A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting †
Abstract
:1. Introduction
1.1. Key Aspects in Offshore Wind Energy Simulation Modelling
1.2. Geographic Information Systems (GIS) in Offshore Wind Farm Planning
1.3. Spatial Optimization Models for OWF Site-Prospecting
1.4. Critical Aspects for Spatial Optimization Site-Prospecting Procedures
1.5. Conclusions and Key Findings
- A spatial optimization framework is proposed as the first attempt for marine energy planning, considering some key spatial challenges and objectives, which are presented in detail elsewhere [42];
- An enhanced raster-based multi-objective optimization model is proposed (first applied in [62]), taking into account compactness by guaranteeing continuity via a Breadth-First Search cut algorithm;
- The applied Symmetric-Moving-Average (SMA) stochastic simulation algorithm with reduced parameters for computational efficiency, which is used for the simulation of the wind process while preserving, explicitly with the marginal moments, wind’s intermittency and long-term persistence as described in other studies in the literature (e.g., [16]).
2. Materials and Methods
2.1. Study Area and Data Management
2.2. Stochastic Simulation Model
- Determining configurations and estimating parameters for each periodic cycle (diurnal and seasonal) and assessing persistence using the climacogram function.
- Applying generalized long-range dependence models for the wind simulation process, requiring the first four central moments, the Hurst parameter (H), the scale parameter (q) of the GHK model, and the synthetic time series length (i.e., N = 8760).
- Using the SMA scheme to preserve explicitly the first four central moments and the second-order dependence structure.
Algorithm 1 Stochastic simulation model pseudo-code |
Initialize the number of simulations N = 1000 and the total time series length L = 8760. Define the seasonal and diurnal cycles scale 1: Fit the BurrXII distribution of the Pareto-Burr-Feller (PBF) family to the entire reanalysis sample 2: Estimate for each periodic cycle the first m moments (16 m estimations for four seasons and four sub-daily 6-h intervals) 3: Estimate the m parameters of the PBF distribution for each cycle. 4: Transform each cycle through the inverse expression of the PBF distribution so that it follows the PBF distribution of the entire sample (Step 1). 5: Estimate the first four central moments via the PBF distribution. 6: Fit the GHK model with Hurst parameter H and scale parameter q, using the climacogram function: 7: Estimate the coefficients () and the first four central moments of the white noise () of the SMA scheme. 8: Run the SMA model to generate the synthetic wind time series: = 9: Transform back the synthetic wind time series using the parameters of the specific cycle (Step 2). Extract the total number of samples N with the synthetic offshore wind speed time series 10: Estimate the wind speeds at the height of 140 m (hub height) 11: Fit the wind speed time series (Step 10) to the power curve to estimate the mean AEP 12: Estimate the CV as a function of average wind speed, as extracted from the hindcasted UERRA Reanalysis data 13: Fit the GHK model, using the climacogram function, to the transformed wind power time series (N = 1000, Step 11) and estimate the upper and lower statistical limits of the variability. 14: Estimate the WPV as a function of the CV (Step 12) and the simulated power variability (Step 13) |
2.3. Annual Energy Production Calculation and Power Variability Quantification
2.4. Spatial Optimization Model
Algorithm 2 Spatial Optimization algorithm pseudo-code |
Define all model parameters 1: Number of total clusters (N_CLUSTERS) 2: Number of total cells (N_CELLS) 3: Criteria weights ) 4: Define the type of the optimization problem (i.e., minimization or maximization) 5: Normalization scheme applied for all criteria (i.e., 0–4 scale) Create model object 6: Add variables for any i in (0, rows + 1) and j in (0, columns + 1) 7: Add k “raster” surface values for any i in (1, rows) and j in (1, columns) 8: Add Contiguity Lazy constraint to check all optimal solutions 9: Contiguity check using BFS algorithm for every (i,j) in the current solution If non-contiguous cells exist then: ) <= N_CELLS-1, for every (i,j) in the current solution 10: Add the Optimization Constraints ) = N_CELLS for any i in (0, rows + 1) and j in (0, columns + 1) ) = 0, for any j in (0, columns + 1) ) = 0, for j in (0, columns + 1) ) = 0, for any i in (0, rows+1) ) = 0, for any i in (0, rows + 1) 11: Set the Objective If Minimization then: (4-sum(x[neighbors]))) Elif Maximization then: (sum(x[neighbors]))) 12: Create the solution array (in binary form, 0-No Solution pixels, 1-Solution pixels) 13: Save the solution array to raster(s) |
2.4.1. Size, Data, and Complexity of the Study Area
2.4.2. Decision Variables, Objectives and Constraints
- Maximum Annual Energy Production Index (AEP). The first objective is the maximization of the associated wind power output extracted from the stochastic wind field simulation in terms of the mean simulated values.
