HBIM for Conservation of Built Heritage
Abstract
:1. Introduction
- Creating a new HBIM library of Nabatean-built architectural elements with detailed parametric objects representing the as-built condition at the level of development (LOD) 300.
- A fusion-based approach using TLS and high-resolution imagery survey results to enrich scan-to-BIM with realistic renderings of surface material decay.
- A deep learning approach using true orthophotos to automate the detection and quantification of façade degradation and cracks for enriching the HBIM.
2. Data Collection
2.1. AlDeir Monument in Petra City
2.2. Sensor Applied
3. Nabatean BIM Library
4. Implementing Diagnostics Data in HBIM
4.1. Realistic Renderings of Surface Material Decay
4.2. HBIM Texture Mapping
5. Deep Learning in HBIM
5.1. Holistically Nested Edge Detection (HED)
5.2. Deep Learning Processing
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martinelli, L.; Calcerano, F.; Adinolfi, F.; Chianetta, D.; Gigliarelli, E. Open HBIM-IoT Monitoring Platform for the Management of Historical Sites and Museums. An Application to the Bourbon Royal Site of Carditello. Int. J. Archit. Herit. 2023, 1–18. [Google Scholar] [CrossRef]
- Bacci, G.; Bertolini, F.; Bevilacqua, M.G.; Caroti, G.; Martínez-Espejo Zaragoza, I.; Martino, M.; Piemonte, A. Hbim Methodologies for the Architectural Restoration. The Case of the Ex-Church of San Quirico All’olivo in Lucca, Tuscany. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 121–126. [Google Scholar] [CrossRef]
- Celli, S.; Ottoni, F. Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria Del Fiore. Sensors 2023, 23, 4860. [Google Scholar] [CrossRef] [PubMed]
- Matrone, F.; Colucci, E.; Iacono, E.; Ventura, G.M. The HBIM-GIS Main10ance Platform to Enhance the Maintenance and Conservation of Historical Built Heritage. Sensors 2023, 23, 8112. [Google Scholar] [CrossRef] [PubMed]
- Costantino, D.; Pepe, M.; Restuccia, A.G. Scan-to-HBIM for Conservation and Preservation of Cultural Heritage Building: The Case Study of San Nicola in Montedoro Church (Italy). Appl. Geomat. 2023, 15, 607–621. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-Bim Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–65. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling—Adding Intelligence to Laser and Image Based Surveys of European Classical Architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Prizeman, O.E.C. HBIM and Matching Techniques: Considerations for Late Nineteenth and Early Twentieth-Century Buildings. J. Archit. Conserv. 2015, 21, 145–159. [Google Scholar] [CrossRef]
- Baik, A. From Point Cloud to Jeddah Heritage BIM Nasif Historical House—Case Study. Digit. Appl. Archaeol. Cult. Herit. 2017, 4, 1–18. [Google Scholar] [CrossRef]
- Sampaio, A.Z.; Pinto, A.M.; Gomes, A.M.; Sanchez-lite, A. Generation of an Hbim Library Regarding a Palace of the 19th Century in Lisbon. Appl. Sci. 2021, 11, 7020. [Google Scholar] [CrossRef]
- Daniels, L.; Georgopoulos, A. DORIC TEMPLE HBIM LIBRARY FOR CULTURAL HERITAGE MANAGEMENT. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 55–62. [Google Scholar] [CrossRef]
- López, F.; Lerones, P.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef]
- Murphy, M.; Mcgovern, E.; Pavia, S. Historic Building Information Modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094. [Google Scholar] [CrossRef]
- Liu, J.; Willkens, D.; López, C.; Cortés-Meseguer, L.; García-Valldecabres, J.L.; Escudero, P.A.; Alathamneh, S. Comparative analysis of point clouds acquired from a TLS survey and a 3D virtual tour for HBIM development. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 959–968. [Google Scholar] [CrossRef]
- Cabrera Revuelta, E.; Chávez, M.J.; Barrera Vera, J.A.; Fernández Rodríguez, Y.; Caballero Sánchez, M. Optimization of Laser Scanner Positioning Networks for Architectural Surveys through the Design of Genetic Algorithms. Measurement 2021, 174, 108898. [Google Scholar] [CrossRef]
