Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series
Abstract
:1. Introduction
2. Methods
2.1. General Methodology
- serves as the encoder, responsible for transforming the input data X into a lower-dimensional latent representation (). It usually consists of a stack of operation layers, convolutional or fully connected, interlaced with non-linear activation functions.
- serves as the decoder, charged with reconstructing the original input using X’s latent representation created by e. In the same fashion as the encoder, it is also non-linear through operation and activation layers combined.
- is the reconstructed version of input X.
- , and are the respective weight parameters of the encoder and decoder.
- We use a given reference period where the AOI is undisturbed. An autoencoder neural network is trained on the SAR time series of the area acquired during this period. They then encapsulate the expected temporal signature of the undisturbed forested site.
- We apply the trained model to the SAR time series of the test period to extract anomalies and deviations from the previously introduced expected temporal signature.
2.2. Detailed Autoencoders Architectures
2.2.1. Fully Temporal Autoencoder (FTAE)
2.2.2. Coupled Spatiotemporal Autoencoder (CSTAE)
2.2.3. Decoupled Spatiotemporal Autoencoder (DSTAE)
3. Experimental Settings
3.1. Study Case
3.2. Evaluation Scheme
- Firstly, to validate the unsupervised approach to the problem, we perform an empirical performance comparison between our methods and classical supervised approaches to position ourselves.
- Secondly, we aim to compare the various proposed philosophies regarding encoding temporal information from SAR multitemporal images and whether adding spatial knowledge is relevant.
- Lastly, we study the impact of the key of the functioning of this method: the dimension of the bottlenecking layer. We aim to explore the impact various dimensions have on the overall performance and tradeoffs that may appear.
- The accuracy, which provides an oversight of the correctness of the predictions but may also be sensible to class imbalance.
- The precision, which assesses the quality of positive predictions, measures how often a positive prediction is labeled positive.
- The recall, which measures the number of retrieved positives.
- And finally, the F1-Score, which combines the recall and precision scores.
3.3. Hyperparameter Settings
3.3.1. Training Parameters and Setup
3.3.2. Impact of the Embedding Dimension
4. Results
4.1. Quantitative Analysis
- Random Forest Classifier, parameterized with 100 trees.
- Logistic Regression, using an L2 penalty term.
- Quadratically Smoothed Support Vector Machine, with set to 2.
- One-Dimensional Convolutional Neural Network, re-using the temporal encoder architecture introduced in Figure 3a.
4.2. Qualitative Analysis
4.3. Runtime Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area Of Interest |
AE | AutoEncoder |
CSTAE | Coupled SpatioTemporal Autoencoder |
DCSTAE | DeCoupled SpatioTemporal Autoencoder |
ELU | Exponential Linear Unit |
ERS | European Remote Sensing |
FTAE | Fully Temporal Autoencoder |
MSE | Mean Squared Error |
ROC | Receiver Operating Characteristic |
SAR | Synthetic Aperture Radar |
References
- Attema, E. The Active Microwave Instrument on-board the ERS-1 satellite. Proc. IEEE 1991, 79, 791–799. [Google Scholar] [CrossRef]
- Rignot, E.; van Zyl, J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Laboratory, J.P. Monitoring Of Environmental Conditions Inthe Alaskan Forests Using ERS-1 SAR Data. In Proceedings of the IGARSS ’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; Volume 1, pp. 530–532. [Google Scholar] [CrossRef]
- Yamagata, Y.; Yasuoka, Y. Classification of wetland vegetation by texture analysis methods using ERS-1 and JERS-1 images. In Proceedings of the IGARSS ’93—IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; Volume 4, pp. 1614–1616. [Google Scholar] [CrossRef]
- Louet, J.; Bruzzi, S. ENVISAT mission and system. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June 1999–2 July 1999; Volume 3, pp. 1680–1682. [Google Scholar] [CrossRef]
- Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Kyrölä, E.; Fussen, D.; Hauchecorne, A.; Dalaudier, F.; Sofieva, V.; Tamminen, J.; Vanhellemont, F.; Fanton d’Andon, O.; Barrot, G.; et al. Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys. 2010, 10, 12091–12148. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11. [Google Scholar]
- Kasischke, E.S.; Bourgeau-Chavez, L.L. Monitoring South Florida wetlands using ERS-1 SAR imagery. Photogramm. Eng. Remote Sens. 1997, 63, 281–291. [Google Scholar]
- Schlaffer, S.; Chini, M.; Dettmering, D.; Wagner, W. Mapping wetlands in Zambia using seasonal backscatter signatures derived from ENVISAT ASAR time series. Remote Sens. 2016, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Skriver, H. Crop classification by multitemporal C-and L-band single-and dual-polarization and fully polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2138–2149. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Alebele, Y.; Wang, W.; Yu, W.; Zhang, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Estimation of crop yield from combined optical and SAR imagery using Gaussian kernel regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10520–10534. [Google Scholar] [CrossRef]
- Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.; Han, H.; Kong, J.; Shin, R. Retrieval of forest biomass from SAR data. Int. J. Remote Sens. 1994, 15, 2777–2796. [Google Scholar] [CrossRef]