- Minimum Wind Power Variability Index (WPV). The second objective is based on minimizing the total variability index extracted from the wind power climacogram function and the coefficient of variation per cell.
- Minimum Depth profile index (DP). The third objective is based on minimizing the depths selected for potential OWF allocation. Therefore, different scenarios are considered by controlling the depth values.
3. Results
3.1. Stochastic Wind Process Simulation
3.2. Spatial Optimization Site-Prospecting
4. Discussion
4.1. Stochastic Simulation and Uncertainty Quantification
4.2. Spatial Optimization Modelling Scheme
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Scenario | Cells | AEP | WPV | BP | CI | Lazy Constraints | Nodes Explored | Gap | Run Time | Obj. Value | Iterations | Contiguity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(N) | Weight (0–1) | (Count) | (Count) | (%) | (s) | (Norm. cost) | (Count) | (Boolean) | ||||
1 (Lazy) | 8 | 0.3 | 0.3 | 0.3 | 0.1 | 149/0 | 1 | 0 | 0.83 | 6.07 | 700 | TRUE |
2 (No Constraint) | 8 | 0.3 | 0.3 | 0.3 | 0.1 | 0 | 1 | 0 | 0.68 | 6.01 | 474 | TRUE |
3 (Lazy) | 8 | 0.2 | 0.2 | 0.2 | 0.4 | 2889/0 | 995 | 0 | 15 | 8.05 | 106,102 | TRUE |
4 (No Constraint) | 8 | 0.2 | 0.2 | 0.2 | 0.4 | 0 | 1895 | 0 | 21.2 | 8.05 | 130,195 | TRUE |
5 (Lazy) | 8 | 0.1 | 0.1 | 0.1 | 0.7 | 41,960/0 | 90,237 | 0 | 5678 | 10.02 | 17,234,568 | TRUE |
6 (No Constraint) | 8 | 0.1 | 0.1 | 0.1 | 0.7 | 0 | 60,088 | 0 | 1,218 | 10.02 | 8,292,664 | TRUE |
7 (Lazy) | 8 | 0.5 | 0.3 | 0.15 | 0.05 | 92/0 | 1 | 0 | 0.52 | 6.34 | 203 | TRUE |
8 (No Constraint) | 8 | 0.5 | 0.3 | 0.15 | 0.05 | 0 | 1 | 0 | 0.46 | 6.34 | 169 | TRUE |
9 (Lazy) | 8 | 0.5 | 0.3 | 0.19 | 0.01 | 155/0 | 1 | 0 | Time limit | 5.61 | 86 | TRUE |
10 (No Constraint) | 8 | 0.5 | 0.3 | 0.19 | 0.01 | 0 | 1 | 0 | 0.0007 | 5.61 | 38 | FALSE |
11 (Lazy) | 32 | 0.3 | 0.3 | 0.3 | 0.1 | 226,936/1057 | 108,785 | 0 | 346 | 23.73 | 245,565 | TRUE |
12 (No Constraint) | 32 | 0.3 | 0.3 | 0.3 | 0.1 | 0 | 1 | 0 | 0.45 | 23.49 | 257 | FALSE |
13 (Lazy) | 32 | 0.2 | 0.2 | 0.2 | 0.4 | 1214/0 | 267 | 0 | 8.75 | 23.25 | 20,534 | TRUE |
14 (No Constraint) | 32 | 0.2 | 0.2 | 0.2 | 0.4 | 0 | 664 | 0 | 7.73 | 23.85 | 41,189 | TRUE |
15 (Lazy) | 32 | 0.1 | 0.1 | 0.1 | 0.7 | 31,837/0 | 11,971 | 0 | 356 | 23.92 | 1,738,924 | TRUE |
16 (No Constraint) | 32 | 0.1 | 0.1 | 0.1 | 0.7 | 0 | 12,923 | 0 | 224 | 23.92 | 1,389,533 | TRUE |
17 (Lazy) | 32 | 0.5 | 0.3 | 0.15 | 0.05 | 471,234/3871 | 476,507 | 0 | 4287 | 25.98 | 2,876,765 | TRUE |
18 (No Constraint) | 32 | 0.5 | 0.3 | 0.15 | 0.05 | 0 | 1 | 0 | 0.43 | 25.94 | 272 | FALSE |
References
- Rodrigues, S.; Restrepo, C.; Kontos, E.; Teixeira Pinto, R.; Bauer, P. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 2015, 49, 1114–1135. [Google Scholar] [CrossRef]
- Hong, L.; Moller, B. Offshore wind energy potential in China: Under technical, spatial and economic constraints. Energy 2011, 36, 4482–4491. [Google Scholar] [CrossRef]
