Modelling the Mobility Changes Caused by Perceived Risk and Policy Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Dynamic Risk Perception towards COVID-19 Estimated by Time-Varying z-Score
- Local daily cases
- Local daily death numbers
- National daily cases
- National daily death numbers
Algorithm 1 Moving z-score with window size n (MZ_n) |
Algorithm 2 Moving z-score with all history information (MZ_all) |
|
Algorithm 3 Exponentially-weighted moving z-score with window size n(EMZ_n) |
3. The Case Study and Results
3.1. Data Pre-Processing for Mobility Index
3.2. Model Configuration
3.3. Model Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Feature Selection: Reducing Collinearity
Appendix A.2. The Dynamic Risk Perceptions by Time-Varying z-Score and PCA
Algorithm | Window Size | Risk Perceptions |
---|---|---|
7 | MZ_7 | |
Algorithm 1 | 14 | MZ_14 |
28 | MZ_28 | |
Algorithm 2 | - | MZ_all |
7 | EMZ_7 | |
Algorithm 3 | 14 | EMZ_14 |
28 | EMZ_28 |
Appendix A.3. Experiment Results
References
- Coronavirus Disease (COVID-19): Herd Immunity, Lockdowns and COVID-19. Available online: https://www.who.int/news-room/questions-and-answers/item/herd-immunity-lockdowns-and-covid-19 (accessed on 31 May 2022).
- Du, Z.; Hong, H.; Wang, S.; Ma, L.; Liu, C.; Bai, Y.; Adam, D.C.; Tian, L.; Wang, L.; Lau, E.H.Y.; et al. Reproduction Number of the Omicron Variant Triples That of the Delta Variant. Viruses 2022, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- England Summary. Coronavirus (COVID-19) in the UK. Available online: https://coronavirus.data.gov.uk (accessed on 13 June 2022).
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, A.P.Y.; Mu, K.; Rossi, L.; Sun, K.; et al. The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (COVID-19) Outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, P.; Yeyati, E.L.; Sartorio, L. Lockdown Fatigue: The Diminishing Effects of Quarantines on the Spread of COVID-1 2021; Center for International Development at Harvard University: Cambridge, MA, USA, 2021. [Google Scholar]
- Nanda, R.O.; Nursetyo, A.A.; Ramadona, A.L.; Imron, M.A.; Fuad, A.; Setyawan, A.; Ahmad, R.A. Community Mobility and COVID-19 Dynamics in Jakarta, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 6671. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, R.; Hu, D.; Yue, Y.; Li, Q.; Xia, J. Effects of Human Mobility Restrictions on the Spread of COVID-19 in Shenzhen, China: A Modelling Study Using Mobile Phone Data. Lancet Digit. Health 2020, 2, e417–e424. [Google Scholar] [CrossRef]
- Hernando, A.; Mateo, D.; Barrios, I.; Plastino, A. Social Inequalities in Human Mobility during the Spanish Lockdown and Post-Lockdown in the Covid-19 Pandemic of 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Schlosser, F.; Maier, B.F.; Jack, O.; Hinrichs, D.; Zachariae, A.; Brockmann, D. COVID-19 Lockdown Induces Disease-Mitigating Structural Changes in Mobility Networks. PNAS 2020, 117, 32883–32890. [Google Scholar] [CrossRef]
- Hunter, R.F.; Garcia, L.; de Sa, T.H.; Zapata-Diomedi, B.; Millett, C.; Woodcock, J.; Pentland, A.’S.; Moro, E. Effect of COVID-19 Response Policies on Walking Behavior in US Cities. Nat. Commun. 2021, 12, 3652. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Open COVID-19 Data Working Group; Plessis, L.D.; Faria, N.R.; Li, R.; et al. The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Hadjidemetriou, G.M.; Sasidharan, M.; Kouyialis, G.; Parlikad, A.K. The Impact of Government Measures and Human Mobility Trend on COVID-19 Related Deaths in the UK. Transp. Res. Interdiscip. Perspect. 2020, 6, 100167. [Google Scholar] [CrossRef]
- Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P. Ranking the Effectiveness of Worldwide COVID-19 Government Interventions. Nat. Hum. Behav. 2020, 4, 1303–1312. [Google Scholar] [CrossRef]
- Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk Perceptions of COVID-19 around the World. J. Risk Res. 2020, 23, 994–1006. [Google Scholar] [CrossRef]
- Nelson, B.W.; Pettitt, A.; Flannery, J.E.; Allen, N.B. Rapid Assessment of Psychological and Epidemiological Correlates of COVID-19 Concern, Financial Strain, and Health-Related Behavior Change in a Large Online Sample. PLoS ONE 2020, 15, e0241990. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.F.; Skali, A.; Savage, D.A.; Stadelmann, D.; Torgler, B. Risk Attitudes and Human Mobility during the COVID-19 Pandemic. Sci. Rep. 2020, 10, 19931. [Google Scholar] [CrossRef] [PubMed]
- Harrison, G.; Grant-Muller, S.M.; Hodgson, F.C. Understanding the Influence of New and Emerging Data Forms on Mobility Behaviours and Related Health Outcomes. J. Transp. Health 2022, 24, 101335. [Google Scholar] [CrossRef]
- Ozbilen, B.; Slagle, K.M.; Akar, G. Perceived Risk of Infection While Traveling during the COVID-19 Pandemic: Insights from Columbus, OH. Transp. Res. Interdiscip. Perspect. 2021, 10, 100326. [Google Scholar] [CrossRef]
- Wise, T.; Zbozinek, T.D.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in Risk Perception and Self-Reported Protective Behaviour during the First Week of the COVID-19 Pandemic in the United States. Royal Soc. Open Sci. 2020, 7, 200742. [Google Scholar] [CrossRef]
- Neuburger, L.; Egger, R. Travel Risk Perception and Travel Behaviour during the COVID-19 Pandemic 2020: A Case Study of the DACH Region. Curr. Issues Tour. 2021, 24, 1003–1016. [Google Scholar] [CrossRef]
- Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; Spiegelhalter, D.; van der Linden, S. COVID-19 Risk Perception: A Longitudinal Analysis of Its Predictors and Associations with Health Protective Behaviours in the United Kingdom. J. Risk Res. 2021, 24, 294–313. [Google Scholar] [CrossRef]
- Savadori, L.; Lauriola, M. Risk Perception and Protective Behaviors During the Rise of the COVID-19 Outbreak in Italy. Front. Psychol. 2021, 11, 3822. [Google Scholar] [CrossRef]
- Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper, L.V.; et al. Reduction in Mobility and COVID-19 Transmission. Nat. Commun. 2021, 12, 1090. [Google Scholar] [CrossRef]
- Joshi, Y.V.; Musalem, A. Lockdowns Lose One Third of Their Impact on Mobility in a Month. Sci. Rep. 2021, 11, 22658. [Google Scholar] [CrossRef] [PubMed]
- Ganslmeier, M.; Van Parys, J.; Vlandas, T. Compliance with the First UK Covid-19 Lockdown and the Compounding Effects of Weather. Sci. Rep. 2022, 12, 3821. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, X.; Li, Z. Spatiotemporal Patterns of Human Mobility and Its Association with Land Use Types during COVID-19 in New York City. ISPRS Int. J. Geo-Inf. 2021, 10, 344. [Google Scholar] [CrossRef]
- Sampi, J.; Jooste, C. Nowcasting Economic Activity in Times of COVID-19: An Approximation from the Google Community Mobility Report; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Li, Y.; Li, M.; Rice, M.; Zhang, H.; Sha, D.; Li, M.; Su, Y.; Yang, C. The Impact of Policy Measures on Human Mobility, COVID-19 Cases, and Mortality in the US: A Spatiotemporal Perspective. Int. J. Environ. Res. Public Health 2021, 18, 996. [Google Scholar] [CrossRef]
- Oliveira, G.L.A.D.; Lima, L.; Silva, I.; Ribeiro-Dantas, M.D.C.; Monteiro, K.H.; Endo, P.T. Evaluating Social Distancing Measures and Their Association with the Covid-19 Pandemic in South America. ISPRS Int. J. Geo-Inf. 2021, 10, 121. [Google Scholar] [CrossRef]
- Cot, C.; Cacciapaglia, G.; Sannino, F. Mining Google and Apple Mobility Data: Temporal Anatomy for COVID-19 Social Distancing. Sci. Rep. 2021, 11, 4150. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.google.com/covid19/mobility/data_documentation.html?hl=en (accessed on 20 June 2022).