- Maté-González, M.Á.; Di Pietra, V.; Piras, M. Evaluation of Different LiDAR Technologies for the Documentation of Forgotten Cultural Heritage under Forest Environments. Sensors 2022, 22, 6314. [Google Scholar] [CrossRef]
- Tanduo, B.; Losè, L.T.; Chiabrando, F. Documentation of complex environments in cultural heritage sites. A SLAM-based survey in the Castello del Valentino basement. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 489–496. [Google Scholar] [CrossRef]
- Mayr, A.; Rutzinger, M.; Bremer, M.; Oude Elberink, S.; Stumpf, F.; Geitner, C. Object-Based Classification of Terrestrial Laser Scanning Point Clouds for Landslide Monitoring. Photogramm. Rec. 2017, 32, 377–397. [Google Scholar] [CrossRef]
- Palcak, M.; Kudela, P.; Fandakova, M.; Kordek, J. Utilization of 3D Digital Technologies in the Documentation of Cultural Heritage: A Case Study of the Kunerad Mansion (Slovakia). Appl. Sci. 2022, 12, 4376. [Google Scholar] [CrossRef]
- Zeng, F.; Zhong, R. The Algorithm to Generate Color Point-Cloud with the Registration between Panoramic Image and Laser Point-Cloud. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 35th International Symposium on Remote Sensing of Environment (ISRSE35), Beijing, China, 22–26 April 2013; Institute of Physics Publishing: Bristol, UK, 2014; Volume 17. [Google Scholar]
- Alshawabkeh, Y.; El-Khalili, M.; Almasri, E.; Bala’awi, F.; Al-Massarweh, A. Heritage Documentation Using Laser Scanner and Photogrammetry. The Case Study of Qasr Al-Abidit, Jordan. Digit. Appl. Archaeol. Cult. Herit. 2020, 16, e00133. [Google Scholar] [CrossRef]
- Pepe, M.; Ackermann, S.; Fregonese, L.; Achille, C. 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2016, 10, 1942–1948. [Google Scholar]
- Tang, P.; Akinci, B.; Huber, D. Quantification of Edge Loss of Laser Scanned Data at Spatial Discontinuities. Autom. Constr. 2009, 18, 1070–1083. [Google Scholar] [CrossRef]
- Stałowska, P.; Suchocki, C.; Rutkowska, M. Crack Detection in Building Walls Based on Geometric and Radiometric Point Cloud Information. Autom. Constr. 2022, 134, 104065. [Google Scholar] [CrossRef]
- Tscharf, A.; Rumpler, M.; Fraundorfer, F.; Mayer, G.; Bischof, H. On the Use of Uavs in Mining and Archaeology-Geo-Accurate 3d Reconstructions Using Various Platforms and Terrestrial Views. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Toronto, ON, Canada, 27 August 2015; Copernicus GmbH: Göttingen, Germany; Volume 2, pp. 15–22. [Google Scholar]
- Arza-García, M.; Gil-Docampo, M.; Ortiz-Sanz, J. A Hybrid Photogrammetry Approach for Archaeological Sites: Block Alignment Issues in a Case Study (the Roman Camp of A Cidadela). J. Cult. Herit. 2019, 38, 195–203. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D.; Awalludin, R. Multi-Scale and Multi-Sensor 3D Documentation of Heritage Complexes in Urban Areas. ISPRS Int. J. Geoinf. 2018, 7, 483. [Google Scholar] [CrossRef]
- Castilla, F.J.; Ramón, A.; Adán, A.; Trenado, A.; Fuentes, D. 3D Sensor-Fusion for the Documentation of Rural Heritage Buildings. Remote Sens. 2021, 13, 1337. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A. Integration of Photogrammetry and Laser Scanning for Enhancing Scan-to-HBIM Modeling of Al Ula Heritage Site. Herit. Sci. 2023, 11, 147. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Iuculano, E.; Lo Giudice, P. Integrating Topographic, Photogrammetric and Laser Scanning Techniques for a Scan-to-Bim Process. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 883–890. [Google Scholar] [CrossRef]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Framework for Using Point Cloud Data of Heritage Buildings Toward Geometry Modeling in A BIM Context: A Case Study on Santa Maria La Real De Mave Church. Int. J. Archit. Herit. 2017, 11, 965–986. [Google Scholar] [CrossRef]
