Identifying Conditioning Factors and Predictors of Conflict Likelihood for Machine Learning Models: A Literature Review
Abstract
:1. Introduction
2. Methodology
- Articles were selected if:
- (a)
- Publication was peer-reviewed.
- (b)
- Publication reported on the use of conditioning factors and/or predictors in machine learning model development for conflict forecasting.
- (c)
- Publication included a list of factors affecting the onset of wars or conflicts.
- Articles were excluded if:
- (a)
- Publication was not related to conflicts and machine learning.
- (b)
- Full text was not available.
- (c)
- Publication was not available in English.
- (d)
- Publication did not have a DOI.
3. Results
3.1. Training and Validation Datasets
3.2. Conditioning Factors
3.2.1. Socioeconomic Conditioning Factors
3.2.2. Agriculture
3.2.3. Natural Resources
3.2.4. Political and Governance Aspects
3.2.5. Climate Change
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleditsch, P.N.; Wallensteen, P.; Eriksson, M.; Sollenberg, M.; Strand, H. Armed Conflict 1946–2001: A New Dataset. J. Peace Res. 2002, 39, 615–637. [Google Scholar] [CrossRef]
- United Nations General Assembly. Resolution A/RES/57/337 Resolution Adopted by the General Assembly [without Reference to a Main Committee (A/57/L.79)] 57/337. Prevention of Armed Conflict. 2003. Available online: https://documents-dds-ny.un.org/doc/UNDOC/GEN/N02/563/59/PDF/N0256359.pdf (accessed on 30 July 2023).
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 30 July 2023).
- Kumar, R.; Roy, P. War and peace: Is our world serious about achieving Sustainable Development Goals by 2030? J. Fam. Med. Prim. Care 2018, 7, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.; Pettersson, T.; Öberg, M. Organized violence 1989–2022 and the return of conflicts between states? J. Peace Res. 2023, 60. [Google Scholar] [CrossRef]
- Gates, S.; Hegre, H.; Nygard, H.M.; Strand, H. Development Consequences of Armed Conflict. World Dev. 2012, 40, 1713–1722. [Google Scholar] [CrossRef]
- Bizău, A.; Stanciulescu, R. Causes of Armed Conflict. Sciendo 2022, 27, 171–177. [Google Scholar] [CrossRef]
- Schleussner, C.; Donges, J.; Donner, R.; Schellnhuber, H. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl. Acad. Sci. USA 2016, 113, 9216–9221. [Google Scholar] [CrossRef]
- Slettebak, R.T. Don’t blame the weather! Climate-related natural disasters and civil conflict. J. Peace Res. 2012, 51, 573–589. [Google Scholar] [CrossRef]
- Buhaug, H.; Cederman, L.-E.; Gleditsch, K.S. Square Pegs in Round Holes: Inequalities, Grievances, and Civil War. Int. Stud. Q. 2014, 58, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Elbadawi, I.; Hegre, H. Globalization, Economic Shocks, and Internal Armed Conflict. Def. Peace Econ. 2008, 19, 37–60. [Google Scholar] [CrossRef]
- Fearon, J.D. Governance and Civil War Onset. World Bank. 2011. Available online: https://openknowledge.worldbank.org/handle/10986/9123 (accessed on 30 July 2023).