- Grover, K.; Quegan, S.; da Costa Freitas, C. Quantitative estimation of tropical forest cover by SAR. IEEE Trans. Geosci. Remote Sens. 1999, 37, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Dostálová, A.; Wagner, W.; Milenković, M.; Hollaus, M. Annual seasonality in Sentinel-1 signal for forest mapping and forest type classification. Int. J. Remote Sens. 2018, 39, 7738–7760. [Google Scholar] [CrossRef]
- Pulliainen, J.; Engdahl, M.; Hallikainen, A. Estimation of boreal forest biomass from multi-temporal INSAR data by inverting an empirical backscattering-coherence model. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1786–1788. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ. 2002, 81, 19–35. [Google Scholar] [CrossRef]
- Pulella, A.; Aragão Santos, R.; Sica, F.; Posovszky, P.; Rizzoli, P. Multi-temporal sentinel-1 backscatter and coherence for rainforest mapping. Remote Sens. 2020, 12, 847. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, R.; Zhong, L.; Meng, R.; Huang, C.; Zeng, X.; Wang, M.; Li, Y.; Wang, Z. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens. Environ. 2022, 269, 112822. [Google Scholar] [CrossRef]
- Rambour, C.; Audebert, N.; Koeniguer, E.; Le Saux, B.; Crucianu, M.; Datcu, M. Flood detection in time series of optical and SAR images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2020, 1343–1346. [Google Scholar] [CrossRef]
- Yadav, R.; Nascetti, A.; Azizpour, H.; Ban, Y. Unsupervised Flood Detection on SAR Time Series. arXiv 2022, arXiv:2212.03675. [Google Scholar]
- Di Martino, T.; Guinvarc’h, R.; Thirion-Lefevre, L.; Koeniguer, E.C. Beets or cotton? Blind extraction of fine agricultural classes using a convolutional autoencoder applied to temporal SAR signatures. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Mouret, F.; Albughdadi, M.; Duthoit, S.; Kouamé, D.; Rieu, G.; Tourneret, J.Y. Outlier detection at the parcel-level in wheat and rapeseed crops using multispectral and SAR time series. Remote Sens. 2021, 13, 956. [Google Scholar] [CrossRef]
- Marszalek, M.L.; Le Saux, B.; Mathieu, P.P.; Nowakowski, A.; Springer, D. Self-supervised learning—A way to minimize time and effort for precision agriculture? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 1327–1333. [Google Scholar] [CrossRef]
- Luca, G.D.; Silva, J.M.; Modica, G. A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems. GISci. Remote Sens. 2021, 58, 516–541. [Google Scholar] [CrossRef]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE Geosci. Remote Sens. Mag. 2016, 4, 41–57. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M. Nonlinear principal component analysis using autoassociative neural networks. Aiche J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.; Perronnin, F. Generalized max pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2473–2480. [Google Scholar]
- Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Di Martino, T.; Guinvarc’h, R.; Thirion-Lefevre, L.; Colin, E. FARMSAR: Fixing AgRicultural Mislabels Using Sentinel-1 Time Series and AutoencodeRs. Remote Sens. 2023, 15, 35. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.; Raymond, D.; Gartrell, M.; Decker, V.; Little, J. Generating annual estimates of forest fire disturbance in Canada: The National Burned Area Composite. Int. J. Wildland Fire 2020, 29, 878–891. [Google Scholar] [CrossRef]
- Gama, J.; Žliobaitundefined, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A Survey on Concept Drift Adaptation. ACM Comput. Surv. 2014, 46, 1–37. [Google Scholar] [CrossRef]
Model | Learning Rate | Batch Size | Optimizer | Epoch Counts |
---|---|---|---|---|
FTAE | 1024 | Adam | 20 | |
CSTAE | 4096 | Adam | 20 | |
DSTAE (Spatial AE) | 64 | Adam | 20 | |
DSTAE (1D-CAE) | 1024 | Adam | 20 |
Accuracy | Precision | Recall | F1-Score | AUC Score | ||
---|---|---|---|---|---|---|
FTAE | 1D Emb. | |||||
9D Emb. | ||||||
20D Emb. | ||||||
CSTAE | 40D Emb. | |||||
100D Emb. | ||||||
200D Emb. | ||||||
DSTAE | 4D Emb. | |||||
40D Emb. | ||||||
80D Emb. | ||||||
Random Forest | ||||||
Logistic Regression | ||||||
SVM | ||||||
1D-CNN |
Training (in min) | Inference (in min) | Total (in min) | ||
---|---|---|---|---|
FTAE | 1D Emb. | 26 | 4 | 30 |
9D Emb. | 26 | 4 | 30 | |
20D Emb. | 26 | 4 | 30 | |
CSTAE | 40D Emb. | 332 | 15 | 347 |
100D Emb. | 349 | 17 | 366 | |
200D Emb. | 360 | 17 | 377 | |
DSTAE | 4D Emb. | 36 | 4 | 40 |
40D Emb. | 36 | 4 | 40 | |
80D Emb. | 36 | 4 | 40 | |
Random Forest | 22 | 1 | 23 | |
Logistic Regression | 27 | <1 | 27 | |
SVM | 3 | 1 | 4 | |
1D-CNN | 175 | 2 | 177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, T.; Le Saux, B.; Guinvarc’h, R.; Thirion-Lefevre, L.; Colin, E. Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series. ISPRS Int. J. Geo-Inf. 2023, 12, 332. https://doi.org/10.3390/ijgi12080332
Di Martino T, Le Saux B, Guinvarc’h R, Thirion-Lefevre L, Colin E. Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series. ISPRS International Journal of Geo-Information. 2023; 12(8):332. https://doi.org/10.3390/ijgi12080332
Chicago/Turabian StyleDi Martino, Thomas, Bertrand Le Saux, Régis Guinvarc’h, Laetitia Thirion-Lefevre, and Elise Colin. 2023. "Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series" ISPRS International Journal of Geo-Information 12, no. 8: 332. https://doi.org/10.3390/ijgi12080332
APA StyleDi Martino, T., Le Saux, B., Guinvarc’h, R., Thirion-Lefevre, L., & Colin, E. (2023). Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series. ISPRS International Journal of Geo-Information, 12(8), 332. https://doi.org/10.3390/ijgi12080332