- Barrile, V.; Fotia, A.; Bilotta, G. Geomatics and Augmented Reality Experiments for the Cultural Heritage. Appl. Geomat. 2018, 10, 569–578. [Google Scholar] [CrossRef]
- Mol, A.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. HBIM for Storing Life-Cycle Data Regarding Decay and Damage in Existing Timber Structures. Autom. Constr. 2020, 117, 103262. [Google Scholar] [CrossRef]
- Ferro, A.; Lo Brutto, M.; Ventimiglia, G.M. A Scan-To-Bim Process for the Monitoring and Conservation of the Architectural Heritage: Integration of Thematic Information in a Hbim Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 549–556. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Mariano, F.; Di Stefano, F.; Petetta, L.; Onori, F. Modelling in HBIM to document materials decay by a thematic mapping to manage the cultural heritage: The case of “Chiesa della Pietà” in Fermo. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 777–784. [Google Scholar] [CrossRef]
- Santagati, C.; Papacharalambous, D.; Sanfilippo, G.; Bakirtzis, N.; Laurini, C.; Hermon, S. HBIM Approach for the Knowledge and Documentation of the St. John the Theologian Cathedral in Nicosia (Cyprus). J. Archaeol. Sci. Rep. 2021, 36, 102804. [Google Scholar] [CrossRef]
- Brumana, R.; Condoleo, P.; Grimoldi, A.; Banfi, F.; Landi, A.G.; Previtali, M. HR LOD Based HBIM to Detect Influences on Geometry and Shape by Stereotomic Construction Techniques of Brick Vaults. Appl. Geomat. 2018, 10, 529–543. [Google Scholar] [CrossRef]
- Fregonese, L.; Taffurelli, L.; Adami, A.; Chiarini, S.; Cremonesi, S.; Helder, J.; Spezzoni, A. Survey and Modelling for the Bim of Basilica of San Marco in Venice. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 303–310. [Google Scholar] [CrossRef]
- Chiabrando, F.; Lo Turco, M.; Rinaudo, F. Modeling the Decay in an Hbim Starting from 3d Point Clouds. A Followed Approach for Cultural Heritage Knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 605–612. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X. Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder Network. IEEE Access 2020, 8, 134602–134618. [Google Scholar] [CrossRef]
- Rossi, M.; Bournas, D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Appl. Sci. 2023, 13, 6450. [Google Scholar] [CrossRef]
- Mangini, F.; Dinia, L.; Del Muto, M.; Federici, E.; Rivaroli, L.; Frezza, F. Study of Optical Tag Profile of the Tag Recognition Measurement System in Cultural Heritage. J. Cult. Herit. 2020, 45, 240–248. [Google Scholar] [CrossRef]
- Ceravolo, R.; Coletta, G.; Miraglia, G.; Palma, F. Statistical Correlation between Environmental Time Series and Data from Long-Term Monitoring of Buildings. Mech Syst Signal Process 2021, 152, 107460. [Google Scholar] [CrossRef]
- Gliić, B.; Inaudi, D.; Posenato, D.; Figini, A. Monitoring of Heritage Structures and Historical Monuments Using Long-Gage Fiber Optic Interferometric Sensors—An Overview. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, BC, Canada, 13–16 November 2007; pp. U927–U933. [Google Scholar]
- Croce, V.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. H-BIM and Artificial Intelligence: Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Reconstruction. Sensors 2023, 23, 2497. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M. Machine Learning Techniques for Structural Health Monitoring of Heritage Buildings: A State-of-the-Art Review and Case Studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, Q.; Li, S.; Zhao, X.; Zhao, P. Damage Classification for Masonry Historic Structures Using Convolutional Neural Networks Based on Still Images. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 1073–1089. [Google Scholar] [CrossRef]
- Chaiyasarn, K.; Sharma, M.; Ali, L.; Khan, W.; Poovarodom, N. Crack Detection in Historical Structures Based on Convolutional Neural Network. Int. J. GEOMATE 2018, 15, 240–251. [Google Scholar] [CrossRef]