- Lepetit, L.; Strobel, F. Bank Insolvency Risk and Time-Varying Z-Score Measures. J. Int. Financ. Mark. Inst. Money 2013, 25, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Nicolo, M.G.D.; Boyd, J.H.; Jalal, A.M. Bank Risk-Taking and Competition Revisited: New Theory and New Evidence; International Monetary Fund: Washington, DC, USA, 2006; ISBN 978-1-4518-6557-8. [Google Scholar]
- Yeyati, E.L.; Micco, A. Concentration and Foreign Penetration in Latin American Banking Sectors: Impact on Competition and Risk. J. Bank. Financ. 2007, 31, 1633–1647. [Google Scholar] [CrossRef] [Green Version]
- Estimates of the Population for the UK, England and Wales, Scotland and Northern Ireland—Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland (accessed on 20 June 2022).
- Understand the Data—Community Mobility Reports Help. Available online: https://support.google.com/covid19-mobility/answer/9825414?hl=en&ref_topic=9822927 (accessed on 13 June 2022).
- Baker, C.; Kirk-Wade, E.; Brown, J.; Barber, S. Coronavirus: A History of English Lockdown Laws. Available online: https://commonslibrary.parliament.uk/research-briefings/cbp-9068/ (accessed on 23 December 2021).
- Singh, R.; Adhikari, R. Age-Structured Impact of Social Distancing on the COVID-19 Epidemic in India. arXiv 2020, arXiv:2003.12055. [Google Scholar]
- Ganslmeier, M.; Van Parys, J.; Vlandas, T. Weather and Lockdown Compliance; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Abduljabbar, R.L.; Liyanage, S.; Dia, H. The Role of Micro-Mobility in Shaping Sustainable Cities: A Systematic Literature Review. Transp. Res. Part D Transp. Environ. 2021, 92, 102734. [Google Scholar] [CrossRef]
- Harrington, D.M.; Hadjiconstantinou, M. Changes in Commuting Behaviours in Response to the COVID-19 Pandemic in the UK. J. Transp. Health 2022, 24, 101313. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tong, L.C.; Zhu, X.; Du, W. Dynamic Activity Chain Pattern Estimation under Mobility Demand Changes during COVID-19. Transp. Res. Part C Emerg. Technol. 2021, 131, 103361. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.K.; Jones, J.R. Managing the Risk of COVID-19 via Vaccine Passports: Modeling Economic and Policy Implications. MDE Manag. Decis. Econ. 2022. [Google Scholar] [CrossRef] [PubMed]
- Michaels, D.; Emanuel, E.J.; Bright, R.A. A National Strategy for COVID-19: Testing, Surveillance, and Mitigation Strategies. JAMA 2022, 327, 213–214. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Grant-Muller, S.; Yang, L. Modelling the Mobility Changes Caused by Perceived Risk and Policy Efficiency. ISPRS Int. J. Geo-Inf. 2022, 11, 453. https://doi.org/10.3390/ijgi11080453
Wu S, Grant-Muller S, Yang L. Modelling the Mobility Changes Caused by Perceived Risk and Policy Efficiency. ISPRS International Journal of Geo-Information. 2022; 11(8):453. https://doi.org/10.3390/ijgi11080453
Chicago/Turabian StyleWu, Sijin, Susan Grant-Muller, and Lili Yang. 2022. "Modelling the Mobility Changes Caused by Perceived Risk and Policy Efficiency" ISPRS International Journal of Geo-Information 11, no. 8: 453. https://doi.org/10.3390/ijgi11080453
APA StyleWu, S., Grant-Muller, S., & Yang, L. (2022). Modelling the Mobility Changes Caused by Perceived Risk and Policy Efficiency. ISPRS International Journal of Geo-Information, 11(8), 453. https://doi.org/10.3390/ijgi11080453