P.; Cho, Y.S. A hedonic price model for private properties in Hong Kong. J. Real Estate Financ. Econ. 1995, 10, 37–48. [Google Scholar] [CrossRef]
- Basu, S.; Thibodeau, T.G. Analysis of spatial autocorrelation in house prices. J. Real Estate Financ. Econ. 1998, 17, 61–85. [Google Scholar] [CrossRef]
- Glumac, B.; Herrera-Gomez, M.; Licheron, J. A hedonic urban land price index. Land Use Policy 2019, 81, 802–812. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Some notes on parametric significance tests for geographically weighted regression. J. Reg. Sci. 1999, 39, 497–524. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef]
- Geng, J.; Cao, K.; Yu, L.; Tang, Y. Geographically Weighted Regression model (GWR) based spatial analysis of house price in Shenzhen. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–5. [Google Scholar]
- Zhang, S.; Wang, L.; Lu, F. Exploring housing rent by mixed geographically weighted regression: A Case study in Nanjing. ISPRS Int. J. Geo-Inf. 2019, 8, 431. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Fotheringhama, A.S. Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data. Procedia Environ. Sci. 2011, 7, 92–97. [Google Scholar] [CrossRef]
- Limsombunchai, V. House price prediction: Hedonic price model vs. artificial neural network. In Proceedings of the New Zealand Agricultural and Resource Economics Society Conference, Blenheim, New Zealand, 25–26 June 2004; pp. 25–26. [Google Scholar]
- Selim, H. Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Syst. Appl. 2009, 36, 2843–2852. [Google Scholar] [CrossRef]
- McCluskey, W.; Davis, P.; Haran, M.; McCord, M.; McIlhatton, D. The potential of artificial neural networks in mass appraisal: The case revisited. J. Financ. Manag. Prop. Constr. 2012, 3, 274–292. [Google Scholar] [CrossRef]
- Du, Z.; Wang, Z.; Wu, S.; Zhang, F.; Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 2020, 34, 1353–1377. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Wu, S.; Du, Z.; Wang, Y.; Lin, T.; Zhang, F.; Liu, R. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 2020, 709, 136097. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Wang, Z.; Wang, Y.; Zhang, F.; Liu, R. Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression. J. Geo-Inf. Sci. 2020, 22, 122–135. [Google Scholar]
- Benessia, A.; Funtowicz, S.; Bradshaw, G.; Ferri, F.; Ráez-Luna, E.F.; Medina, C.P. Hybridizing sustainability: Towards a new praxis for the present human predicament. Sustain. Sci. 2012, 7, 75–89. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M.; Źróbek, S.; Walacik, M.; Janowski, A. Hybridization of valuation procedures as a medicine supporting the real estate market and sustainable land use development during the covid-19 pandemic and afterwards. Land Use Policy 2020, 99, 105070. [Google Scholar] [CrossRef]
- Z, D.; Z, W.; S, W. GNNWR: An effective method for analyzing and predicting spatial nonstationarity by combining deep neural networks and ordinary least squares. IEEE Trans. Neural Netw. Learn. Syst. 2018, 185–199. [Google Scholar]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. Measuring spatial variations in relationships with geographically weighted regression. In Recent Developments in Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 1997; pp. 60–82. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Hagenauer, J.; Helbich, M. A geographically weighted artificial neural network. Int. J. Geogr. Inf. Sci. 2022, 36, 215–235. [Google Scholar] [CrossRef]
- Thamarai, M.; Malarvizhi, S. House Price Prediction Modeling Using Machine Learning. Int. J. Inf. Eng. Electron. Bus. 2020, 12, 15–20. [Google Scholar] [CrossRef]
- Phan, T.D. Housing price prediction using machine learning algorithms: The case of Melbourne city, Australia. In Proceedings of the 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia, 3–7 December 2018; pp. 35–42. [Google Scholar]
- Peterson, S.; Flanagan, A. Neural network hedonic pricing models in mass real estate appraisal. J. Real Estate Res. 2009, 31, 147–164. [Google Scholar] [CrossRef]
- Nghiep, N.; Al, C. Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. J. Real Estate Res. 2001, 22, 313–336. [Google Scholar] [CrossRef]
