Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Materials
2.3. Methods
2.3.1. Kernel Density Estimation
2.3.2. Ripley’s K-Function
2.3.3. Bivariate Ripley’s K-Function
2.3.4. Local Bivariate Ripley’s K-Function
3. Results
3.1. Overall Distribution Pattern of Urban Fires
3.2. Correlation Characteristics Between Urban Fires and Urban Functional Spaces
3.2.1. Global Characteristics
3.2.2. Local Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Henry, N.J.; McCracken, D.; Roberts, N.L.S.; et al. Epidemiology of injuries from fire, heat and hot substances: Global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Inj. Prev. 2020, 26, i36–i45. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Fan, C. Predictive analysis of fire frequency based on daily temperatures. Nat. Hazards 2019, 97, 1175–1189. [Google Scholar] [CrossRef]
- Bispo, R.; Vieira, F.G.; Bachir, N.; Espadinha-Cruz, P.; Lopes, J.P.; Penha, A.; Grilo, A. Spatial modelling and mapping of urban fire occurrence in Portugal. Fire Saf. J. 2023, 138, 103802. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Jomaas, G. Effects of governmental data governance on urban fire risk: A city-wide analysis in China. Int. J. Disaster Risk Reduct. 2022, 78, 103138. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. SUSM: A scenario-based urban growth simulation model using remote sensing data. Eur. J. Remote Sens. 2019, 52, 26–41. [Google Scholar] [CrossRef]
- Perez, J.; Fusco, G.; Moriconi-Ebrard, F. Identification and quantification of urban space in India: Defining urban macro-structures. Urban Stud. 2019, 56, 1988–2004. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, J.; Sila-Nowicka, K.; Jin, Y. Urban fire dynamics and its association with urban growth: Evidence from Nanjing, China. ISPRS Int. J. Geo Inf. 2020, 9, 218. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, M.S.; Lee, J.S. Firefighting in vulnerable areas based on the connection between fire hydrants and fire brigade. Sustainability 2021, 13, 98. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability 2019, 11, 1385. [Google Scholar] [CrossRef]
- Horner, M.; Murray, A. A Multi-objective Approach to Improving Regional Jobs-Housing Balance. Reg. Stud. 2003, 37, 135–146. [Google Scholar] [CrossRef]
- Tang, B. Is the distribution of public open space in Hong Kong equitable, why not? Landsc. Urban Plan. 2017, 161, 80–89. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Y.; Li, M.; Yang, J.; Liu, T. Classification Schemes and Identification Methods for Urban Functional Zone: A Review of Recent Papers. Appl. Sci. 2021, 11, 9968. [Google Scholar] [CrossRef]
- Sun, B.; Cheng, S.; Yu, G.; Wang, Z. Coupling Characteristics of Urban Functional Space in Changchun City from the Perspective of Landscape Ecology. Sci. Geogr. Sin. 2017, 37, 519–527. [Google Scholar] [CrossRef]
- Andrade, R.; Alves, A.; Bento, C. POI Mining for Land Use Classification: A Case Study. ISPRS Int. J. Geo-Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Dou, W.; Wang, C.; Xue, M.; Wang, Z. Identification and evaluation of urban functional land based on POI data —A case study of five districts in Jinan. World Reg. Stud. 2020, 29, 804–813. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yang, R.; Xiao, X.; Xia, J.C. Contribution of urban functional zones to the spatial distribution of urban thermal environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Jiang, J.; Dai, F.; Zhang, J. Urban Functional Zone Recognition and Green Space Evaluation of Shanghai Based on POI Data. Chin. Landsc. Archit. 2019, 35, 113–118. [Google Scholar] [CrossRef]
- Mo, Y.; Bao, Y.; Wang, Z.; Wei, W.; Chen, X. Spatial coupling relationship between architectural landscape characteristics and urban heat island in different urban functional zones. Build. Environ. 2024, 257, 111545. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Song, C.; Kwan, M.P.; Zhu, J. Modeling fire occurrence at the city scale: A comparison between geographically weighted re-gression and global linear regression. Int. J. Environ. Res. Public Health 2017, 14, 396. [Google Scholar] [CrossRef]
- Arisanty, D.; Muhaimin, M.; Rosadi, D.; Saputra, A.N.; Hastuti, K.P.; Rajiani, I. Spatiotemporal patterns of burned areas based on the geographic information system for fire risk monitoring. Int. J. For. Res. 2021, 2021, 2784474. [Google Scholar] [CrossRef]
