Spatiotemporal Dynamics of Water Quality: Long-Term Assessment Using Water Quality Indices and GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
2.3. Evaluation of Water Quality According to Indices
2.4. Assessing Changes in Water Quality in Spatial and Temporal Dimensions
2.5. GIS Methods and Statistical Analysis
3. Results and Discussion
3.1. Spatial and Temporal Distribution of Applied Indices
3.2. Evaluation of Water Quality Changes
- Positive changes in water quality;
- Negative changes in water quality;
- Unchanged water quality.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kerényi, A.; McIntosh, R.W. Sustainable Development in Changing Complex Earth Systems; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-21644-3. [Google Scholar]
- Farsang, A.; Fejes, I.; Tóth, T.M. Integrated Evaluation of Urban Groundwater Hydrogeochemistry in Context of Fractal Behaviour of Groundwater Level Fluctuations. Hydrol. Sci. J. 2017, 62, 1216–1229. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A Global Focus on the ‘Local Resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- McCance, W.; Jones, O.A.H.; Edwards, M.; Surapaneni, A.; Chadalavada, S.; Currell, M. Contaminants of Emerging Concern as Novel Groundwater Tracers for Delineating Wastewater Impacts in Urban and Peri-Urban Areas. Water Res. 2018, 146, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Song, J.; Han, D.; Liu, R.; Liu, C.; Hou, Q. Assessing Natural Background Levels of Geogenic Contaminants in Groundwater of an Urbanized Delta through Removal of Groundwaters Impacted by Anthropogenic Inputs: New Insights into Driving Factors. Sci. Total Environ. 2023, 857, 159527. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, P.; Xia, J.; Zhang, Y.; Huang, H.; Zhu, Y. Effects of Precipitation on Vegetation and Surface Water in the Yellow River Basin during 2000–2021. J. Geogr. Sci. 2024, 34, 633–653. [Google Scholar] [CrossRef]
- Li, H.; Ping, J.; Leng, W.; Mei, X.; Zhang, M.; Liu, J. Attribution Analysis of Groundwater Level Fluctuation in the Xinxiang Section of the Lower Yellow River’s Suspended River after the Construction of the Xiaolangdi Reservoir. J. Geogr. Sci. 2024, 34, 1348–1370. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater Chemistry, Distribution and Potential Health Risk Appraisal of Nitrate Enriched Groundwater: A Case Study from the Semi-Urban Region of South India. Ecotoxicol. Environ. Saf. 2021, 207, 111277. [Google Scholar] [CrossRef]
- Wang, S.; Hu, C.; Cheng, F.; Lu, X. Performance of a Combined Low-Consumption Biotreatment System with Cost-Effective Ecological Treatment Technology for Rural Domestic Sewage Treatment. J. Water Process Eng. 2023, 51, 103380. [Google Scholar] [CrossRef]
- Vasylkivskyi, I.; Ishchenko, V.; Sakalova, H.; Ullianodt, G.C.H.; Polyvanyi, S. Municipal Wastewater Management in Ukraine. Desalination Water Treat. 2023, 288, 159–164. [Google Scholar] [CrossRef]
- Sindane, J.T.; Modley, L.-A.S. The Impacts of Poor Water Quality on the Residential Areas of Emfuleni Local Municipality: A Case Study of Perceptions in the Rietspruit River Catchment in South Africa. Urban Water J. 2023, 20, 1568–1578. [Google Scholar] [CrossRef]
- Ghosh, D.; Chaudhary, S.; Sarkar, S.; Singh, P. Chapter 2—Water Pollution in Rural Areas: Primary Sources, Associated Health Issues, and Remedies. In Water Resources Management for Rural Development; Madhav, S., Srivastav, A.L., Chibueze Izah, S., van Hullebusch, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 15–28. ISBN 978-0-443-18778-0. [Google Scholar]
- Bugajski, P.M.; Kurek, K.; Młyński, D.; Operacz, A. Designed and Real Hydraulic Load of Household Wastewater Treatment Plants. J. Water Land Dev. 2019, 40, 155–160. [Google Scholar] [CrossRef]
- Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R.N.; Romanholo Ferreira, L.F.; Dutta, V. Wastewater Generation and Treatment by Various Eco-Friendly Technologies: Possible Health Hazards and Further Reuse for Environmental Safety. Chemosphere 2023, 313, 137547. [Google Scholar] [CrossRef] [PubMed]