- Hegre, H.; Karlsen, J.; Nygård, H.M.; Strand, H.; Urdal, H. Predicting Armed Conflict, 2010–2050. Int. Stud. Q. 2013, 57, 250–270. Available online: http://www.jstor.org/stable/24016137 (accessed on 30 July 2023). [CrossRef]
- Collier, P.; Hoeffler, A. Greed and Grievance in Civil War. Oxf. Econ. Pap. 2004, 56, 563–595. [Google Scholar] [CrossRef] [Green Version]
- Collier, P.; Hoeffler, A.; Rohner, D. Beyond greed and grievance: Feasibility and civil war. Oxf. Econ. Pap. 2009, 61, 1–27. [Google Scholar] [CrossRef]
- Toft, M.D. Indivisible territory, geographic concentration, and ethnic war. Secur. Stud. 2002, 12, 82–119. [Google Scholar] [CrossRef]
- Denny, E.K.; Walter, B.F. Ethnicity and civil war. J. Peace Res. 2014, 51, 199–212. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Hao, M.; Ding, F.; Xie, X.; Fu, J.; Qian, Y.; Ide, T.; Maystadt, J.-F.; Chen, S.; Ge, Q.; Jiang, D. Varying climatic-social-geographical patterns shape the conflict risk at regional and global scales. Humanit. Soc. Sci. Commun. 2022, 9, 276. [Google Scholar] [CrossRef]
- De Groeve, T.; Poljansek, K.; Vernaccini, L. InfoRM Concept and Methodology JRC Report 20140127; Publication Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Hegre, H.; Buhaug, H.; Calvin, K.; Nordkvelle, J.; Waldhoff, S.; Gilmore, E. Forecasting civil conflict along the shared socioeconomic pathways. Environ. Res. Lett. 2016, 11, 054002. [Google Scholar] [CrossRef] [Green Version]
- Kalyvas, S.N. The Logic of Violence in Civil War; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Mach, K.J.; Adger, W.N.; Buhaug, H.; Burke, M.; Fearon, J.D.; Field, C.B.; Hendrix, C.S.; Kraan, C.M.; Maystadt, J.F.; O’loughlin, J.; et al. Directions for research on climate and conflict. Earth Future 2020, 8, e2020EF001532. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Herrera, F. An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. J. Mach. Learn. Res.—JMLR 2008, 9, 2677–2694. [Google Scholar]
- Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Blair, R.A.; Blattman, C.; Hartman, A. Predicting local violence: Evidence from a panel survey in Liberia. J. Peace Res. 2017, 54, 298–312. [Google Scholar] [CrossRef] [Green Version]
- Linke, A.M.; Witmer, F.D.W.; O’Loughlin, J. Weather variability and conflict forecasts: Dynamic human-environment interactions in Kenya. Political Geogr. 2022, 92, 102489. [Google Scholar] [CrossRef]
- Armed Conflict Location & Event Data Project (ACLED). Public Data. 2023. Available online: www.acleddata.com (accessed on 6 January 2023).
- Uppsala Conflict Data Program (UCDP). Publicly Available Data. 2022. Available online: https://ucdp.uu.se/ (accessed on 6 January 2023).
- Fearon, J.; Laitin, D. Ethnicity, Insurgency, and Civil War. Am. Political Sci. Rev. 2003, 97, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Cederman, L.; Weidmann, N.; Gleditsch, K. Horizontal Inequalities and Ethnonationalist Civil War: A Global Comparison. Am. Political Sci. Rev. 2011, 105, 478–495. [Google Scholar] [CrossRef] [Green Version]
- Miguel, E.; Satyanath, S.; Sergenti, E. Economic Shocks and Civil Conflict: An Instrumental Variables Approach. J. Political Econ. 2004, 112, 725–753. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www.webofscince.com (accessed on 6 January 2023).
- O’Loughlin, J.; Witmer, F.; Linke, A.; Laing, A.; Gettelman, A.; Dudhia, J. Climate variability and conflict risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. USA 2012, 109, 18344–18349. [Google Scholar] [CrossRef]
- Obukhov, T.; Brovelli, M. Defining a methodology for integrating semantic, geospatial, and temporal techniques for conflict analysis. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B4-2022, 155–161. [Google Scholar] [CrossRef]
- Salehyan, I. Best practices in the collection of conflict data. J. Peace Res. 2015, 52, 105–110. [Google Scholar] [CrossRef]
- ACLED Terms of Use and Attribution Policy. Last Update 8 June 2022. Available online: https://acleddata.com/terms-of-use/ (accessed on 30 July 2023).
