The Spatial Mechanism and Predication of Rural Tourism Development in China: A Random Forest Regression Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Research Design
3.2. Data
3.2.1. Key Rural Tourism Villages
3.2.2. Influential Factors
3.3. Methods
3.3.1. HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
3.3.2. Kernel Density Analysis
3.3.3. Bivariate Analysis
3.3.4. Random Forest Algorithm
4. Results
4.1. Spatial Distribution Characteristics
4.1.1. Spatial Clusters of Key Rural Tourism Villages
4.1.2. Spatial Distribution Density of Key Rural Tourism Villages
4.2. Spatial Interaction between Key Rural Tourism Villages and Influential Factors
4.3. Relative Importance of Influential Factors
4.4. Potential Area of Rural Tourism Development
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharroudi, O.; Elghazel, H.; Aussem, A. A Comparison of Multi-Label Feature Selection Methods Using the Random Forest Paradigm. In Proceedings of the Advances in Artificial Intelligence; Sokolova, M., Van Beek, P., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8436, pp. 95–106. [Google Scholar]
- Boluk, K.A.; Cavaliere, C.T.; Higgins-Desbiolles, F. A Critical Framework for Interrogating the United Nations Sustainable Development Goals 2030 Agenda in Tourism. J. Sustain. Tour. 2019, 27, 847–864. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.; Al-Khassaweneh, M. An Implementation of the HDBSCAN* Clustering Algorithm. Appl. Sci. 2022, 12, 2405. [Google Scholar] [CrossRef]
- Liu, C.; Dou, X.; Li, J.; Cai, L.A. Analyzing Government Role in Rural Tourism Development: An Empirical Investigation from China. J. Rural. Stud. 2020, 79, 177–188. [Google Scholar] [CrossRef]
- Huang, W.-J.; Beeco, J.A.; Hallo, J.C.; Norman, W.C. Bundling Attractions for Rural Tourism Development. J. Sustain. Tour. 2016, 24, 1387–1402. [Google Scholar] [CrossRef]
- Xiuwei, W.; Xiaojun, L. Characteristics and Influencing Factors of the Key Villages of Rural Tourism in China. Acta Geogr. Sin. 2022, 77, 900–917. [Google Scholar]
- Smith, A.; Robbins, D.; Dickinson, J.E. Defining Sustainable Transport in Rural Tourism: Experiences from the New Forest. J. Sustain. Tour. 2019, 27, 258–275. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. Adv. Knowl. Discov. Data Min. 2013, 7819, 160–172. [Google Scholar] [CrossRef]
- Su, B. Developing Rural Tourism: The PAT Program and ‘Nong Jia Le’ Tourism in China. Int. J. Tour. Res. 2013, 15, 611–619. [Google Scholar] [CrossRef]
- Xu, J.; Yang, M.; Hou, C.; Lu, Z.; Liu, D. Distribution of Rural Tourism Development in Geographical Space: A Case Study of 323 Traditional Villages in Shaanxi, China. Eur. J. Remote Sens. 2021, 54, 318–333. [Google Scholar] [CrossRef]
- Yang, J.; Yang, R.; Chen, M.-H.; Su, C.-H.; Zhi, Y.; Xi, J. Effects of Rural Revitalization on Rural Tourism. J. Hosp. Tour. Manag. 2021, 47, 35–45. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; He, Y.; Zhu, Z. Exploring the Factors of Rural Tourism Recovery in the Post-COVID-19 Era Based on the Grounded Theory: A Case Study of Tianxi Village in Hunan Province, China. Sustainability 2022, 14, 5215. [Google Scholar] [CrossRef]
- Cui, X.; Quan, Z.; Chen, X.; Zhang, Z.; Zhou, J.; Liu, X.; Chen, J.; Cao, X.; Guo, L. GPR-Based Automatic Identification of Root Zones of Influence Using HDBSCAN. Remote Sens. 2021, 13, 1227. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. JOSS 2017, 2, 205. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying Core Driving Factors of Urban Land Use Change from Global Land Cover Products and POI Data Using the Random Forest Method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Mahadevan, R.; Suardi, S.; Ji, C.; Hanyu, Z. Is Urbanization the Link in the Tourism–Poverty Nexus? Case Study of China. Curr. Issues Tour. 2021, 24, 3357–3371. [Google Scholar] [CrossRef]
- Sales, M.H.R.; De Bruin, S.; Souza, C.; Herold, M. Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Su, M.M.; Wall, G.; Wang, Y.; Jin, M. Livelihood Sustainability in a Rural Tourism Destination—Hetu Town, Anhui Province, China. Tour. Manag. 2019, 71, 272–281. [Google Scholar] [CrossRef]
