Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land-Use/Cover Mapping
2.3. Land Change Intensity Analysis
2.4. Gradient Analysis of ULCs
2.5. Spatial Metrics
2.6. Urban Land Change Modeling
3. Results
3.1. Temporal Pattern of ULCs in the CMA
3.2. Spatial Pattern of ULCs in the CMA
3.3. Landscape Fragmentation and Connectivity in the CMA
3.4. Predicted Future ULCs in the CMA
4. Discussion
4.1. Urban Growth of CMA and Other Major Cities in South Asia
4.2. Stages of Urban Growth
4.3. Spatial Patterns of ULCs and Their Implications
4.4. Present and Future Urban Development Challenges
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Classified Data | Reference Data | Total | User’s Accuracy | ||
---|---|---|---|---|---|
Built | Non-Built | Water | |||
Built | 272 | 16 | 12 | 300 | 90.67 |
Non-built | 31 | 258 | 11 | 300 | 86.00 |
Water | 7 | 25 | 268 | 300 | 89.33 |
Total | 310 | 299 | 291 | 900 | |
Producer’s accuracy (%) | 87.74 | 86.29 | 92.10 |
Classified Data | Reference Data | Total | User’s Accuracy | ||
---|---|---|---|---|---|
Built | Non-Built | Water | |||
Built | 279 | 7 | 14 | 300 | 93.00 |
Non-built | 14 | 274 | 12 | 300 | 91.33 |
Water | 17 | 23 | 260 | 300 | 86.67 |
Total | 310 | 304 | 286 | 900 | |
Producer’s accuracy (%) | 90.00 | 90.13 | 90.91 |
Classified Data | Reference data | Total | User’s Accuracy | ||
---|---|---|---|---|---|
Built | Non-Built | Water | |||
Built | 286 | 6 | 8 | 300 | 95.33 |
Non-built | 6 | 282 | 12 | 300 | 94.00 |
Water | 9 | 16 | 275 | 300 | 91.67 |
Total | 301 | 304 | 295 | 900 | |
Producer’s accuracy (%) | 95.02 | 92.76 | 93.22 |
References
- Estoque, R.C.; Murayama, Y. Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy 2015, 48, 213–222. [Google Scholar] [CrossRef]
- Mertes, C.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2014 Revision: Highlights; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Ellis, P.; Robert, M. Leveraging Urbanization in South Asia: Managing Spatial Transformation for Prosperity and Livability; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- The World Bank. Colombo: The Heartbeat of Sri Lanka. 2013. Available online: http://www.worldbank.org/en/news/feature/2013/03/21/colombo-heartbeat-sri-lanka (accessed on 30 June 2016).
- Divigalpitiya, P.; Ohgai, A.; Tani, T.; Watanabe, K.; Gohnai, Y. Modeling land conversion in the Colombo Metropolitan Area using cellular automata. J. Asian Archit. Build. Eng. 2007, 6, 291–298. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Welivitiya, W.D.D.P.; Nadeeka, P.M. Urban green spaces analysis for development planning in Colombo, Sri Lanka, utilizing THEOS satellite imagery—A remote sensing and GIS approach. Urban For. Urban Green. 2013, 12, 307–314. [Google Scholar] [CrossRef]
- Emmanuel, R. Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka. Build. Environ. 2005, 40, 1591–1601. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). Urban Transport System Development Project for Colombo Metropolitan Region and Suburbs: Final Report Summary 2014; JICA: Colombo, Sri Lanka, 2014.