- Sundberg, R.; Eck, K.; Kreutz, J. Introducing the UCDP Non-State Conflict Dataset. J. Peace Res. 2012, 49, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Musumba, M.; Fatema, N.; Kibriya, S. Prevention is better than cure: Machine learning approach to conflict prediction in sub-Saharan Africa. Sustainability 2021, 13, 7366. [Google Scholar] [CrossRef]
- Fawaz, M.; Le Quellec, E. Indirect rivalries and civil wars: Empirical evidence. Def. Peace Econ. 2022, 1–28. [Google Scholar] [CrossRef]
- Pinckney, J.; Rezaee Daryakenari, B. When the levee breaks: A forecasting model of violent and nonviolent dissent. Int. Interact. 2022, 48, 997–1026. [Google Scholar] [CrossRef]
- Urdal, H. A clash of generations? Youth bulges and political violence. Int. Stud. Q. 2006, 50, 607–629. [Google Scholar] [CrossRef]
- Yair, O.; Miodownik, D. Youth bulge and civil war: Why a country’s share of young adults explains only non-ethnic wars. Confl. Manag. Peace Sci. 2016, 33, 25–44. [Google Scholar] [CrossRef]
- Florczyk, A.; Ehrlich, D.; Corbane, C.; Freire, S.; Kemper, T.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.; Zanchetta, L. Community Pre-Release of GHS Data Package (GHS CR2018) in Support to the GEO Human Planet Initiative; Publications Office of the European Union: Luxembourg, 2018; Available online: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-GHS_pop_gpw4_globe_r2015a (accessed on 30 July 2023).
- Perry, C. Machine Learning and Conflict Prediction: A Use Case. Stab. Int. J. Secur. Dev. 2013, 2, 56. [Google Scholar] [CrossRef] [Green Version]
- European Commission; Joint Research Centre; Thomakos, D.; Has, S.; Saporiti, F.; Stamatia, K.; Stefano, F. Global Conflict Risk Index (GCRI): New variables in 2018, Publications Office of the European Union, 2018. Available online: https://data.europa.eu/doi/10.2760/258293 (accessed on 30 July 2023).
- Malembaka, E.B.; Altare, C.; Bigirinama, R.N.; Bisimwa, G.; Banywesize, R.; Tabbal, N.; Boerma, T. The use of health facility data to assess the effects of armed conflicts on maternal and child health: Experience from the Kivu, DR Congo. BMC Health Serv. Res. 2021, 21 (Suppl. 1), 195. [Google Scholar] [CrossRef]
- World Bank. Mortality Rate, under-5 (per 1000 Live Births). 2023. Available online: https://data.worldbank.org/indicator/SH.DYN.MORT (accessed on 5 January 2023).
- WHO. World Health Organization Data. 2023. Available online: https://www.who.int/data (accessed on 25 December 2022).
- DHS. The Demographic and Health Survey Program Website. Funded by USAID. 2023. Available online: http://www.dhsprogram.com (accessed on 5 January 2023).
- IGME. UN Inter-Agency Group for Child Mortality Estimates. Child Mortality and Stillbirth Estimates Dataset. 2023. Available online: https://childmortality.org/ (accessed on 5 January 2023).
- Hoch, J.M.; de Bruin, S.P.; Buhaug, H.; Von Uexkull, N.; van Beek, R.; Wanders, N. Projecting armed conflict risk in Africa towards 2050 along the SSP-RCP scenarios: A machine learning approach. Environ. Res. Lett. 2021. [Google Scholar] [CrossRef]
- Sambanis, N.; Shayo, M. Social identification and ethnic conflict. Am. Political Sci. Rev. 2013, 107, 294–325. [Google Scholar] [CrossRef]
- Manuel, V.; Bormann, N.; Rüegger, S.; Cederman, L.; Hunziker, P.; Girardin, L. Integrating data on ethnicity, geography, and conflict: The Ethnic Power Relations data set family. J. Confl. Resolut. 2015, 59, 1327–1342. [Google Scholar]
- Ge, Q.; Hao, M.; Ding, F.; Jiang, D.; Scheffran, J.; Helman, D.; Ide, T. Modelling armed conflict risk under climate change with machine learning and time-series data. Nat. Commun. 2022, 13, 2839. [Google Scholar] [CrossRef]
- International Labor Organization. ILO Statistics Data. 2023. Available online: https://ilostat.ilo.org/data/ (accessed on 30 July 2023).