- Moller, B. Continuous spatial modelling to analyze planning and economic consequences of offshore wind energy. J. Energy Policy 2011, 39, 511–517. [Google Scholar] [CrossRef]
- Gerdes, G.; Tiedemann, A.; Zeelenberg, S. Case Study: European Offshore Wind Farms—A Survey for the Analysis of the Experiences and Lessons Learnt by Developers of Offshore Wind Farms, Final Report 2010, Deutsche WindGuard GmbH, Deutsche Energie-Agentur GmbH, University of Groningen. Available online: https://tethys.pnnl.gov/sites/default/files/publications/A_Survey_for_the_Analysis_by_Developers_of_Offshore_Wind_Farms.pdf (accessed on 24 July 2024).
- Ho, L.W.; Lie, T.T.; Leong, P.T.M.; Clear, T. Developing offshore wind farm siting criteria by using an international Delphi method. Energy Policy 2018, 113, 53–67. [Google Scholar] [CrossRef]
- Bensoussan, A.; Bertrand, P.R.; Brouste, A. Forecasting the Energy Produced by a Windmill on a Yearly Basis. Stoch. Environ. Res. Risk Assess. 2012, 26, 1109–1122. [Google Scholar] [CrossRef]
- Morgan, E.C.; Lackner, M.; Vogel, R.M.; Baise, L.G. Probability distributions for offshore wind speeds. Energy Convers. Manag. 2011, 52, 15–26. [Google Scholar] [CrossRef]
- Masseran, N.; Razali, A.M.; Ibrahim, K. An analysis of wind power density derived from several wind speed density functions: The regional assessment of wind power in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 6476–6487. [Google Scholar] [CrossRef]
- Hrafnkelsson, B.; Oddsson, G.V.; Unnthorsson, R. A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation. Energies 2016, 9, 286. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Papadopoulos, A. Effects of different wind data sources in offshore wind power assessment. Renew. Energy 2015, 77, 101–114. [Google Scholar] [CrossRef]
- Aksoy, H.; Toprak, Z.F.; Aytek, A.; Ünal, N.E. Stochastic generation of hourly mean wind speed data. Renew. Energy 2004, 29, 2111–2131. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Klockl, B. MCMC for Wind Power Simulation. IEEE Trans. Energy Convers. 2008, 23, 234–240. [Google Scholar] [CrossRef]
- Carapelluci, R.; Giordano, L. A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data. Appl. Energy 2013, 101, 541–550. [Google Scholar] [CrossRef]
- Suomalainen, K.; Silva, C.A.; Ferrão, P.; Connors, S. Synthetic wind speed scenarios including diurnal effects: Implifications for wind power dimensioning. Energy 2012, 37, 41–50. [Google Scholar] [CrossRef]
- Scholz, T.S.; Lopes, V.V.; Estanqueiro, A. A cyclic time-dependent Markov process to model daily patterns in wind turbine power production. Energy 2014, 67, 557–568. [Google Scholar] [CrossRef]
- Katikas, L.; Dimitriadis, P.; Koutsoyiannis, D.; Kontos, T.; Kyriakidis, P. A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series. Appl. Energy 2021, 295, 116873. [Google Scholar] [CrossRef]
- Naimo, A. A novel approach to generate synthetic wind data. Procedia Soc. Behav. Sci. 2014, 108, 187–196. [Google Scholar] [CrossRef]
