Assessment of Fine-Scale Urban Heat Health Risk and Its Potential Driving Factors Based on Local Climate Zones in Shenzhen, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. LST Retrieval
2.3.2. MTHI Calculation
2.3.3. HHR Assessment Framework
2.3.4. Grid and Statistical Analysis
3. Results
3.1. LCZ and Land Cover Spatial Patterns
3.2. Spatial Patterns of Different Risk Indicators
3.2.1. LST and MTHI Spatial Patterns
3.2.2. Exposure and Vulnerability Spatial Patterns
3.2.3. Spatial Pattern of Heat Health Risk
3.3. Effects of LCZs and Land Covers on HHR
3.3.1. Relationships between LCZ, Land Cover, and Risk Indicators
3.3.2. Impacts of Land Cover on Risk Indicators
4. Discussion
4.1. Spatial Pattern of HHR and Its Indicators
4.2. Relationships between LCZ and HHR
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. [Google Scholar]
- Coates, L.; van Leeuwen, J.; Browning, S.; Gissing, A.; Bratchell, J.; Avci, A. Heatwave fatalities in Australia, 2001–2018: An analysis of coronial records. Int. J. Disaster Risk Reduct. 2022, 67, 102671. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Massey, N.; van Oldenborgh, G.J.; Jones, R.G.; Allen, M.R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 2012, 39, L04702. [Google Scholar] [CrossRef]
- Ravishankar, S.; Howarth, C. Exploring heat risk adaptation governance: A case study of the UK. Environ. Sci. Policy 2024, 157, 103761. [Google Scholar] [CrossRef]
- Giannaros, C.; Agathangelidis, I.; Papavasileiou, G.; Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Giannaros, T.M.; Cartalis, C.; Matzarakis, A. The extreme heat wave of July–August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework. Sci. Total Environ. 2023, 857, 159300. [Google Scholar] [CrossRef]
- Levermore, G.; Parkinson, J.; Lee, K.; Laycock, P.; Lindley, S. The increasing trend of the urban heat island intensity. Urban Clim. 2018, 24, 360–368. [Google Scholar] [CrossRef]
- Li, Z.W.; Fan, Y.G.; Su, H.; Xu, Z.W.; Ho, H.C.; Zheng, H.; Tao, J.W.; Zhang, Y.Q.; Hu, K.J.; Hossain, M.Z.; et al. The 2022 Summer record-breaking heatwave and health information-seeking behaviours: An infodemiology study in Mainland China. BMJ Glob. Health 2023, 8, e013231. [Google Scholar] [CrossRef]
- Si, M.; Li, Z.-L.; Nerry, F.; Tang, B.-H.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. Remote Sens. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Liao, W.; Sun, T.; Katul, G.; Bou-Zeid, E.; Maronga, B. Persistent urban heat. Sci. Adv. 2023, 10, eadj7398. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Li, X.; Yu, C. The Construction and Validation of the Heat Vulnerability Index, a Review. Int. J. Environ. Res. Public Health 2015, 12, 7220–7234. [Google Scholar] [CrossRef] [PubMed]
- Leroyer, S.; Bélair, S.; Spacek, L.; Gultepe, I. Modelling of radiation-based thermal stress indicators for urban numerical weather prediction. Urban Clim. 2018, 25, 64–81. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.-T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef]
- Arbuthnott, K.G.; Hajat, S. The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environ. Health 2017, 16, 119. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Y.; Zhang, M.; Su, L.; Wang, Y.; Zhu, S. Spatially explicit assessment of the heat-related health risk in the Yangtze River Delta, China, using multisource remote sensing and socioeconomic data. Sustain. Cities Soc. 2024, 104, 105300. [Google Scholar] [CrossRef]
- Crichton, D. The risk triangle. In Natural Disaster Management; Tudor Rose: London, UK, 1999; Volume 102, pp. 102–103. [Google Scholar]
- Pramanik, S.; Punia, M.; Yu, H.; Chakraborty, S. Is dense or sprawl growth more prone to heat-related health risks? Spatial regression-based study in Delhi, India. Sustain. Cities Soc. 2022, 81, 103808. [Google Scholar] [CrossRef]