- UN-Habitat. Summary of City Case studies, Global Report on Human Settlement 2003; Earthscan Publication: London, UK, 2003. [Google Scholar]
- Hettiarachchi, M.; Morrison, T.H.; Wickramsinghe, D.; Mapa, R.; de Alwis, A.; McAlpine, C.A. The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka. Landsc. Urban Plan. 2014, 132, 55–68. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; de Noronha Vaz, E. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities 2013, 32, 33–42. [Google Scholar] [CrossRef]
- Gutman, G.; Janetos, A.C.; Justice, C.O.; Moran, E.F.; Mustard, J.F.; Rindfuss, R.R.; Skole, D.; Turner, B.L.; Cochrane, M.A. Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface; Kluwer Academic: New York, NY, USA, 2004. [Google Scholar]
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1–27. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 1–13. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Gennaio, M.-P.; Verburg, P.H.; Bürgi, M. Linking land change with driving forces and actors: Four conceptual models. Ecol. Sco. 2010, 15, 1–17. [Google Scholar]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- He, C.; Zhao, Y.; Tian, J.; Shi, P. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata. Landsc. Urban Plan. 2013, 113, 78–89. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Kamusoko, C.; Yamashita, A. Geospatial analysis of urban landscape pattern in three major cities of Southeast Asia. Tsukuba Geoenviron. Sci. 2014, 10, 3–10. [Google Scholar]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Shannon, C.; Weaver, W. The Mathamatical Theory of Communication, 1st ed.; The University of Illinois Press: Urbana, IL, USA, 1964. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature, 1st ed.; Freeman: New York, NY, USA, 1989. [Google Scholar]
- DiBari, J.N. Evaluation of five landscape-level metrics for measuring the effects of urbanization on landscape structure: The case of Tucson, Arizona, USA. Landsc. Urban Plan. 2007, 79, 308–313. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of spatial heterogeneity—A comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 265–275. [Google Scholar] [CrossRef]
- Horen, B.V. City profile: Columbo. Cities 2002, 19, 217–227. [Google Scholar] [CrossRef]
- Department of Census and Statistics. Sri Lanka Census of Population and Housing 1981; Department of Census and Statistics: Colombo, Sri Lanka, 1984.
- Department of Census and Statistics. Vital Statistics; Department of Census and Statistics: Colombo, Sri Lanka, 1991.
- Department of Census and Statistics. Preliminary Evaluation of Age-Sex Data of Census of Population and Housing 2001: Colombo; Department of Census and Statistics: Colombo, Sri Lanka, 2001.
- Department of Census and Statistics. Census of Population and Housing 2012. Key Finding: Colombo; Department of Census and Statistics: Colombo, Sri Lanka, 2012.
- Thapa, R.B.; Murayama, Y. Urban mapping, accuracy, & image classification: A comparison of multiple approaches in Tsukuba City, Japan. Appl. Geogr. 2009, 29, 135–144. [Google Scholar] [Green Version]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Sinha, P.; Kumar, L.; Reid, N. Rank-based methods for selection of landscape metrics for land cover pattern change detection. Remote Sens. 2016, 8, 1–19. [Google Scholar] [CrossRef]
- Civco, D.L.; Hurd, J.D.; Wilson, E.H.; Arnold, C.L.; Prisloe, M.P. Quantifying and describing urbanizing landscapes in the northeast United States. Photogramm. Eng. Remote Sens. 2002, 68, 1083–1090. [Google Scholar]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Wu, J. Quantifying the speed, growth modes, and landscape pattern changes of urbanization: A hierarchical patch dynamics approach. Landsc. Ecol. 2013, 28, 1875–1888. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 30 June 2016).