- Pei, S.; Qin, H.; Zhendong, Z.; Yao, L.; Wang, Y.; Wang, C.; Liu, Y.; Jiang, Z.; Zhou, J.; Yi, T. Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network. Energy Convers. Manag. 2019, 196, 779–792. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. Water Resour. Res. 2000, 36, 1519–1533. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrol. Sci. J. 2016, 61, 225–244. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Simple stochastic simulation of time irreversible and reversible processes. Hydrol. Sci. J. 2020, 65, 536–551. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D. Application of stochastic methods to double cyclostationary processes for hourly wind speed simulation. Energy Procedia 2015, 76, 406–411. [Google Scholar] [CrossRef]
- Deligiannis, I.; Dimitriadis, P.; Daskalou, O.; Dimakos, Y.; Koutsoyiannis, D. Global investigation of double periodicity of hourly wind speed for stochastic simulation; application in Greece. Energy Procedia 2016, 97, 278–285. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D. Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stoch. Environ. Res. Risk Assess. 2015, 29, 1649–1669. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D. Stochastic synthesis approximating any process dependence and distribution. Stoch. Environ. Res. Risk Assess. 2018, 32, 1493–1515. [Google Scholar] [CrossRef]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California offshore wind potential. Renew. Energy 2009, 35, 1244–1254. [Google Scholar] [CrossRef]
- Punt, M.J.; Groeneveld, R.A.; van Ierland, E.C. Spatial planning of offshore wind farms: A windfall to marine environmental protection? Ecol. Econ. 2009, 69, 93–103. [Google Scholar] [CrossRef]
- Abudureyimu, J.; Hayashi, K.; Nagasaka, K. Analyzing the economy of offshore wind energy using GIS technique. APCBEE Procedia 2012, 1, 182–186. [Google Scholar] [CrossRef]
- Yamagutsi, A.; Ishihara, T. Assessment of offshore wind energy potential using mesoscale model and geographic information system. Renew. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
- Cavazzi, S.; Dutton, A.G. An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential, Part 1. Renew. Energy 2016, 87, 212–228. [Google Scholar] [CrossRef]
- Kim, T.; Jeong-Il, P.; Maeng, J. Offshore wind farm site selection study around Jeju Island, South Korea. J. Renew. Energy 2016, 94, 619–628. [Google Scholar] [CrossRef]
- Nagababu, G.; Kachhwaha, S.S.; Savsani, V. Estimation of technical and economic potential of offshore wind along the coast of India. Energy 2017, 138, 79–91. [Google Scholar] [CrossRef]
- Dhanju, A.; Whitaker, P.; Kempton, W. Assessing offshore wind resources: An accessible methodology. Renew. Energy 2008, 33, 55–64. [Google Scholar] [CrossRef]
- Schillings, C.; Wanderer, T.; Cameron, L.; van der Wal, J.; Jacquemin, J.; Veum, K. A decision support system for assessing offshore wind energy potential in the North Sea. Energy Policy 2012, 49, 541–551. [Google Scholar] [CrossRef]
- Jongbloed, R.H.; van der Wal, J.T.; Lindeboom, H.J. Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses. Energy Policy 2014, 68, 320–333. [Google Scholar] [CrossRef]