- Aromolaran, O.K.; Aromolaran, O.; Faleye, E.T.; Faerber, H. Environmental Impacts of an Unlined Municipal Solid Waste Landfill on Groundwater and Surface Water Quality in Ibadan, Nigeria. Environ. Geochem. Health 2023, 45, 3585–3616. [Google Scholar] [CrossRef] [PubMed]
- Zeydalinejad, N.; Javadi, A.A.; Webber, J.L. Global Perspectives on Groundwater Infiltration to Sewer Networks: A Threat to Urban Sustainability. Water Res. 2024, 262, 122098. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Sahu, N.; Yamashiki, Y. Spatiotemporal Evaluation of Water Quality Incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef]
- Sarker, A.; Shin, W.S.; Masud, M.A.A.; Nandi, R.; Islam, T. A Critical Review of Sustainable Pesticide Remediation in Contaminated Sites: Research Challenges and Mechanistic Insights. Environ. Pollut. 2024, 341, 122940. [Google Scholar] [CrossRef]
- Singh, G.; Singh, J.; Wani, O.A.; Egbueri, J.C.; Agbasi, J.C. Assessment of Groundwater Suitability for Sustainable Irrigation: A Comprehensive Study Using Indexical, Statistical, and Machine Learning Approaches. Groundw. Sustain. Dev. 2024, 24, 101059. [Google Scholar] [CrossRef]
- Boualem, B.; Egbueri, J.C. Graphical, Statistical and Index-Based Techniques Integrated for Identifying the Hydrochemical Fingerprints and Groundwater Quality of In Salah, Algerian Sahara. Environ. Geochem. Health 2024, 46, 158. [Google Scholar] [CrossRef]
- Agbasi, J.C.; Egbueri, J.C. Assessment of PTEs in Water Resources by Integrating HHRISK Code, Water Quality Indices, Multivariate Statistics, and ANNs. Geocarto Int. 2022, 37, 10407–10433. [Google Scholar] [CrossRef]
- Yassin, M.A.; Abba, S.I.; Shah, S.M.H.; Usman, A.G.; Egbueri, J.C.; Agbasi, J.C.; Khogali, A.; Baalousha, H.M.; Aljundi, I.H.; Sammen, S.S.; et al. Toward Decontamination in Coastal Regions: Groundwater Quality, Fluoride, Nitrate, and Human Health Risk Assessments within Multi-Aquifer Al-Hassa, Saudi Arabia. Water 2024, 16, 1401. [Google Scholar] [CrossRef]
- Saravani, M.J.; Saadatpour, M.; Shahvaran, A.R. A Web GIS Based Integrated Water Resources Assessment Tool for Javeh Reservoir. Expert Syst. Appl. 2024, 252, 124198. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Vahidi, H.; Hassanabad, M.G.; Shafiei, M. A Spatial Decision Support System Based on a Hybrid AHP and TOPSIS Method for Fire Station Site Selection. J. Geovis. Spat. Anal. 2022, 6, 30. [Google Scholar] [CrossRef]
- Ganoulis, J. Risk Analysis of Water Pollution, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-3-527-32173-5. [Google Scholar]
- Gonen, A.; Zeitouni, N. Risk Management of Water Resources in a Changing Climate. Available online: https://www.semanticscholar.org/paper/Risk-Management-of-Water-Resources-in-a-Changing-Gonen-Zeitouni/d3aeb0cb64921e7d0b7bcd3c36af6142cd999ba9 (accessed on 28 December 2023).
- Hruby, F.; Ressl, R.; de la Borbolla del Valle, G. Geovisualization with Immersive Virtual Environments in Theory and Practice. Int. J. Digit. Earth 2019, 12, 123–136. [Google Scholar] [CrossRef]
- Yao, S.; Chen, C.; He, M.; Cui, Z.; Mo, K.; Pang, R.; Chen, Q. Land Use as an Important Indicator for Water Quality Prediction in a Region under Rapid Urbanization. Ecol. Indic. 2023, 146, 109768. [Google Scholar] [CrossRef]
- Ngubane, Z.; Bergion, V.; Dzwairo, B.; Stenström, T.A.; Sokolova, E. Multi-Criteria Decision Analysis Framework for Engaging Stakeholders in River Pollution Risk Management. Sci. Rep. 2024, 14, 7125. [Google Scholar] [CrossRef]
- Carstens, D.; Amer, R. Spatio-Temporal Analysis of Urban Changes and Surface Water Quality. J. Hydrol. 2019, 569, 720–734. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Kiss, E.; Szabó, G.; Mester, T. Possibilities for Assessment and Geovisualization of Spatial and Temporal Water Quality Data Using a WebGIS Application. ISPRS Int. J. Geo-Inf. 2022, 11, 108. [Google Scholar] [CrossRef]