- Lin, C.C.; Mohan, S.B. Effectiveness comparison of the residential property mass appraisal methodologies in the USA. Int. J. Hous. Mark. Anal. 2011, 3, 224–243. [Google Scholar]
- McGreal, S.; Adair, A.; McBurney, D.; Patterson, D. Neural networks: The prediction of residential values. J. Prop. Valuat. Invest. 1998, 1, 57–70. [Google Scholar] [CrossRef]
- Rossini, P. Application of artificial neural networks to the valuation of residential property. In Proceedings of the Third Annual Pacific-Rim Real Estate Society Conference, Palmerston North, New Zealand, 20–22 January 1997. [Google Scholar]
- Goodman, A.C.; Thibodeau, T.G. Age-related heteroskedasticity in hedonic house price equations. J. Hous. Res. 1995, 6, 25–42. [Google Scholar]
- Varma, A.; Sarma, A.; Doshi, S.; Nair, R. House price prediction using machine learning and neural networks. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1936–1939. [Google Scholar]
- Wang, J.; Hu, S.; Zhan, X.; Luo, Q.; Yu, Q.; Liu, Z.; Chen, T.P.; Yin, Y.; Hosaka, S.; Liu, Y. Predicting house price with a memristor-based artificial neural network. IEEE Access 2018, 6, 16523–16528. [Google Scholar] [CrossRef]
- Leung, Y.; Mei, C.L.; Zhang, W.X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ. Plan. A 2000, 32, 9–32. [Google Scholar] [CrossRef]
Structure of Hidden Layers | Validation Loss | Train Loss | Test Loss |
---|---|---|---|
(1024, 512, 256, 128, 64, 32) | 0.006470 | 0.002790 | 0.008867 |
(512, 128, 64, 16) | 0.006427 | 0.0038040 | 0.008683 |
(512, 128, 32) | 0.006529 | 0.0040193 | 0.008555 |
(256, 64, 16) | 0.006537 | 0.0043795 | 0.008555 |
(256, 32, 8) | 0.006527 | 0.0049904 | 0.008379 |
(256, 32) | 0.006567 | 0.0046721 | 0.008992 |
Indicator | Price | AB | NPS | MF | GR | PR | SD | QAPS | NSS | DSS |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 62,219.3 | 17.995 | 507.196 | 2.625 | 0.340 | 3.113 | 6586.1 | 3.704 | 1.769 | 930.5 |
Maximum | 132,000 | 51 | 5500 | 36.6 | 0.990 | 7.000 | 24,967.2 | 4.5 | 8 | 25,110.0 |
Minimum | 16,100 | 1 | 1 | 0 | 0.100 | 0.100 | 23.2 | 0 | 0 | 16.8 |
Std. Dev. | 22,986.5 | 7.138 | 647.509 | 1.888 | 0.130 | 1.438 | 4933.7 | 1.179 | 1.432 | 1838.5 |
Correlation Coefficient | - | −0.118 | 0.079 | 0.262 | 0.216 | 0.105 | −0.504 | 0.080 | 0.248 | −0.236 |
Variation Coefficient | 2.707 | 2.521 | 0.783 | 1.391 | 2.620 | 2.164 | 0.749 | 3.143 | 1.235 | 0.506 |
VIF | - | 1.622 | 1.243 | 1.227 | 1.122 | 1.150 | 1.167 | 1.204 | 1.365 | 1.136 |
t-test p | - | 0 | 3.4 × 10 | 0 | 0 | 0.0197 | 0 | 0.3208 | 0 | 0 |
Set | Model | R2 | RMSE | MAE | MAPE | Mean Err. | Pearson Cor. Coe. |
---|---|---|---|---|---|---|---|
Merged Validation Set | GNNWR | 0.840177 | 9069.561 | 6558.630 | 0.111965 | 27.88808 | 0.916637 |
GWR | 0.788728 | 10,427.68 | 7581.746 | 0.128538 | −73.9177 | 0.888123 | |
OLS | 0.432101 | 17,096.31 | 13,003.76 | 0.228767 | −5.60228 | 0.657404 | |
Test Set | GWR | 0.790389 | 11,195.01 | 7912.005 | 0.122266 | 911.3839 | 0.891319 |
GNNWR | 0.817178 | 10,455.19 | 7108.715 | 0.109174 | 1393.691 | 0.905834 |
Coefficients of Variables | AB | NPS | MF | GR | PR | SD | QAPS | NSS | DSS | Intercept |
---|---|---|---|---|---|---|---|---|---|---|
Mean | −0.280 | 0.170 | 0.458 | 0.114 | 0.002 | −0.474 | 0.021 | 0.033 | −0.160 | 0.508 |
Maximum | 0.612 | 1.101 | 2.675 | 0.836 | 0.320 | 0.383 | 0.179 | 0.701 | 6.763 | 1.486 |
Minimum | −1.450 | −0.420 | −1.322 | −0.230 | −0.191 | −2.035 | −0.055 | −0.868 | −4.627 | −0.018 |
Std. Dev. | 0.195 | 0.179 | 0.609 | 0.108 | 0.057 | 0.253 | 0.026 | 0.187 | 0.820 | 0.208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, Y.; Wu, S.; Du, Z. House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 450. https://doi.org/10.3390/ijgi11080450
Wang Z, Wang Y, Wu S, Du Z. House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS International Journal of Geo-Information. 2022; 11(8):450. https://doi.org/10.3390/ijgi11080450
Chicago/Turabian StyleWang, Zimo, Yicheng Wang, Sensen Wu, and Zhenhong Du. 2022. "House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China" ISPRS International Journal of Geo-Information 11, no. 8: 450. https://doi.org/10.3390/ijgi11080450
APA StyleWang, Z., Wang, Y., Wu, S., & Du, Z. (2022). House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS International Journal of Geo-Information, 11(8), 450. https://doi.org/10.3390/ijgi11080450