- Mekonnen, A.D.; Gorsevski, P.V. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renew. Sustain. Energy Rev. 2015, 41, 162–177. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Garcia, G.; Costa, P.; Estanqueiro, A. Methodology to design an economic and strategic offshore wind energy Roadmap in Portugal. Energy Procedia 2013, 10, 167. [Google Scholar]
- Beccali, M.; Galletto, J.; Noto, L. Assessment of the technical and economic potential of offshore wind energy via a GIS application. In Proceedings of the 4th International Conference on Renewable Energy Research and Applications, Palermo, Italy, 22–25 November 2015. [Google Scholar] [CrossRef]
- Mahdy, M.; Bahaz, A.S. Multi-criteria decision analysis for offshore wind energy potential in Egypt. Renew. Energy 2018, 118, 278–289. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Vagiona, D.G.; Kamilakis, M. Sustainable Site Selection for Offshore Wind Farms in South Aegean-Greece. Sustainability 2018, 10, 749–767. [Google Scholar] [CrossRef]
- Katikas, L. Spatial Decision Support System for Offshore Wind Farm Siting Using Geographic Information Systems, Spatial Analysis and Optimization. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2022. [Google Scholar] [CrossRef]
- Resch, B.; Sagl, G.; Törnros, T.; Bachmaier, A.; Eggers, J.B.; Herkel, S.; Narmsara, S.; Günther, H. GIS-Based Planning and Modelling for Renewable Energy: Challenges and Future Research Avenues. ISPRS Int. J. Geo Inf. 2014, 3, 662–692. [Google Scholar] [CrossRef]
- Camargo, L.R.; Stoeglehner, G. Spatiotemporal modelling for integrated spatial and energy planning. Energy Sustain. Soc. 2018, 8, 32. [Google Scholar] [CrossRef]
- Jones, D.F.; Wall, G. An extended goal programming model for site selection in the offshore wind farm sector. Ann. Oper. Res. 2016, 245, 121–135. [Google Scholar] [CrossRef]
- Lee, K.H.; Jun, S.O.; Pak, K.H.; Lee, D.H.; Lee, K.W.; Park, J.P. Numerical optimization of site selection for offshore wind turbine installation using genetic algorithm. Curr. Appl. Phys. 2010, 10, S302–S306. [Google Scholar] [CrossRef]
- Dinçer, A.E.; Demir, A.; Yılmaz, K. Multi-objective turbine allocation on a wind farm site. Appl. Energy 2024, 355, 122346. [Google Scholar] [CrossRef]
- Kátic, I.; Højstrup, J.; Jensen, N.O. A simple model for cluster efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 6–8 October 1986; A. Raguzzi: Rome, Italy, 1987. [Google Scholar]
- Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind. Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Pérez, B.; Minguez, R.; Guanche, R. Offshore wind farm layout optimization using mathematical programming techniques. Renew. Energy 2013, 53, 389–399. [Google Scholar] [CrossRef]
- Valverde, P.S.; Sarmento, A.J.N.A.; Alves, M. Offshore Wind Farm Layout Optimization—State of the Art. J. Ocean Wind Energy 2014, 1, 23–29. Available online: https://publications.isope.org/jowe/jowe-01-1/JOWE-01-1-p023-jcr08-Valverde.pdf (accessed on 26 July 2024).