- Alrowais, R.; Abdel daiem, M.M.; Li, R.; Maklad, M.A.; Helmi, A.M.; Nasef, B.M.; Said, N. Groundwater Quality Assessment for Drinking and Irrigation Purposes at Al-Jouf Area in KSA Using Artificial Neural Network, GIS, and Multivariate Statistical Techniques. Water 2023, 15, 2982. [Google Scholar] [CrossRef]
- Agrawal, S.; Gupta, R.D. Web GIS and Its Architecture: A Review. Arab. J. Geosci. 2017, 10, 518. [Google Scholar] [CrossRef]
- Criollo, R.; Velasco, V.; Nardi, A.; Manuel de Vries, L.; Riera, C.; Scheiber, L.; Jurado, A.; Brouyère, S.; Pujades, E.; Rossetto, R.; et al. AkvaGIS: An Open Source Tool for Water Quantity and Quality Management. Comput. Geosci. 2019, 127, 123–132. [Google Scholar] [CrossRef]
- Mester, T.; Balla, D.; Szabó, G. Assessment of Groundwater Quality Changes in the Rural Environment of the Hungarian Great Plain Based on Selected Water Quality Indicators. Water Air Soil Pollut. 2020, 231, 536. [Google Scholar] [CrossRef]
- Guasmi, I.; Hadji, F.; Yebdri, L. Quality Assessment of Reclaimed Water for Irrigation Purpose and Aquatic Life Protection in the Mekerra Sub-Watershed (NW Algeria). Model. Earth Syst. Environ. 2022, 8, 3399–3412. [Google Scholar] [CrossRef]
- Pham, T.L.; Tran, T.H.Y.; Tran, T.T.; Ngo, X.Q.; Nguyen, X.D. Assessment of Surface Water Quality in a Drinking Water Supply Reservoir in Vietnam: A Combination of Different Indicators. Rend. Fis. Acc. Lincei 2022, 33, 653–662. [Google Scholar] [CrossRef]
- HCSO Hungarian Central Statistical Office. Available online: https://www.ksh.hu/?lang=en (accessed on 29 August 2024).
- Michéli, E.; Fuchs, M.; Hegymegi, P.; Stefanovits, P. Classification of the Major Soils of Hungary and Their Correlation with the World Reference Base for Soil Resources (WRB). Agrokém. Talajt. 2006, 55, 19–28. [Google Scholar] [CrossRef]
- CORINE Land Cover 2012 (Vector/Raster 100 m), Europe, 6-Yearly. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc-2012 (accessed on 6 November 2024).
- Mester, T.; Szabó, G.; Kiss, E.; Balla, D. Long-Term Spatiotemporal Changes in Nitrate Contamination of Municipal Groundwater Resources after Sewerage Network Construction in the Hungarian Great Plain. Environ. Sci. Pollut. Res. 2024, 31, 61114–61137. [Google Scholar] [CrossRef]
- HS 448-18; Hungarian Standard Water Quality. Part 18: Drinking Water Analysis. Determination of Orthophosphate and Total Phosphorus Using Spectrophotometric Method. Hungarian Standards Institution: Budapest, Hungary, 2009.
- HS 1484-13; Hungarian Standard Water Quality. Part 12: Determination of Nitrate and Nitrite. Content by Spectrophotometric Method. Hungarian Standards Institution: Budapest, Hungary, 2009.
- HS ISO 7150-1; Hungarian Standard Water Quality. Determination of Ammonium. Part 1: Manual Spectrophotometric Method. Hungarian Standards Institution: Budapest, Hungary, 1992.
- Balla, D.; Kiss, E.; Zichar, M.; Mester, T. Evaluation of Groundwater Quality in the Rural Environment Using Geostatistical Analysis and WebGIS Methods in a Hungarian Settlement, Báránd. Environ. Sci. Pollut. Res. 2024, 31, 57177–57195. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index-Do We Dare. Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S. Water Quality Indices- Important Tools for Water Quality Assessment: A Review. Int. J. Adv. Chem. 2013, 1, 15–28. [Google Scholar]
- Machiwal, D.; Jha, M.K. Identifying Sources of Groundwater Contamination in a Hard-Rock Aquifer System Using Multivariate Statistical Analyses and GIS-Based Geostatistical Modeling Techniques. J. Hydrol. Reg. Stud. 2015, 4, 80–110. [Google Scholar] [CrossRef]
- Backman, B.; Bodiš, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a Groundwater Contamination Index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- Kuroda, K.; Fukushi, T. Groundwater Contamination in Urban Areas. In Groundwater Management in Asian Cities: Technology and Policy for Sustainability; Takizawa, S., Ed.; cSUR-UT Series: Library for Sustainable Urban Regeneration; Springer: Tokyo, Japan, 2008; pp. 125–149. ISBN 978-4-431-78399-2. [Google Scholar]
- Rapant, S.; Vrana, K.; Bodis, D. Geochemical atlas of Slovak Republic. P. 1. Bratislava, Groundwater, Geofond, 1995.