- Giglio, S.; Bertacchini, F.; Bilotta, E.; Pantano, P. Machine Learning and Points of Interest: Typical Tourist Italian Cities. Curr. Issues Tour. 2020, 23, 1646–1658. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Lin, V.S.; Qin, Y.; Ying, T.; Shen, S.; Lyu, G. Night-Time Economy Vitality Index: Framework and Evidence. Tour. Econ. 2022, 28, 665–691. [Google Scholar] [CrossRef]
- Juschten, M.; Hössinger, R. Out of the City—But How and Where? A Mode-Destination Choice Model for Urban–Rural Tourism Trips in Austria. Curr. Issues Tour. 2020, 24, 1–17. [Google Scholar] [CrossRef]
- Mansor, N.A.; Rusli, S.A.; Razak, N.F.A.; Ibrahim, M.; Simpong, D.B.; Ridzuan, N.A.; Othman, N.A. Over-Development in Rural Tourism: Tourism Impact, Local Community Satisfaction and Dissatisfaction. Rev. Int. Geogr. Educ. Online 2021, 11, 263–271. [Google Scholar]
- Adams, K.M.; Choe, J.; Mostafanezhad, M.; Phi, G.T. (Post-) Pandemic Tourism Resiliency: Southeast Asian Lives and Livelihoods in Limbo. Tour. Geogr. 2021, 23, 915–936. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Garrod, B.; Wornell, R.; Youell, R. Re-Conceptualising Rural Resources as Countryside Capital: The Case of Rural Tourism. J. Rural. Stud. 2006, 22, 117–128. [Google Scholar] [CrossRef]
- Dickinson, J.E.; Robbins, D. Representations of Tourism Transport Problems in a Rural Destination. Tour. Manag. 2008, 29, 1110–1121. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Y.; Han, Z. Research on Spatial Patterns and Sustainable Development of Rural Tourism Destinations in the Yellow River Basin of China. Land 2021, 10, 849. [Google Scholar] [CrossRef]
- Xue, L.; Kerstetter, D. Rural Tourism and Livelihood Change: An Emic Perspective. J. Hosp. Tour. Res. 2019, 43, 416–437. [Google Scholar] [CrossRef]
- Iorio, M.; Corsale, A. Rural Tourism and Livelihood Strategies in Romania. J. Rural. Stud. 2010, 26, 152–162. [Google Scholar] [CrossRef]
- Gao, S.; Huang, S.; Huang, Y. Rural Tourism Development in China: Rural Tourism Development in China. Int. J. Tour. Res. 2009, 11, 439–450. [Google Scholar] [CrossRef]
- Baležentis, T.; Kriščiukaitienė, I.; Baležentis, A.; Garland, R. Rural Tourism Development in Lithuania (2003–2010)—A Quantitative Analysis. Tour. Manag. Perspect. 2012, 2–3, 1–6. [Google Scholar] [CrossRef]
- Reichel, A.; Lowengart, O.; Milman, A. Rural Tourism in Israel: Service Quality and Orientation. Tour. Manag. 2000, 21, 451–459. [Google Scholar] [CrossRef]
- Rosalina, P.D.; Dupre, K.; Wang, Y. Rural Tourism: A Systematic Literature Review on Definitions and Challenges. J. Hosp. Tour. Manag. 2021, 47, 134–149. [Google Scholar] [CrossRef]
- Liao, C.; Zuo, Y.; Law, R.; Wang, Y.; Zhang, M. Spatial Differentiation, Influencing Factors, and Development Paths of Rural Tourism Resources in Guangdong Province. Land 2022, 11, 2046. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Li, Z.; Yang, M.; Zhai, F.; Li, Z.; Yao, H.; Li, H. Spatial Distribution Characteristics and Influencing Factors of Key Rural Tourism Villages in China. Sustainability 2022, 14, 14064. [Google Scholar] [CrossRef]
- Bian, J.; Chen, W.; Zeng, J. Spatial Distribution Characteristics and Influencing Factors of Traditional Villages in China. IJERPH 2022, 19, 4627. [Google Scholar] [CrossRef]
- Qi, J.; Lu, Y.; Han, F.; Ma, X.; Yang, Z. Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors. Int. J. Environ. Res. Public Health 2022, 19, 9330. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meng, X.; Cenci, J.; Zhang, J. Spatial Pattern and Formation Mechanism of Rural Tourism Resources in China: Evidence from 1470 National Leisure Villages. ISPRS Int. J. Geo-Inf. 2022, 11, 455. [Google Scholar] [CrossRef]
- Jiang, X.; Li, N.; Man, S. Spatial Performance Measurement and the Resource Organization Mechanism of Rural Tourism Resources in Developing Countries: A Case Study on Jilin Province, China. Sustainability 2022, 14, 16316. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Liu, Y. Targeted Poverty Alleviation and Its Practices in Rural China: A Case Study of Fuping County, Hebei Province. J. Rural. Stud. 2019, 93, 430–440. [Google Scholar] [CrossRef]
- Liang, Z.; Bao, J. Targeted Poverty Alleviation in China: Segmenting Small Tourism Entrepreneurs and Effectively Supporting Them. J. Sustain. Tour. 2018, 26, 1984–2001. [Google Scholar] [CrossRef]