- Hou, P.; Zhu, J.; Ma, K.; Yang, G.; Hu, W.; Chen, Z. A review of offshore wind farm layout optimization and electrical system design methods. J. Mod. Power Syst. Clean Energy 2019, 7, 975–986. [Google Scholar] [CrossRef]
- Cockerill, T.T.; Kühn, M.; van Bussel, G.J.W.; Bierbooms, W.; Harisson, R. Combined technical an economic evaluation of Northern European offshore wind resource. J. Wind Eng. Ind. Aerodyn. 2001, 89, 689–711. [Google Scholar] [CrossRef]
- Herman, S.A. Probabilistic cost model for analysis of offshore wind energy costs and potential. Environ. Sci. 2002. Available online: https://publications.tno.nl/publication/34629697/9D7lB0/i02007.pdf (accessed on 26 July 2024).
- Elkinton, C.N.; Manwell, J.F.; McGowan, J.G. Algorithms for Offshore Wind Farm Layout Optimization. Wind Eng. 2008, 32, 67–83. [Google Scholar] [CrossRef]
- Mytilinou, V.; Kolios, A.J. A multi-objective optimization approach applied to offshore wind farm location selection. Ocean Eng. Mar. Energy 2017, 3, 265–284. [Google Scholar] [CrossRef]
- Polykarpou, M.; Karathanasi, F.; Soukissian, T.; Loukaidi, V.; Kyriakides, I. A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting. Energies 2023, 16, 2235. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Herwijnen, M.V.; Janssen, R.; Stewart, T.J. Evaluating Spatial Design Techniques for Solving Land-use Allocation Problems. J. Environ. Plan. Manag. 2005, 48, 121–142. [Google Scholar] [CrossRef]
- Ligmann-Zielinska, A.; Church, R.L.; Jankwski, P. Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. Int. J. Geogr. Inf. Sci. 2008, 22, 601–622. [Google Scholar] [CrossRef]
- Vanegas, P.; Cattrysse, D.; Orshven, J.V. Compactness in Spatial Decision Support: A Literature Review. In Proceedings of the Computational Science and Its Applications—ICCSA 2010, Part I, LNCS 6016, Fukuoka, Japan, 23–26 March 2010; Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 414–419. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. J. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Kontos, T.; Katikas, L. Delimiting Future Urban Sprawl Boundaries Using a GIS-based Model for Ecological Sensitivity Index Assessment and Optimization Techniques. The Case of Mytilene (Lesvos Island, Greece). Eur. J. Sustain. Dev. Res. 2018, 3, em0074. [Google Scholar] [CrossRef]
- Santé-Riveira, I.; Boullón-Magán, M.; Crecente-Maseda, R.; Miranda-Barrós, D. Algorithm based on simulated annealing for land-use allocation. J. Comput. Geosci. 2008, 34, 259–268. [Google Scholar] [CrossRef]
- Williams, J.C.; ReVelle, C.S. A 0-1 programming approach to delineating protected reserves. J. Environ. Plan. B Plan. Des. 1996, 23, 607–624. [Google Scholar] [CrossRef]
- Cao, K.; Bo, H. Comparison of Spatial Compactness Evaluation methods for Simple Genetic Algorithm based Land Use Planning Optimization problem, The International Archives of the Photogrammetry. J. Remote Sens. Spat. Inf. Sci. 2010, 38, 553–557. [Google Scholar]
- Liu, K.H.; Kao, J.J. Parallelized branch-and-bound algorithm for raster-based landfill siting. J. Civ. Eng. Environ. Syst. 2013, 30, 15–25. [Google Scholar] [CrossRef]
- Beyer, H.L.; Dujardin, Y.; Watts, M.E.; Possingham, H.P. Solving conservation planning problems with integer linear programming. J. Ecol. Model. 2016, 328, 14–22. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, X.; Murray, A.T. Spatial optimization for land-use allocation: Accounting for sustainability concerns. Int. Reg. Sci. Rev. 2017, 41, 579–600. [Google Scholar] [CrossRef]