- Ma, L.; Huang, G.; Johnson, B.A.; Chen, Z.; Li, M.; Yan, Z.; Zhan, W.; Lu, H.; He, W.; Lian, D. Investigating urban heat-related health risks based on local climate zones: A case study of Changzhou in China. Sustain. Cities Soc. 2023, 91, 104402. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework. Landsc. Urban Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- Jedlovec, G.; Crane, D.; Quattrochi, D. Urban heat wave hazard and risk assessment. Results Phys. 2017, 7, 4294–4295. [Google Scholar] [CrossRef]
- Yang, C.; Kui, T.; Zhou, W.; Fan, J.; Pan, L.; Wu, W.; Liu, M. Impact of refined 2D/3D urban morphology on hourly air temperature across different spatial scales in a snow climate city. Urban Clim. 2023, 47, 101404. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Bahi, H.; Mastouri, H.; Radoine, H. Review of methods for retrieving urban heat islands. Mater. Today Proc. 2020, 27, 3004–3009. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Pradeep Kumar, B.; Anusha, B.N.; Raghu Babu, K.; Padma Sree, P. Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. J. Clean. Prod. 2023, 407, 137175. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, M.; Zhou, Y.; Zhu, L.; Tian, H. The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat. Ecol. Indic. 2020, 110, 105798. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, M.; Chen, B.; Su, W.; Zhao, X.; Wu, R. Key areas and measures to mitigate heat exposure risk in highly urbanized city: A case study of Beijing, China. Urban Clim. 2024, 53, 101748. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.C.; Huang, X.; Tao, Y.; Dong, C.; Das, S.; Liu, Y. Health-integrated heat risk assessment in Australian cities. Environ. Impact Assess. Rev. 2023, 102, 107176. [Google Scholar] [CrossRef]
- Krstic, N.; Yuchi, W.; Ho, H.C.; Walker, B.B.; Knudby, A.J.; Henderson, S.B. The Heat Exposure Integrated Deprivation Index (HEIDI): A data-driven approach to quantifying neighborhood risk during extreme hot weather. Environ. Int. 2017, 109, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Rui, J.; Yoshino, H.; Zhang, J.; Chen, X.; Liu, J. Effects of thermal environment on elderly in urban and rural houses during heating season in a severe cold region of China. Energy Build. 2019, 198, 61–74. [Google Scholar] [CrossRef]
- Xiong, J.; Ma, T.; Lian, Z.; de Dear, R. Perceptual and physiological responses of elderly subjects to moderate temperatures. Build. Environ. 2019, 156, 117–122. [Google Scholar] [CrossRef]
- Taczanowska, K.; Tansil, D.; Wilfer, J.; Jiricka-Pürrer, A. The impact of age on people’s use and perception of urban green spaces and their effect on personal health and wellbeing during the COVID-19 pandemic—A case study of the metropolitan area of Vienna, Austria. Cities 2024, 147, 104798. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Khalili, S.; Halios, C.H.; Sahani, J.; Aghamohammadi, N.; Andrade, M.d.F.; Athanassiadou, M.; Bhui, K.; Calvillo, N.; et al. Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs. Innov. 2024, 5, 100588. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Zanocco, C. Assessing public attitudes towards urban green spaces as a heat adaptation strategy: Insights from Germany. Landsc. Urban Plan. 2024, 245, 105013. [Google Scholar] [CrossRef]
- Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring thermal comfort of urban buildings based on local climate zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Qavidel Fard, Z.; Zomorodian, Z.S.; Korsavi, S.S. Application of machine learning in thermal comfort studies: A review of methods, performance and challenges. Energy Build. 2022, 256, 111771. [Google Scholar] [CrossRef]