- Wild, B.; Verhoeven, G.J.; Wieser, M.; Ressl, C.; Schlegel, J.; Wogrin, S.; Otepka-Schremmer, J.; Pfeifer, N. AUTOGRAF—AUTomated Orthorectification of GRAFfiti Photos. Heritage 2022, 5, 2987–3009. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Image-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural Network. Struct Control Health Monit 2019, 26, e2381. [Google Scholar] [CrossRef]
- Jeong, H.; Jeong, B.; Han, M.; Cho, D. Analysis of Fine Crack Images Using Image Processing Technique and High-Resolution Camera. Appl. Sci. 2021, 11, 9714. [Google Scholar] [CrossRef]
- Nyathi, M.A.; Bai, J.; Wilson, I.D. Deep Learning for Concrete Crack Detection and Measurement. Metrology 2024, 4, 66–81. [Google Scholar] [CrossRef]
- Maalek, R.; Lichti, D.D.; Ruwanpura, J.Y. Automatic Recognition of Common Structural Elements from Point Clouds for Automated Progress Monitoring and Dimensional Quality Control in Reinforced Concrete Construction. Remote Sens. 2019, 11, 1102. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; del Blanco-García, F.L.; Mencías-Carrizosa, D.; Villanueva-Llauradó, P.; Aira-Zunzunegui, J.R.; Sanz-Arauz, D.; Pierdicca, R.; Pinilla-Melo, J.; Garcia-Gago, J. Detection of Damage in Heritage Constructions Based on 3D Point Clouds. A Systematic Review. J. Build. Eng. 2023, 77, 107440. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Paulo, P.V.; Branco, F.A.; de Brito, J. Using Orthophotography Based on BuildingsLife Software to Inspect Building Facades. J. Perform. Constr. Facil. 2014, 28, 04014019. [Google Scholar] [CrossRef]
- Martos, A.; Navarro, S.; Lerma, J.L.; Rodríguez, S.; Rodríguez, J.; González, J.; Jordá, F.; Ramos, M.; Pérez, A. Image based aarchitecturaltrue-orthophotographs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 315–320. [Google Scholar]
- Deng, F.; Kang, J.; Li, P.; Wan, F. Automatic True Orthophoto Generation Based on Three-Dimensional Building Model Using Multiview Urban Aerial Images. J. Appl. Remote Sens. 2015, 9, 095087. [Google Scholar] [CrossRef]
- Chiabrando, F.; Donadio, E.; Rinaudo, F. SfM for Orthophoto Generation: Awinning Approach for Cultural Heritage Knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 91–98. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Bai, Y. Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI. J. Archit. Eng. 2022, 28, 04022031. [Google Scholar] [CrossRef]
- Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F. A Critical Review of Automated Photogrammetric Processing of Large Datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 591–599. [Google Scholar] [CrossRef]
- Wenning, R. The Nabataeans in History. In Proceedings of the Politis, K.D. (Hrsg.): The World of the Nabataeans. Volume 2 of the International Conference the World of the Herods and the Nabataeans Held at the British Museum, Stuttgart, Germany, 17–19 April 2001; pp. 25–44. [Google Scholar]
- Mickel, A.; Knodell, A.R. We Wanted to Take Real Information: Public Engagement and Regional Survey at Petra, Jordan. World Archaeol. 2015, 47, 239–260. [Google Scholar] [CrossRef]
- Taylor, J. Petra and the Lost Kingdom of the Nabataeans, 1st ed.; TAURIS: London, UK, 2001; ISBN 10: 1860645089. [Google Scholar]
- Bourbon, F. Petra: Art, History and Itineraries in the Nabatean Capital; White Star Editions: Vercelli, Italy, 2001; ISBN-10: 8880953419. [Google Scholar]
- Fitzner, B.; Heinrichs, K. 2002: Damage diagnosis on stone monuments—Weathering forms, damage categories and damage indices. In Understanding and Managing Stone Decay, Proceedings of the International Conference “Stone Weathering and Atmospheric Pollution Network (SWAPNET)”; Prikryl, R., Viles, H.A., Eds.; Karolinum Press: Prachov Rocks, Czech Republic; Charles University: Prague, Czech Republic, 2001. [Google Scholar]
- Eklund, S. Stone Weathering in the Monastic Building Complex on Mountain of St Aaron in Petra, Jordan. Master’s Thesis, University of Helsinki, Faculty of Arts, Institute for Cultural Research, Archeology, Helsinki, Finland, 2008. [Google Scholar]