- Schellens, M.K.; Belyazid, S. Revisiting the contested role of natural resources in violent conflict risk through machine learning. Sustainability 2020, 12, 6574. [Google Scholar] [CrossRef]
- Hakim, S. The role of climate change in the Darfur crisis. In The Economic, Social and Political Elements of Climate Change: Climate Change Management; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 721–735. [Google Scholar] [CrossRef]
- Brown, I.A. Assessing eco-scarcity as a cause of the outbreak of conflict in Darfur: A remote sensing approach. Int. J. Remote Sens. 2010, 31, 2513–2520. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. FAO Statistics Data. 2023. Available online: https://www.fao.org/faostat/en/#home (accessed on 30 July 2023).
- US Geological Survey. Landsat. Available online: https://www.usgs.gov/landsat-missions/data (accessed on 30 July 2023).
- US Geological Survey. Moderate Resolution Imaging Spectrodiometer (MODIS) Vegetation Index Products (NDVI and EVI). 2018. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod13.php (accessed on 30 July 2023).
- Olanrewaju, F.O.; Joshua, S.; Olanrewaju, A. Natural resources, conflict and security challenges in Africa. India Q. 2020, 76, 552–568. [Google Scholar] [CrossRef]
- Maphosa, S.B. Natural Resources and Conflict: Unlocking the Economic Dimension of Peace-Building in Africa (Policy Brief, Africa Institute of South Africa, Briefing No 74), 2012. Available online: https://studylib.net/doc/8933896/ (accessed on 1 August 2023).
- Mokuwa, E.; Voors, M.; Bulte, E.; Richards, P. Peasant grievance and insurgency in Sierra Leone: Judicial serfdom as a driver of conflict. Afr. Aff. 2011, 110, 339–366. [Google Scholar] [CrossRef]
- Lujala, P.; Gleditsch, N.P.; Gilmore, E. A diamond curse? Civil war and a lootable resource. J. Confl. Resolut. 2005, 49, 538–562. [Google Scholar] [CrossRef]
- Gilmore, E.; Gleditsch, N.P.; Lujala, P.; Rød, J.K. Conflict diamonds: A new dataset. Confl. Manag. Peace Sci. 2005, 22, 257–292. [Google Scholar] [CrossRef]
- Gutiérrez Rodríguez, J.D. The connection between oil wealth and internal armed conflicts: Exploring the mechanisms of the relationship using a subnational lens. Extr. Ind. Soc. 2019, 6, 1217–1227. [Google Scholar] [CrossRef]
- Bae, J.Y.; Heo, E. Armed conflicts in the Middle East and international oil company returns. Energy Sources Part B Econ. Plan. Policy 2018, 13, 21–27. [Google Scholar] [CrossRef]
- Kelly, J.T.D. “This mine has become our farmland”: Critical perspectives on the coevolution of artisanal mining and conflict in the Democratic Republic of the Congo. Resour. Policy 2014, 40, 167–174. [Google Scholar] [CrossRef]
- Kranz, O.; Schoepfer, E.; Tegtmeyer, R.; Lang, S. Earth observation based multi-scale assessment of logging activities in the Democratic Republic of the Congo. ISPRS J. Photogramm. Remote Sens. 2018, 149, 111–126. [Google Scholar] [CrossRef]
- Maystadt, J.F.; De Luca, G.; Sekeris, P.G.; Ulimwengu, J. Mineral resources and conflicts in DRC: A case of ecological fallacy? Oxf. Econ. Pap. 2014, 66, 721–749. [Google Scholar] [CrossRef] [Green Version]
- FINEPRINT 2023. FINEPRINT Global Wirtschaftsuniversität Wien (WU) Institute for Ecological Economics. FINEPRINT Geovisualizations. 2023. Available online: https://www.fineprint.global/visualisations/viewer/ (accessed on 6 January 2023).