- Zha, F.; Lu, L.; Wang, R.; Zhang, S.; Cao, S.; Baqa, M.F.; Li, Q.; Chen, F. Understanding fine-scale heat health risks and the role of green infrastructure based on remote sensing and socioeconomic data in the megacity of Beijing, China. Ecol. Indic. 2024, 160, 111847. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Xiang, Y.; Yuan, C.; Cen, Q.; Huang, C.; Wu, C.; Teng, M.; Zhou, Z. Heat risk assessment and response to green infrastructure based on local climate zones. Build. Environ. 2024, 248, 111040. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Tan, X.; Zhao, L.; Cai, Y.; Li, L. Assessing the urban heat island effect of different local climate zones in Guangzhou, China. Build. Environ. 2023, 244, 110770. [Google Scholar] [CrossRef]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M. WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, W.; Sun, J.; Xu, X.; Wang, R.; Lu, Y.; Zhang, S.; Zhou, W. Assessing the effects of 2D/3D urban morphology on the 3D urban thermal environment by using multi-source remote sensing data and UAV measurements: A case study of the snow-climate city of Changchun, China. J. Clean. Prod. 2021, 321, 128956. [Google Scholar] [CrossRef]
- Yang, C.; He, X.; Wang, R.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. The Effect of Urban Green Spaces on the Urban Thermal Environment and Its Seasonal Variations. Forests 2017, 8, 153. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Sun, D.; Xue, B.; Sun, W.; Ren, J.; Yu, H.; Xiao, X.; Xia, J.; Li, X. Shared insights for heat health risk adaptation in metropolitan areas of developing countries. iScience 2024, 27, 109728. [Google Scholar] [CrossRef]
- Paranunzio, R.; Dwyer, E.; Fitton, J.M.; Alexander, P.J.; O’Dwyer, B. Assessing current and future heat risk in Dublin city, Ireland. Urban Clim. 2021, 40, 100983. [Google Scholar] [CrossRef]
- Hu, K.; Yang, X.; Zhong, J.; Fei, F.; Qi, J. Spatially Explicit Mapping of Heat Health Risk Utilizing Environmental and Socioeconomic Data. Environ. Sci. Technol. 2017, 51, 1498–1507. [Google Scholar] [CrossRef]
- Zhu, W.; Yuan, C. Urban heat health risk assessment in Singapore to support resilient urban design—By integrating urban heat and the distribution of the elderly population. Cities 2023, 132, 104103. [Google Scholar] [CrossRef]
- Muccione, V.; Biesbroek, R.; Harper, S.; Haasnoot, M. Towards a more integrated research framework for heat-related health risks and adaptation. Lancet Planet. Health 2024, 8, e61–e67. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Li, D.; Xu, Y.; Zhang, Y.; Li, X.; Muhlenforth, L.; Xue, S.; Brown, R. Heat vulnerability and street-level outdoor thermal comfort in the city of Houston: Application of google street view image derived SVFs. Urban Clim. 2023, 51, 101617. [Google Scholar] [CrossRef]
Theme | Source | Period | Resolution | Application |
---|---|---|---|---|
Landsat 8 | https://www.gscloud.cn/home (accessed on 15 May 2023) | 2020, 2022 | 30 m | Hazard assessment |
LCZ | https://www.wudapt.org (accessed on 8 November 2023) | 2020 | 100 m | Impact on HHR |
Land cover | https://zenodo.org/records/8214871 (accessed on 10 March 2024) | 2021 | 1 m | Impact on HHR and vulnerability calculation |
Population density (>65 or <14) | https://hub.worldpop.org/ (accessed on 12 March 2024) | 2020 | 100 m | Exposure and vulnerability calculation |
Land Cover | LST | Hazard | Exposure | Vulnerability | HHR |
---|---|---|---|---|---|
Road | 0.652 ** | 0.408 ** | 0.486 ** | 0.424 ** | 0.775 ** |
Tree cover | −0.801 ** | −0.495 ** | −0.412 ** | −0.385 ** | −0.693 ** |
Grassland | 0.076 ** | 0.042 | 0.069 * | 0.070 ** | 0.312 ** |
Cropland | −0.044 | 0.075 ** | −0.240 ** | −0.210 ** | −0.259 |
Building | 0.792 ** | 0.395 ** | 0.475 ** | 0.450 ** | 0.805 ** |
Barren | 0.178 ** | 0.120 ** | −0.126 ** | −0.125 ** | −0.033 |
Water | −0.207 ** | 0.024 | −0.125 ** | −0.117 ** | −0.124 ** |