- Kim, S.; Jamal, T. The Co-Evolution of Rural Tourism and Sustainable Rural Development in Hongdong, Korea: Complexity, Conflict and Local Response. J. Sustain. Tour. 2015, 23, 1363–1385. [Google Scholar] [CrossRef]
- Jiang, H.; Mei, L.; Wei, Y.; Zheng, R.; Guo, Y. The Influence of the Neighbourhood Environment on Peer-to-Peer Accommodations: A Random Forest Regression Analysis. J. Hosp. Tour. Manag. 2022, 51, 105–118. [Google Scholar] [CrossRef]
- Huiyue, L.; Zhoufei, L. Tourism Development and Rural Poverty Alleviation in China. JTHM 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Su, M.M.; Wall, G.; Xu, K. Tourism-Induced Livelihood Changes at Mount Sanqingshan World Heritage Site, China. Environ. Manag. 2016, 57, 1024–1040. [Google Scholar] [CrossRef]
- Castro-Arce, K.; Vanclay, F. Transformative Social Innovation for Sustainable Rural Development: An Analytical Framework to Assist Community-Based Initiatives. J. Rural Stud. 2020, 74, 45–54. [Google Scholar] [CrossRef]
- Polo Peña, A.I.; Jamilena, D.M.F.; Molina, M.Á.R. Validation of a Market Orientation Adoption Scale in Rural Tourism Enterprises. Relationship between the Characteristics of the Enterprise and Extent of Market Orientation Adoption. Int. J. Hosp. Manag. 2012, 31, 139–151. [Google Scholar] [CrossRef]
- Li, B.; Mi, Z.; Zhang, Z. Willingness of the New Generation of Farmers to Participate in Rural Tourism: The Role of Perceived Impacts and Sense of Place. Sustainability 2020, 12, 766. [Google Scholar] [CrossRef] [Green Version]
Dimension | Factors | Data | Source | Reference |
---|---|---|---|---|
Natural elements | Geographic condition | DEM | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 1 May 2023) | [27,29] |
Natural environment | Rivers | National Geomatics Center of China (http://www.ngcc.cn/ngcc/html/1/391/392/16114.html, accessed on 1 May 2023) | [26] | |
Air quality | PM2.5 | Atmospheric Composition Analysis Group (https://sites.wustl.edu/acag/datasets/surface-pm2-5/, accessed on 1 May 2023) | [38,39] | |
Social elements | Tourism development | Domestic visitors | China’s economic and social big data research platform (https://data.cnki.net/, accessed on 1 May 2023) | [29,40] |
Tourism potential | Prefecture-level administration | National Geomatics Center of China (http://www.ngcc.cn/ngcc/html/1/391/392/16114.html, accessed on 1 May 2023) | [41] | |
Economic development | Per capita GDP | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 1 May 2023) | [16,25] | |
Economic vitality | Night-time light | [38] | ||
Economic potential | Population density | [41,42] | ||
Rural elements | Livelihood diversity | Ecosystem services | [38,40] | |
Culture resources | Intangible heritage | Chinese Intangible Cultural Heritage website (https://www.ihchina.cn/, accessed on 23 April 2023) | [10,16,25,29] | |
Tourism resources | A-class scenic spot | Ministry of Culture and Tourism of China (https://www.mct.gov.cn/, accessed on 20 April 2023) | [11,29,40,43] | |
Rural accessibility | Road network | National Geomatics Center of China (http://www.ngcc.cn/ngcc/html/1/391/392/16114.html, accessed on 1 May 2023) | [44,45,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Wang, Z.; Wang, Y. The Spatial Mechanism and Predication of Rural Tourism Development in China: A Random Forest Regression Analysis. ISPRS Int. J. Geo-Inf. 2023, 12, 321. https://doi.org/10.3390/ijgi12080321
Du X, Wang Z, Wang Y. The Spatial Mechanism and Predication of Rural Tourism Development in China: A Random Forest Regression Analysis. ISPRS International Journal of Geo-Information. 2023; 12(8):321. https://doi.org/10.3390/ijgi12080321
Chicago/Turabian StyleDu, Xishihui, Zhaoguo Wang, and Yan Wang. 2023. "The Spatial Mechanism and Predication of Rural Tourism Development in China: A Random Forest Regression Analysis" ISPRS International Journal of Geo-Information 12, no. 8: 321. https://doi.org/10.3390/ijgi12080321
APA StyleDu, X., Wang, Z., & Wang, Y. (2023). The Spatial Mechanism and Predication of Rural Tourism Development in China: A Random Forest Regression Analysis. ISPRS International Journal of Geo-Information, 12(8), 321. https://doi.org/10.3390/ijgi12080321