- Kersten, T.; Sternberg, H.; Mechelke, K.; Acevedo Pardo, C. Terrestrial Laser Scanning System Mensi GS100/GS200—Accuracy Tests, Experiences and Projects at the Hamburg University of Applied Sciences; Mass, H.-G., Schneider, D., Eds.; IAPRS: Dreseden, Germany, 2004; Volume XXXIV, p. PART 5/W16, In Proceedings of the ISPRS working group V/1 ‘Panoramic Photogrammetry Workshop’, Dresden, Germany, 19–22 February 2004. [Google Scholar]
- Liu, J.; Foreman, G.; Sattineni, A.; Li, B. Integrating Stakeholders’ Priorities into Level of Development Supplemental Guidelines for HBIM Implementation. Buildings 2023, 13, 530. [Google Scholar] [CrossRef]
- Warchoł, A. The Concept of LiDAR Data Quality Assessment in the Context of BIM Modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 61–66. [Google Scholar] [CrossRef]
- Graham, K.; Chow, L.; Fai, S. Level of Detail, Information and Accuracy in Building Information Modelling of Existing and Heritage Buildings. J. Cult. Herit. Manag. Sustain. Dev. 2018, 8, 495–507. [Google Scholar] [CrossRef]
- Martín-Lerones, P.; Olmedo, D.; López-Vidal, A.; Gómez-García-bermejo, J.; Zalama, E. Bim Supported Surveying and Imaging Combination for Heritage Conservation. Remote Sens. 2021, 13, 1584. [Google Scholar] [CrossRef]
- Banfi, F.; Previtali, M.; Stanga, C.; Brumana, R. A layered-web interface based on hbim and 360 panoramas for historical, material and geometric analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 73–80. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P. Automatic Road Crack Segmentation Using Entropy and Image Dynamic Thresholding. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009. [Google Scholar]
- Talab, A.; Huang, Z.; Xi, F.; HaiMing, L. Detection Crack in Image Using Otsu Method and Multiple Filtering in Image Processing Techniques. Opt. Int. J. Light Electron Opt. 2015, 127, 1030–1033. [Google Scholar] [CrossRef]
- Mishra, R.; Chandrakar, C.; Mishra, R.S. Surface defects detection for ceramic tiles using image processing and morphological techniques. International 2012, 2, 1307–1322. [Google Scholar]
- Abdel-Qader, I.; Abudayyeh, O.; Kelly, M.E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput. Civ. Eng. 2003, 17, 255–263. [Google Scholar] [CrossRef]
- Medina, R.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E.; Segarra, M. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation. Sensors 2017, 17, 1670. [Google Scholar] [CrossRef]
- Billi, D.; Croce, V.; Bevilacqua, M.G.; Caroti, G.; Pasqualetti, A.; Piemonte, A.; Russo, M. Machine Learning and Deep Learning for the Built Heritage Analysis: Laser Scanning and UAV-Based Surveying Applications on a Complex Spatial Grid Structure. Remote Sens. 2023, 15, 1961. [Google Scholar] [CrossRef]
- Matrone, F.; Grilli, E.; Martini, M.; Paolanti, M.; Pierdicca, R.; Remondino, F. Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation. ISPRS Int. J. Geoinf. 2020, 9, 535. [Google Scholar] [CrossRef]
- Basha, S.H.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification. Neurocomputing 2020, 378, 112–119. [Google Scholar] [CrossRef]
- Jmour, N.; Zayen, S.; Abdelkrim, A. Convolutional Neural Networks for Image Classification. In Proceedings of the 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018; pp. 397–402. [Google Scholar]
- Galvez, R.L.; Bandala, A.A.; Dadios, E.P.; Vicerra, R.R.P.; Maningo, J.M.Z. Object Detection Using Convolutional Neural Networks. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2023–2027. [Google Scholar]
- Kang, K.; Ouyang, W.; Li, H.; Wang, X. Object Detection from Video Tubelets with Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 817–825. [Google Scholar]