- Taher, A.; Khan, Z.; Alduais, A.; Muthanna, A. Intertribal conflict, educational development, and education crisis in Yemen: A call for saving education. Rev. Educ. 2022, 10, e3376. [Google Scholar] [CrossRef]
- Ashle, S.; Kim, J. Forced migration: Typology and local agency in Southeast Myanmar. Contemp. Southeast Asia A J. Int. Strateg. Aff. 2015, 37, 211. [Google Scholar]
- Orjuela, C. Corruption and identity politics in divided societies. Third World Q. 2014, 35, 753–769. [Google Scholar] [CrossRef]
- Lohaus, M.; Bussmann, M. The politics of survival or business as usual? Exploring the effects of armed conflict on corruption. J. Int. Relat. Dev. 2021, 24, 149–170. [Google Scholar] [CrossRef]
- Hegre, H. Democracy and armed conflict. J. Peace Res. 2014, 51, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; James, P. Democracy, territory, and armed conflict, 1919–1995. Foreign Policy Anal. 2015, 11, 85–107. [Google Scholar] [CrossRef]
- Evans, A.L. Fighting words: Targeting speech in armed conflict. Wash. Int. Law J. 2021, 30, 6. Available online: https://digitalcommons.law.uw.edu/wilj/vol30/iss3/6 (accessed on 30 July 2023).
- Drange, B. A tug of war: Pursuing justice amid armed conflict. Nord. J. Hum. Rights 2022, 40, 346–364. [Google Scholar] [CrossRef]
- Cingranelli, D.L.; Richards, D.L.; Clay, K.C. The CIRI Human Rights Dataset, Version 2014.04.14. Harvard Dataverse. 2021. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UKCPXT (accessed on 3 January 2023).
- Leach, M. Timor-Leste in 2012: Beyond International Statebuilding? Asian Surv. 2013, 53, 156–161. [Google Scholar] [CrossRef]
- Cederman, L.-E.; Gleditsch, K.S.; Hug, S. Elections and Ethnic Civil War. Comp. Political Stud. 2012, 46, 387–417. [Google Scholar] [CrossRef] [Green Version]
- Salehyan, I.; Linebarger, C. Elections and Social Conflict in Africa, 1990–2009. St. Comp. Int. Dev. 2015, 50, 23–49. [Google Scholar] [CrossRef]
- Attinà, F.; Carammia, M.; Iacus, S.M. Forecasting change in conflict fatalities with dynamic elastic net. Int. Interact. 2022, 48, 649–677. [Google Scholar] [CrossRef]
- Bell, C.; Besaw, C.; Frank, M. The Rulers, Elections, and Irregular Governance (REIGN) Dataset. One Earth Future. 2021. Available online: https://oefdatascience.github.io/REIGN.github.io/ (accessed on 3 January 2023).
- International Monetary Fund. Climate Change Indicators Dashboard. 2022. Available online: https://climatedata.imf.org/pages/access-data (accessed on 23 March 2023).
- National Oceanic and Atmospheric Administration. NOAA Climate Data. 2023. Available online: https://www.climate.gov/maps-data (accessed on 3 February 2023).
- International Panel on Climate Change. IPCC DDC—Data Distribution Center. 2023. Available online: https://www.ipcc-data.org/ (accessed on 9 April 2023).
- Climate Data Initiative. Climate Data.Gov. 2023. Available online: https://data.gov/climate/ (accessed on 9 April 2023).