- Williams, J.C. A zero-one programming model for contiguous land acquisition. Geogr. Anal. 2002, 34, 330–349. [Google Scholar] [CrossRef]
- Billionnet, A. Designing connected and compact natural reserves. Environ. Model. Assess. 2016, 21, 211–219. [Google Scholar] [CrossRef]
- Kao, J.J.; Lin, H.Y. Multifactor Spatial Analysis for Landfill Siting. J. Environ. Eng. 1996, 122, 902–908. [Google Scholar] [CrossRef]
- Datta, D.; Malczewski, J.; Figueira, J.R. Spatial Aggregation and Compactness of Census Areas with a Multiobjective Genetic Algorithm: A Case Study in Canada. Environ. Plan. B Urban Anal. City Sci. 2012, 39, 376–392. [Google Scholar] [CrossRef]
- Shirable, T. A model of contiguity for spatial unit allocation. Geogr. Anal. 2004, 37, 2–16. [Google Scholar] [CrossRef]
- Gabriel, S.A.; Faria, J.A.; Moglen, G.E. A multi-objective approach to smart growth in land development. J. Socio-Econ. Plan. Sci. 2006, 40, 212–248. [Google Scholar] [CrossRef]
- Soukissian, T.; Hatzinaki, M.; Korres, G.; Papadopoulos, A.; Kallos, G.; Anadranistakis, E. Wind and Wave Atlas of the Hellenic Seas; Hellenic Centre for Marine Research Publication: Athens, Greece, 2007; Available online: https://www.bodc.ac.uk/resources/inventories/edmed/report/1394/ (accessed on 26 July 2024).
- Soukissian, T.; Prospathopoulos, A.; Hatzinaki, M.; Kabouridou, M. Assessment of the wind and wave climate of the Hellenic seas using 10-Year hindcast results. Open Ocean. Eng. J. 2008, 1, 1–12. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K.; Lykoudis, S. High-Resolution model-based wind atlas for Greece, Institute for Environmental Research. Renew. Sustain. Energy Rev. 2014, 30, 479–489. [Google Scholar] [CrossRef]
- Ashcroft, L.; Coll, J.R.; Gilabert, A.; Domonkos, P.; Brunet, M.; Aguilar, E.; Castella, M.; Sigro, J.; Harris, I.; Unden, P.; et al. A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012. Earth Syst. Sci. Data 2018, 10, 1613–1635. [Google Scholar] [CrossRef]
- Bazile, E.; Abida, R.; Verelle, A.; Le Moigne, P.; Szczypta, C. MESCAN-SURFEX Surface Analysis, Deliverable D2.8 of the UERRA Project. 2017. Available online: https://uerra.eu/publications/deliverable-reports.html (accessed on 26 July 2024).
- Koutsoyiannis, D.; Dimitriadis, P.; Lombardo, F.; Stevens, S. From Fractals to Stochastics: Seeking Theoritical Consistency in Analysis of Geophysical Data, In Advances in Nonlinear Geosciences; Tsonis, A., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Yao, J.; Miao, Y.; Kumara, P.B.T.P.; Arulananthan, K.; Zhang, Z.; Zhou, W. Analysis of Wind Energy Potential in Sri Lankan Waters Based on ERA5 (ECMWF Reanalysis v5) and CCMP (Cross-Calibrated Multi-Platform). J. Mar. Sci. Eng. 2024, 12, 876. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Karathanasi, F.E.; Zaragkas, D.K. Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data. Energy Convers. Manag. 2021, 237, 114092. [Google Scholar] [CrossRef]
- Fotakis, D.; Sidiropoulos, E. A new multi-objective self-organizing optimization algorithm (MOSOA) for spatial optimization problems. Appl. Math. Comput. 2012, 218, 5168–5180. [Google Scholar] [CrossRef]