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Golden Software, LLC. Available online: www.goldensoftware.com (accessed on 13 October 2024).
- Batt, S.; Grealis, T.; Harmon, O.; Tomolonis, P. Learning Tableau: A Data Visualization Tool. J. Econ. Educ. 2020, 51, 317–328. [Google Scholar] [CrossRef]
- IBM SPSS IBM Corp. IBM SPSS Statistics for Windows, (Version 22.0) [Computer Software]; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1992; pp. 196–202. ISBN 978-1-4612-4380-9. [Google Scholar]
- Chen, X.; Chen, Y.; Shimizu, T.; Niu, J.; Nakagami, K.; Qian, X.; Jia, B.; Nakajima, J.; Han, J.; Li, J. Water Resources Management in the Urban Agglomeration of the Lake Biwa Region, Japan: An Ecosystem Services-Based Sustainability Assessment. Sci. Total Environ. 2017, 586, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Bhateria, R.; Jain, D. Water Quality Assessment of Lake Water: A Review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Gorde, S.P.; Jadhav, M.V. Assessment of Water Quality Parameters: A Review. Int. J. Eng. Res. Appl. 2013, 3, 2029–2035. [Google Scholar]
- Franz, H.S.; Pertille, J.; Kunst-Valentini, M.H.; dos Santos, G.B.; Pontes, G.S.; Guedes, H.A.S. Assessment of Shallow Groundwater Quality for Drinking Purposes: An Integrated Approach Based on the Water Quality Index and the Use of Multivariate Statistical Analyses, Southern Brazil. Environ. Earth Sci. 2022, 81, 452. [Google Scholar] [CrossRef]
Rank | WQI | Water Quality Status (WQS) | Cd | Cd Status |
---|---|---|---|---|
R1 (Rank 1) | 0–25 | Excellent water quality | 0 | Non contaminated |
R2 (Rank 2) | 26–50 | Good water quality | <1 | Low contamination |
R3(Rank 3) | 51–75 | Poor water quality | 3–1 | Medium contamination |
R4 (Rank 4) | 76–100 | Very poor water quality | 6–3 | High contamination |
R5 (Rank 5) | Above 100 | Unsuitable for any use | >6 | Very High contamination |
Status in the Following Year | |||||
---|---|---|---|---|---|
Status in the Baseline Year | R1 (Rank 1) | R2 (Rank 2) | R3 (Rank 3) | R4 (Rank 4) | R5 (Rank 5) |
R1 (Rank 1) | 0 | −1 | −2 | −3 | −4 |
R2 (Rank 2) | 1 | 0 | −1 | −2 | −3 |
R3 (Rank 3) | 2 | 1 | 0 | −1 | −2 |
R4 (Rank 4) | 3 | 2 | 1 | 0 | −1 |
R5 (Rank 5) | 4 | 3 | 2 | 1 | 0 |
WQIPre-sewerage − WQITransitional | WQITransitional − WQIPost-sewerage | WQIPre-sewerage − WQIPost-sewerage | CdPre-sewerage − CdTransitional | CdTransitional − CdPost-sewerage | CdPre-sewerage − CdPost-sewerage | |
---|---|---|---|---|---|---|
Z | −3.290 b | −2.785 b | −5.962 b | −2.451 b | −0.727 b | −3.722 b |
Asymp. Sig. (2-tailed) | 0.001 | 0.005 | 0.000 | 0.014 | 0.467 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla, D.; Kiss, E.; Zichar, M.; Mester, T. Spatiotemporal Dynamics of Water Quality: Long-Term Assessment Using Water Quality Indices and GIS. ISPRS Int. J. Geo-Inf. 2024, 13, 408. https://doi.org/10.3390/ijgi13110408
Balla D, Kiss E, Zichar M, Mester T. Spatiotemporal Dynamics of Water Quality: Long-Term Assessment Using Water Quality Indices and GIS. ISPRS International Journal of Geo-Information. 2024; 13(11):408. https://doi.org/10.3390/ijgi13110408
Chicago/Turabian StyleBalla, Dániel, Emőke Kiss, Marianna Zichar, and Tamás Mester. 2024. "Spatiotemporal Dynamics of Water Quality: Long-Term Assessment Using Water Quality Indices and GIS" ISPRS International Journal of Geo-Information 13, no. 11: 408. https://doi.org/10.3390/ijgi13110408
APA StyleBalla, D., Kiss, E., Zichar, M., & Mester, T. (2024). Spatiotemporal Dynamics of Water Quality: Long-Term Assessment Using Water Quality Indices and GIS. ISPRS International Journal of Geo-Information, 13(11), 408. https://doi.org/10.3390/ijgi13110408