Event Type | Even Subtype |
---|---|
Battles | Armed clash |
Government regains territory | |
Non-state actor overtakes territory | |
Explosions/Remote violence | Air/drone strike |
Grenade | |
Remote explosive/landmine/IED | |
Shelling/artillery/missile attack | |
Suicide bomb | |
Protests | Excessive force against protesters |
Peaceful protest | |
Protest with intervention | |
Riots | Mob violence |
Violent demonstration | |
Strategic developments | Abduction/forced disappearance |
Agreement | |
Arrests | |
Change to group/activity | |
Disrupted weapons use | |
Headquarters or base established | |
Looting/property destruction | |
Non-violent transfer of territory | |
Other | |
Violence against civilians | Abduction/forced disappearance |
Attack | |
Sexual violence |
Conditioning Factor or Variable | Number of Publications | Number of Publications 2017–2022 | Times Cited (WOS Count) | Conditioning Factor Priority |
---|---|---|---|---|
Conflict data variables | ||||
ACLED | 11 | 8 | 316 | 9 |
UCDP | 12 | 11 | 70 | 5 |
Conditioning factor classification: Socioeconomic | ||||
GDP | 9 | 8 | 59 | 4 |
GINI | 1 | 1 | 3 | 0 |
HDI | 1 | 1 | 3 | 0 |
Population | 14 | 12 | 309 | 10 |
Ethnic | 10 | 9 | 38 | 4 |
Age | 2 | 2 | 2 | 0 |
Religious | 3 | 3 | 1 | 1 |
Urban Accessibility | 4 | 2 | 193 | 4 |
Nightlight Index | 3 | 3 | 3 | 1 |
Inflation | 1 | 1 | 0 | 0 |
Social Services | 5 | 5 | 34 | 2 |
Unemployment | 6 | 5 | 42 | 3 |
Access to Land | 2 | 2 | 29 | 1 |
Economic Level | 6 | 6 | 7 | 2 |
Security | 2 | 2 | 4 | 0 |
Health | 6 | 4 | 231 | 6 |
Education | 2 | 2 | 3 | 0 |
Infrastructure | 3 | 2 | 188 | 4 |
Poverty | 2 | 1 | 2 | 0 |
Corruption | 2 | 2 | 6 | 1 |
Income Inequality | 3 | 2 | 12 | 1 |
Homicide | 2 | 2 | 6 | 1 |
Food Security | 1 | 1 | 6 | 0 |
Conditioning factor classification: Agriculture | ||||
Crop | 5 | 4 | 10 | 2 |
Harvest | 2 | 2 | 1 | 0 |
Irrigation | 1 | 1 | 1 | 0 |
Vegetation Index | 2 | 1 | 187 | 3 |
Conditioning factor classification: Natural Resources | ||||
Diamonds | 5 | 3 | 8 | 2 |
Oil | 7 | 5 | 13 | 3 |
Metals | 5 | 3 | 7 | 2 |
Wood | 3 | 1 | 6 | 1 |
Renewable Energy | 1 | 1 | 0 | 0 |
Conditioning factor classification: Political and Governance | ||||
Allies of Countries | 1 | 1 | 0 | 0 |
Elections | 3 | 2 | 189 | 4 |
Democracy | 11 | 9 | 274 | 8 |
Human Rights | 5 | 4 | 194 | 5 |
Gov. Effectiveness | 2 | 1 | 0 | 0 |
Political Type | 2 | 1 | 6 | 1 |
Conditioning factor classification: Climate Change | ||||
Weather Shock | 10 | 9 | 53 | 4 |
Temperature | 9 | 8 | 232 | 7 |
Flood | 1 | 0 | 0 | 0 |
Draught | 1 | 0 | 0 | 0 |
Precipitation | 8 | 7 | 194 | 6 |
Conditioning factor classification: Pollution | ||||
Air Pollution | 1 | 1 | 0 | 0 |
Soil Degradation | 1 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, T.; Brovelli, M.A. Identifying Conditioning Factors and Predictors of Conflict Likelihood for Machine Learning Models: A Literature Review. ISPRS Int. J. Geo-Inf. 2023, 12, 322. https://doi.org/10.3390/ijgi12080322
Obukhov T, Brovelli MA. Identifying Conditioning Factors and Predictors of Conflict Likelihood for Machine Learning Models: A Literature Review. ISPRS International Journal of Geo-Information. 2023; 12(8):322. https://doi.org/10.3390/ijgi12080322
Chicago/Turabian StyleObukhov, Timur, and Maria A. Brovelli. 2023. "Identifying Conditioning Factors and Predictors of Conflict Likelihood for Machine Learning Models: A Literature Review" ISPRS International Journal of Geo-Information 12, no. 8: 322. https://doi.org/10.3390/ijgi12080322
APA StyleObukhov, T., & Brovelli, M. A. (2023). Identifying Conditioning Factors and Predictors of Conflict Likelihood for Machine Learning Models: A Literature Review. ISPRS International Journal of Geo-Information, 12(8), 322. https://doi.org/10.3390/ijgi12080322