- Wenwen, L.; Goodchild, M.F.; Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 2017, 27, 1227–1250. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Oehrlein, J.; Haunert, J.H. A cutting-plane method for contiguity-constrained spatial aggregation. J. Spat. Inf. Sci. 2017, 15, 89–120. [Google Scholar] [CrossRef]
- Cova, T.J.; Church, R.L. Contiguity constraints for single-region site search problems. Geogr. Anal. 2000, 32, 306–329. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Climate-change impacts on offshore wind resources in the Mediterranean Sea. Energy Convers. Manag. 2023, 291, 117231. [Google Scholar] [CrossRef]
- Alvarez, I.; Lorenzo, M.N. Changes in offshore wind power potential over the Mediterranean Sea using CORDEX projections. Reg. Environ. Chang. 2019, 19, 79–88. [Google Scholar] [CrossRef]
- Langreder, W.; Jogararu, M. Uncertainty of Vertical Wind Speed Extrapolation. In Proceedings of the Brazil Windpower 2016 Conference and Exhibition SulAmerica Convention Center, Rio de Janeiro, Brazil, 30 August–1 September 2016. [Google Scholar]
- Ridal, M.; Bazile, E.; Le Moigne, P.; Randriamampianina, R.; Schimanke, S.; Andrae, U.; Berggren, L.; Brousseau, P.; Dahlgren, P.; Edvinsson, L.; et al. CERRA, the Copernicus European Regional Reanalysis system. Q. J. R. Meteorol. Soc. 2024, 1–27. [Google Scholar] [CrossRef]
Marginal (Komotini) | Mean | Variance | Skewness | Kurtosis |
---|---|---|---|---|
Observed (UERRA) | 3.679 | 5.942 | 1.281 | 5.751 |
Simulated | 3.665 | 6.362 | 1.839 | 9.152 |
Marginal (Larissa) | Mean | Variance | Skewness | Kurtosis |
Observed (UERRA) | 3.713 | 7.971 | 1.714 | 8.511 |
Simulated | 3.704 | 7.848 | 1.819 | 8.972 |
Marginal (Lemnos) | Mean | Variance | Skewness | Kurtosis |
Observed (UERRA) | 6.539 | 14.101 | 0.885 | 4.028 |
Simulated | 6.506 | 13.916 | 0.961 | 4.322 |
Marginal (Cyclades) | Mean | Variance | Skewness | Kurtosis |
Observed (UERRA) | 7.271 | 12.211 | 0.606 | 3.361 |
Simulated | 7.304 | 12.039 | 0.598 | 3.365 |
Scenario | No. of Cells | Compactness (CI) Weight | Nodes Explored | Simplex Iterations | Obj. Value | Run Time (s) |
---|---|---|---|---|---|---|
a | 8 | 0.03 | 9286 | 26 | 2.94 | 62.5 |
b | 8 | 0.1 | 9294 | 81 | 3.77 | 62.42 |
c | 8 | 0.3 | 110 | 1978 | 5.71 | 4.04 |
d | 32 | 0.03 | 5736 | 4509 | 16.42 | 63.96 |
e | 32 | 0.1 | 5 | 400 | 17.69 | 2.46 |
f | 32 | 0.3 | 158 | 982 | 19.51 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katikas, L.; Kontos, T.; Dimitriadis, P.; Kavouras, M. A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting. ISPRS Int. J. Geo-Inf. 2024, 13, 409. https://doi.org/10.3390/ijgi13110409
Katikas L, Kontos T, Dimitriadis P, Kavouras M. A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting. ISPRS International Journal of Geo-Information. 2024; 13(11):409. https://doi.org/10.3390/ijgi13110409
Chicago/Turabian StyleKatikas, Loukas, Themistoklis Kontos, Panayiotis Dimitriadis, and Marinos Kavouras. 2024. "A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting" ISPRS International Journal of Geo-Information 13, no. 11: 409. https://doi.org/10.3390/ijgi13110409
APA StyleKatikas, L., Kontos, T., Dimitriadis, P., & Kavouras, M. (2024). A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting. ISPRS International Journal of Geo-Information, 13(11), 409. https://doi.org/10.3390/ijgi13110409