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H.J., Eds.; Springer: Berlin, Germany, 2010; pp. 117–135. [Google Scholar]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Camacho Olmedo, M.T.; Pontius, R.G.; Paegelow, M.; Mas, J.F. Comparison of simulation models in terms of quantity and allocation of land change. Environ. Model. Softw. 2015, 69, 214–221. [Google Scholar] [CrossRef]
- Eastman, J.R.; Solorzan, L.A.; van Fosse, M.E. Transition potential modeling for land-cover change. In GIS, Spatial Analysis and Modeling; Maguire, D.J., Batty, M., Goodchild, M.F., Eds.; ESRI Press: Redlands, AB, Canada, 2005; pp. 357–385. [Google Scholar]
- Sloan, S.; Pelletier, J. How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Glob. Environ. Chang. 2012, 22, 440–453. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Tayyebi, A.H.; Tayyebi, A.; Khanna, N. Assessing uncertainty dimensions in land-use change models: Using swap and multiplicative error models for injecting attribute and positional errors in spatial data. Int. J. Remote Sens. 2014, 35, 149–170. [Google Scholar] [CrossRef]
- Pontius, R.G.; Neeti, N. Uncertainty in the difference between maps of future land change scenarios. Sustain. Sci. 2010, 5, 39–50. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. A geospatial approach for detecting and characterizing non-stationarity of land change patterns and its potential effect on modeling accuracy. GISci. Remote Sens. 2014, 51, 239–252. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, A.; Dech, S. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 2012, 117, 162–176. [Google Scholar] [CrossRef]
- The World Development Indicators: Urban Population Growth (Annual %). Available online: http://data.worldbank.org/indicator/SP.URB.GROW (accessed on 5 September 2016).
- Groves, P.A. Urbanization and migration: Pattern and process. In Economic Development and Social Change in Sri Lanka:A Spatial and Policy Analysis, 1st ed.; Groves, P.A., Ed.; Manohar Publication: New Delhi, India, 1996; pp. 41–79. [Google Scholar]
- Siddiqui, K.; Ahmed, J.; Siddique, K.; Huq, S.; Hossain, A.; Nazimud-Doula, S.; Rezawana, N. Social Formation in Dhaka, 1985–2005: A Longitudinal Study of Society in a Third World Megacity; Routledge: London, UK, 2010. [Google Scholar]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Rahman, A.; Tran, T.; Shaw, R. Food security in Asia. In Urban Disaster Resilience in Asia; Shaw, R., Rahman, A., Surjan, A., Parvin, G.A., Eds.; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Kamini, J.; Jayanthi, S.; Raghavswamy, V. Spatio-temporal analysis of land use in urban Mumbai—Using multi-sensor satellite data and GIS techniques. J. Indian Soc. Remote Sens. 2006, 34, 385–396. [Google Scholar] [CrossRef]
- Rahman, A.; Aggarwal, S.P.; Netzband, M.; Fazal, S. Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 56–64. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef]
- Zimmerman, T. The New Silk Roads: China, the U.S., and the Future of Central Asia; New York University: New York, NY, USA, 2015; Available online: http://cic.nyu.edu/sites/default/files/zimmerman_new_silk_road_final_2.pdf (accessed on 5 September 2016).
- The World Bank, World Development Indicators: Foreign Direct Investment, Net Inflows (% of GDP). Available online: http://data.worldbank.org/indicator/BX.KLT.DINV.WD.GD.ZS?locations=LK (accessed on 5 September 2016).
- Hewavitharana, B. Poverty alleviation. In Economic Policy in Sri Lanka: Issues and Debates, 1st ed.; Kelagama, S., Ed.; Sage Publication: New Delhi, India, 2004; pp. 467–497. [Google Scholar]
- Misra, R.P.; Tiwari, P.S. Colombo: The primate city of Sri Lanka. In Urbanization in South Asia: Focus on Mega Cities, 1st ed.; Misra, R.P., Ed.; Cambridge University Press: New Delhi, India, 2013; pp. 421–445. [Google Scholar]
- Hogg, C.L. Sri Lanka: Prospects for Reform and Reconciliation, Asia Programme Paper. Available online: https://www.chathamhouse.org/sites/files/chathamhouse/1011pp_srilanka_0.pdf (accessed on 28 June 2016).
- The World Bank, World Development Indicators: GDP (Current US$). Available online: http://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=LK (accessed on 8 September 2016).
- Wu, Y.; Li, S.; Yu, S. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ. Monit. Assess. 2015, 188, 54. [Google Scholar] [CrossRef] [PubMed]
- Dietzel, C.; Oguz, H.; Hemphill, J.J.; Clarke, K.C.; