Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data
Abstract
:1. Introduction
2. Study Area, Data Set, and Methods
2.1. Study Area
2.2. MODIS Fire Activity Data
2.3. GlobeLand30-2010 Land Cover Data
2.4. Methods of Determining the Fire Points
3. Spatial and Temporal Distributions of Fire Points
3.1. Overall Results
3.2. Agricultural Fires
4. Discussions
4.1. The Regional Discussions of Agricultural Fires
4.2. Uncertainty
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Levine, J.S.; Cofer, W.R.; Cahoon, D.R.; Winstead, E.L. Biomass burning: A driver for global change. Environ. Sci. Technol. 1995. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.; Keywood, M.D. Impact of biomass burning sources on seasonal aerosol air quality. Atmos. Environ. 2013. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cy. 2001. [Google Scholar] [CrossRef]
- Korontzi, S.; McCarty, J.; Loboda, T.; Kumar, S.; Justice, C. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob. Biogeochem. Cy. 2006. [Google Scholar] [CrossRef]
- Cao, G.L.; Zhang, X.; Zheng, F. Inventory of black carbon and organic carbon emissions from China. Atmos. Environ. 2006. [Google Scholar] [CrossRef]
- McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The spatial and temporal distribution of crop residue burning in the contiguous United States. Sci. Total Environ. 2009, 407, 5701–5712. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Kaskaoutis, D.G. Crop residue burning: a threat to south Asian air quality. Eos Trans. Am. Geophys. Union. 2014. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Xia, X.; Zong, X.; Sun, L. Exceptionally active agricultural fire season in mid-eastern China in June 2012 and its impact on the atmospheric environment. J. Geophys. Res. Atmos. 2013, 118, 9889–9900. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.P. The MODIS fire products. Remote Sens. Environ. 2002. [Google Scholar] [CrossRef]
- Csiszar, I.; Justice, C.O.; Mcguire, A.D.; Cochrane, M.A.; Roy, D.P.; Brown, F.; Conard, S.G.; Frost, P.G.H.; Giglio, L.; Elvidge, C.; et al. Land use and fires. In Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., Cochrane, M.A., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2004; Volume 6, pp. 329–350. [Google Scholar]
- Dwyer, E.; Pinnock, S.; Gregoire, J.M.; Pereira, J.M.C. Global spatial and temporal distribution of vegetation fires as determined from satellite observations. Int. J. Remote Sens. 2000, 21, 1289–1302. [Google Scholar] [CrossRef]
- Witte, J.C.; Douglass, A.R.; da Silva, A.; Torres, O.; Levy, R.; Duncan, B.N. NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmos. Chem. Phys. 2011, 11, 9287–9301. [Google Scholar] [CrossRef]
- Zha, S.; Zhang, S.; Cheng, T.; Chen, J.; Huang, G.; Li, X.; Wang, Q. Agricultural fires and their potential impacts on regional air quality over China. Aerosol Air Qual. Res. 2013, 13, 992–1001. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. J. Geophys. Res. 2006, 111, 2156–2202. [Google Scholar] [CrossRef]
- McCarty, J.L.; Justice, C.O.; Korontzi, S. Agricultural burning in the Southeastern United States detected by MODIS. Remote Sens. Environ. 2007, 108, 151–162. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Wimberly, M.C.; Roy, D.P.; Henebry, G.M. Spatial and temporal heterogeneity of agricultural fires in the central United States in relation to land cover and land use. Landscape Ecol. 2011. [Google Scholar] [CrossRef]
- Liu, M.X.; Song, Y.; Yao, H.; Kang, Y.N.; Li, M.M.; Huang, X.; Hu, M. Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power. Atmos. Environ. 2015. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Li, J.; Song, Y. A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products. Atmos. Environ. 2012, 50, 9–15. [Google Scholar] [CrossRef]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Zhu, T. Harvest season, high polluted season in east China. Environ. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; Woo, J.H.; Yarber, K.F. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 2003. [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P. An overview of MODIS land data processing and product status. Remote Sens. Environ. 2002, 83, 3–5. [Google Scholar] [CrossRef]
- Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide Version 2.4; Science Systems and Applications: Lanham, MD, USA, 2010. [Google Scholar]
- National Geomatics Center of China (NGCC). Available online: http://ngcc.sbsm.gov.cn/article/en/ps/mp/201302/20130200001694.shtml (accessed on 8 June 2016).
- Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; Zhang, W.W.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Liu, J.Y. Analysis of Land Cover Change in Northwest China and Its Driving Factors Based on Globeland30. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2015. [Google Scholar]
- Ministry of Agriculture of the People’s Republic of China (MOA). Database of Farming Season, 2010–2014. Available online: http://www.moa.gov.cn/ (accessed on 15 April 2016). (In Chinese)
- National Bureau of Statistics of the People’s Republic of China (NBSC). Agriculture in: China Statistical Yearbook 2010–2015. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 14 April 2016). (In Chinese)
- Morisette, J.T.; Giglio, L.; Csiszar, I.; Setzer, A.; Schroeder, W.; Morton, D.; Justice, C.O. Validation of MODIS active fire detection products derived from two algorithms. Earth Interact. 2005, 9, 1–25. [Google Scholar] [CrossRef]
Missing dates | ||
---|---|---|
Terra Day (~10:30 local time) | Terra Night (~22:30 local time) | |
2012 | MOD14.A2012279 | MOD14.A2012148 |
MOD14.A2012291 | MOD14.A2012149 | |
MOD14.A2012292 | MOD14.A2012150 | |
MOD14.A2012151 | ||
MOD14.A2012152 | ||
2013 | MOD14.A2013288 | MOD14.A2013292 |
MOD14.A2013290 | MOD14.A2013283 | |
MOD14.A2013297 | MOD14.A2013297 | |
2014 | MOD14.A2014245 | MOD14.A2014245 |
MOD14.A2014299 | MOD14.A2014299 | |
MOD14.A2014302 | MOD14.A2014302 |
2010 | 2011 | 2012 | 2013 | 2014 | Five-Year Total | |
---|---|---|---|---|---|---|
Number of fire points | 19,854 | 21,609 | 30,842 | 27,788 | 28,049 | 128,142 |
Percentage of fire points with a low confidence level | 9.6% | 7.8% | 9.1% | 8.1% | 8.4% | 8.6% |
Number of agricultural fire points | 10,488 | 11,227 | 18,958 | 15,239 | 16,523 | 72,435 |
Percentage of agricultural fire points with a low confidence level | 9.7% | 6.5% | 8.5% | 7.6% | 7.2% | 7.90% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Du, L.; Liu, S.; Chen, L.; Gao, S.; Liu, S.; Pan, H.; Tong, X. Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data. ISPRS Int. J. Geo-Inf. 2016, 5, 172. https://doi.org/10.3390/ijgi5100172
Xie H, Du L, Liu S, Chen L, Gao S, Liu S, Pan H, Tong X. Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data. ISPRS International Journal of Geo-Information. 2016; 5(10):172. https://doi.org/10.3390/ijgi5100172
Chicago/Turabian StyleXie, Huan, Li Du, Sicong Liu, Lei Chen, Sa Gao, Shuang Liu, Haiyan Pan, and Xiaohua Tong. 2016. "Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data" ISPRS International Journal of Geo-Information 5, no. 10: 172. https://doi.org/10.3390/ijgi5100172
APA StyleXie, H., Du, L., Liu, S., Chen, L., Gao, S., Liu, S., Pan, H., & Tong, X. (2016). Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data. ISPRS International Journal of Geo-Information, 5(10), 172. https://doi.org/10.3390/ijgi5100172