Impervious area | 0.820 ** | 0.428 ** | 0.513 ** | 0.478 ** | 0.848 ** |
LCZ Type | LST | Hazard | Exposure | Vulnerability | HHR |
---|---|---|---|---|---|
LCZ1 | 0.498 ** | 0.205 ** | 0.515 ** | 0.509 ** | 0.582 ** |
LCZ 2 | 0.469 ** | 0.172 ** | 0.528 ** | 0.499 ** | 0.546 ** |
LCZ 3 | 0.672 ** | 0.337 ** | 0.665 ** | 0.647 ** | 0.725 ** |
LCZ 4 | 0.244 ** | 0.247 ** | 0.497 ** | 0.499 ** | 0.508 ** |
LCZ 5 | 0.232 ** | 0.250 ** | 0.485 ** | 0.494 ** | 0.482 ** |
LCZ 6 | −0.042 | 0.167 ** | 0.173 ** | 0.184 ** | 0.138 ** |
LCZ 8 | 0.348 ** | 0.238 ** | 0.230 ** | 0.225 ** | 0.310 ** |
LCZ 10 | 0.757 ** | 0.453 ** | 0.573 ** | 0.553 ** | 0.686 ** |
LCZ A | −0.777 ** | −0.459 ** | −0.399 ** | −0.385 ** | −0.624 ** |
LCZ B | −0.490 ** | −0.120 ** | −0.323 ** | −0.314 ** | −0.428 ** |
LCZ D | −0.002 | 0.086 ** | −0.127 ** | −0.136 ** | −0.113 ** |
LCZ E | 0.465 ** | 0.275 ** | 0.112 ** | 0.110 ** | 0.265 ** |
LCZ G | 0.204 ** | 0.080 ** | −0.095 ** | −0.099 ** | −0.015 |
LCZ F | −0.274 ** | −0.073 ** | −0.220 ** | −0.220 ** | −0.257 ** |
LST | MTHI | Pop | HHR | |||||
---|---|---|---|---|---|---|---|---|
Land Cover | β | Sig. | β | Sig. | β | Sig. | β | Sig. |
Road | 0.081 | 0.221 | 0.00 | |||||
Tree cover | −0.132 | 0.00 | −0.349 | 0.00 | ||||
Cropland | 0.107 | 0.00 | −0.071 | 0.012 | ||||
Building | 0.874 | 0.791 | 0.00 | |||||
Barren | 0.219 | 0.00 | −0.065 | 0.019 | ||||
Water | ||||||||
Impervious | 0.665 | 0.00 | 0.751 | 0.00 | 0.885 | 0.00 | ||
Constant | 36.70 | 69.38 | 1813.870 | 7.903 | ||||
R | 0.862 | 0.521 | 0.550 | 0.885 | ||||
Adjusted R2 | 0.742 | 0.269 | 0.301 | 0.782 |
LCZ | LST | MTHI | Pop | HHR | ||||
---|---|---|---|---|---|---|---|---|
β | Sig. | β | Sig. | β | Sig. | β | Sig. | |
LCZ1 | −0.133 | 0.000 | 0.17 | 0.000 | 0.1000 | 0.000 | ||
LCZ2 | 0.092 | 0.000 | −0.056 | 0.026 | 0.051 | 0.042 | 0.162 | 0.000 |
LCZ3 | 0.252 | 0.000 | 0.284 | 0.000 | 0.382 | 0.000 | ||
LCZ4 | 0.087 | 0.000 | 0.121 | 0.000 | 0.252 | 0.000 | 0.312 | 0.000 |
LCZ5 | 0.074 | 0.004 | 0.149 | 0.000 | ||||
LCZ6 | 0.087 | 0.000 | 0.100 | 0.001 | 0.218 | 0.000 | ||
LCZ8 | 0.103 | 0.000 | 0.092 | 0.000 | 0.077 | 0.000 | ||
LCZ10 | 0.365 | 0.000 | 0.234 | 0.000 | 0.114 | 0.000 | 0.396 | 0.000 |
LCZA | −0.368 | 0.000 | −0.411 | 0.000 | ||||
LCZB | 0.078 | 0.003 | ||||||
LCZD | 0.051 | 0.000 | −0.079 | 0.001 | −0.034 | 0.021 | ||
LCZE | 0.289 | 0.000 | 0.17 | 0.000 | 0.161 | 0.000 | ||
LCZF | 0.125 | 0.000 | −0.063 | 0.012 | −0.053 | 0.025 | ||
LCZG | −0.131 | 0.000 | −0.049 | 0.042 | ||||
Constant | 336.626 | 755.634 | 1.501 | 32.506 | ||||
R | 0.931 | 0.625 | 0.570 | 0.859 | ||||
Adjusted R2 | 0.866 | 0.385 | 0.320 | 0.736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R.; Yang, C.; Xu, Z.; Luo, T.; Yang, L. Assessment of Fine-Scale Urban Heat Health Risk and Its Potential Driving Factors Based on Local Climate Zones in Shenzhen, China. ISPRS Int. J. Geo-Inf. 2024, 13, 367. https://doi.org/10.3390/ijgi13100367
Su R, Yang C, Xu Z, Luo T, Yang L. Assessment of Fine-Scale Urban Heat Health Risk and Its Potential Driving Factors Based on Local Climate Zones in Shenzhen, China. ISPRS International Journal of Geo-Information. 2024; 13(10):367. https://doi.org/10.3390/ijgi13100367
Chicago/Turabian StyleSu, Riguga, Chaobin Yang, Zhibo Xu, Tingwen Luo, and Lilong Yang. 2024. "Assessment of Fine-Scale Urban Heat Health Risk and Its Potential Driving Factors Based on Local Climate Zones in Shenzhen, China" ISPRS International Journal of Geo-Information 13, no. 10: 367. https://doi.org/10.3390/ijgi13100367
APA StyleSu, R., Yang, C., Xu, Z., Luo, T., & Yang, L. (2024). Assessment of Fine-Scale Urban Heat Health Risk and Its Potential Driving Factors Based on Local Climate Zones in Shenzhen, China. ISPRS International Journal of Geo-Information, 13(10), 367. https://doi.org/10.3390/ijgi13100367