- Guldåker, N.; Hallin, P. Spatio-temporal patterns of intentional fires, social stress and socio-economic determinants: A case study of Malmö, Sweden. Fire Saf. J. 2014, 70, 71–80. [Google Scholar] [CrossRef]
- Ma, L.; Huang, X.; Gao, J.; Miao, J.; Zhang, P. Distribution law and probability density prediction of urban area fire events. J. Xi’an Univ. Sci. Technol. 2022, 42, 260–267. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Y.; Chen, M.; Wang, D. A POIs based method for determining spatial distribution of urban fire risk. Process Saf. Environ. Prot. 2021, 154, 447–457. [Google Scholar] [CrossRef]
- Corcoran, J.; Higgs, G.; Brunsdon, C.; Ware, A.; Norman, P. The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study. Comput. Environ. Urban Syst. 2007, 31, 623–647. [Google Scholar] [CrossRef]
- Corcoran, J.; Higgs, G.; Rohde, D.; Chhetri, P. Investigating the association between weather conditions, calendar events and so-cio-economic patterns with trends in fire incidence: An Australian case study. J. Geogr. Syst. 2011, 13, 193–226. [Google Scholar] [CrossRef]
- Jennings, C.R. Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature. Fire Saf. J. 2013, 62, 13–19. [Google Scholar] [CrossRef]
- Špatenková, O.; Virrantaus, K. Discovering spatio-temporal relationships in the distribution of building fires. Fire Saf. J. 2013, 62, 49–63. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Xu, B. Spatio-temporal features of China’s urban fires: An investigation with reference to gross domestic product and humidity. Sustainability 2015, 7, 9734–9752. [Google Scholar] [CrossRef]
- Caggiano, M.D.; Hawbaker, T.J.; Gannon, B.M.; Hoffman, C.M. Building loss in WUI disasters: Evaluating the core components of the wildland–Urban interface definition. Fire 2020, 3, 73. [Google Scholar] [CrossRef]
- Masoumi, Z.; van L.Genderen, J.; Maleki, J. Fire risk assessment in dense urban areas using information fusion techniques. ISPRS Int. J. Geo-Inf. 2019, 8, 579. [Google Scholar] [CrossRef]
- Raškauskaitė, R.; Grigonis, V. An Approach for the analysis of the accessibility of fire hydrants in urban territories. ISPRS Int. J. Geo-Inf. 2019, 8, 587. [Google Scholar] [CrossRef]
- Knorr, W.; Kaminski, T.; Arneth, A.; Weber, U. Impact of human population density on fire frequency at the global scale. Biogeosciences 2014, 11, 1085–1102. [Google Scholar] [CrossRef]
- Singh, P.P.; Sabnani, C.S.; Kapse, V.S. Hotspot Analysis of Structure Fires in Urban Agglomeration: A Case of Nagpur City, India. Fire 2021, 4, 38. [Google Scholar] [CrossRef]
- Wang, J.C.; Lu, M.; Yuan, Z.Y.; Rui, Y.; Qian, T. Point Pattern Analysis of ATMs Distribution Based on Ripley’s K-Function Method in Nanjing City. Sci. Geogr. Sin. 2016, 36, 1843–1849. [Google Scholar] [CrossRef]
- Wu, X.; Shao, D.; Wu, D. Spatiotemporal Correlation Characteristics between Park Green Space and Urban Functional Space in Nanjing—Based on Ripley’s K Function and POI Data. Chin. Landsc. Archit. 2023, 39, 92–97. [Google Scholar] [CrossRef]
- Chen, X.; Huang, L.; Dai, D.; Zhu, M.; Jin, K. Hotspots of road traffic crashes in a redeveloping area of Shanghai. Int. J. Inj. Control Saf. Promot. 2018, 25, 293–302. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L. Spatial distribution characteristics and accessibility analysis of characteristic towns in Guangdong Province based on Ripley’s K function. J. Math. 2022, 2022, 2873707. [Google Scholar] [CrossRef]
- Shuo, Z.; Jingyu, Z.; Zhengxiang, Z.; Jianjun, Z. Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics. Open Geosci. 2021, 13, 796–806. [Google Scholar] [CrossRef]
- Peng, S.; Chen, S.; Xu, Q.; Niu, J. Spatial characteristics of land use based on POI and urban rail transit passenger flow. Acta Geogr. Sin. 2021, 76, 459–470. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P. Study on the relationship between urban rail transit and urban space based on POI data. J. Xi’an Univ. Archit. Technol. 2023, 55, 834–839. [Google Scholar] [CrossRef]
- The Shenzhen Municipal Government Data Open Platform. Available online: https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_02703706 (accessed on 22 December 2024).
- Yu, B.; Sun, J.; Wang, Z.; Jin, S. Influencing Factors of Street Vitality in Historic Districts Based on Multisource Data: Evidence from China. ISPRS Int. J. Geo-Inf. 2024, 13, 277. [Google Scholar] [CrossRef]
- Amatulli, G.; Peréz-Cabello, F.; Riva, L.D.J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol. Model. 2007, 200, 321–333. [Google Scholar] [CrossRef]
- Koutsias, N.; Balatsos, P.; Kalabokidis, K. Fire occurrence zones: Kernel density estimation of historical wildfire ignitions at the national level, Greece. J. Maps 2014, 10, 630–639. [Google Scholar] [CrossRef]
- Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Jolly, W.M. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Khadka, S.; He, H.S.; Bardhan, S. Investigating the Spatial Pattern of White Oak (Quercus alba L.) Mortality Using Ripley’s K Function across the Ten States of the Eastern US. Forests 2024, 15, 1809. [Google Scholar] [CrossRef]
- Nyimbili, P.H.; Erden, T. A hybrid approach integrating entropy-AHP and GIS for suitability assessment of urban emergency facilities. ISPRS Int. J. Geo Inf. 2020, 9, 419. [Google Scholar] [CrossRef]
- Vani, M.; Prasad, P.R.C. Assessment of spatio-temporal changes in land use and land cover, urban sprawl, and land surface temperature in and around Vijayawada city, India. Environ. Dev. Sustain. 2020, 22, 3079–3095. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Keeley, J.E. Multiple-scale relationships between vegetation, the wildland–urban interface, and structure loss to wildfire in California. Fire 2021, 4, 12. [Google Scholar] [CrossRef]
Data Categories | POI Data | Number of POI |
---|---|---|
Commercial service space | Catering services, financial and insurance services, life services, sports and leisure services, accommodation services, shopping services | 36,850 |
Tourism service space | Scenic spot | 409 |
Residential service space | Residence | 3401 |
Public service space | Public facilities, scientific, educational, and cultural services, medical and health services | 2677 |
Transportation service space | Transportation facility service | 4560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Li, G. Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function. ISPRS Int. J. Geo-Inf. 2025, 14, 45. https://doi.org/10.3390/ijgi14020045
Xiong Y, Li G. Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function. ISPRS International Journal of Geo-Information. 2025; 14(2):45. https://doi.org/10.3390/ijgi14020045
Chicago/Turabian StyleXiong, Yaobin, and Gongquan Li. 2025. "Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function" ISPRS International Journal of Geo-Information 14, no. 2: 45. https://doi.org/10.3390/ijgi14020045
APA StyleXiong, Y., & Li, G. (2025). Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function. ISPRS International Journal of Geo-Information, 14(2), 45. https://doi.org/10.3390/ijgi14020045