- Kampffmeyer, M.; Salberg, A.-B.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 680–688. [Google Scholar]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Gill, E.; Molinier, M. A New Fully Convolutional Neural Network for Semantic Segmentation of Polarimetric SAR Imagery in Complex Land Cover Ecosystem. ISPRS J. Photogramm. Remote Sens. 2019, 151, 223–236. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S. Convolutional Neural Networks-Based Crack Detection for Real Concrete Surface. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018; Sohn, H., Ed.; SPIE: Bellingham, WA, USA, 2018; p. 143. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, part III 18; Springer International Publishing: New York, NY, USA, 2015; pp. 234–241. [Google Scholar]
- Rodrigues, F.; Cotella, V.; Rodrigues, H.; Rocha, E.; Freitas, F.; Matos, R. Application of Deep Learning Approach for the Classification of Buildings’ Degradation State in a BIM Methodology. Appl. Sci. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Kang, D.; Benipal, S.S.; Gopal, D.L.; Cha, Y.-J. Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex Backgrounds Using Deep Learning. Autom. Constr. 2020, 118, 103291. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Yu, S.; Prokhorov, D.; Mei, X.; Ling, H. Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1525–1535. [Google Scholar] [CrossRef]
- Ahmed, S.; Shaikh, A.; Alshahrani, H.; Alghamdi, A.; Alrizq, M.; Baber, J.; Bakhtyar, M. Transfer Learning Approach for Classification of Histopathology Whole Slide Images. Sensors 2021, 21, 5361. [Google Scholar] [CrossRef]
- Alinsaif, S.; Lang, J. Histological Image Classification Using Deep Features and Transfer Learning. In Proceedings of the 2020 17th Conference on Computer and Robot Vision (CRV), Ottawa, ON, Canada, 13–15 May 2020; IEEE: New York, NY, USA; pp. 101–108. [Google Scholar]
- Xu, Y.; Jia, Z.; Wang, L.-B.; Ai, Y.; Zhang, F.; Lai, M.; Chang, E.I.-C. Large Scale Tissue Histopathology Image Classification, Segmentation, and Visualization via Deep Convolutional Activation Features. BMC Bioinform. 2017, 18, 281. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhao, W.; Li, Q. Crack Segmentation on Earthen Heritage Site Surfaces. Appl. Sci. 2022, 12, 12830. [Google Scholar] [CrossRef]
- Kokkinos, I. Pushing the Boundaries of Boundary Detection Using Deep Learning. arXiv 2015, arXiv:1511.07386. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Lanzara, E.; Scandurra, S.; Musella, C.; Palomba, D.; di Luggo, A.; Asprone, D. Documentation of structural damage and material decay phenomena in H-BIM systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 375–382. [Google Scholar] [CrossRef]
- Conti, A.; Fiorini, L.; Massaro, R.; Santoni, C.; Tucci, G. HBIM for the Preservation of a Historic Infrastructure: The Carlo III Bridge of the Carolino Aqueduct. Appl. Geomat. 2022, 14, 41–51. [Google Scholar] [CrossRef]
Label | Area (m2) | Equivalent Diameter (m) | Perimeter (m) | Mean_Intensity in Red Band | Mean_Intensity in Green Band | Mean_Intensity in Blue Band | Solidity |
---|---|---|---|---|---|---|---|
13 | 0.32 | 0.63 | 1.91 | 38.3 | 73.0 | 135.2 | 0.91 |
18 | 0.05 | 0.24 | 0.42 | 63.7 | 107.3 | 164.3 | 0.98 |
31 | 0.14 | 0.41 | 0.93 | 15.7 | 45.3 | 100.6 | 0.91 |
50 | 0.54 | 0.83 | 2.60 | 13.8 | 53.5 | 126.5 | 0.92 |
78 | 0.21 | 0.52 | 1.40 | 77.1 | 116.4 | 178.3 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshawabkeh, Y.; Baik, A.; Miky, Y. HBIM for Conservation of Built Heritage. ISPRS Int. J. Geo-Inf. 2024, 13, 231. https://doi.org/10.3390/ijgi13070231
Alshawabkeh Y, Baik A, Miky Y. HBIM for Conservation of Built Heritage. ISPRS International Journal of Geo-Information. 2024; 13(7):231. https://doi.org/10.3390/ijgi13070231
Chicago/Turabian StyleAlshawabkeh, Yahya, Ahmad Baik, and Yehia Miky. 2024. "HBIM for Conservation of Built Heritage" ISPRS International Journal of Geo-Information 13, no. 7: 231. https://doi.org/10.3390/ijgi13070231
APA StyleAlshawabkeh, Y., Baik, A., & Miky, Y. (2024). HBIM for Conservation of Built Heritage. ISPRS International Journal of Geo-Information, 13(7), 231. https://doi.org/10.3390/ijgi13070231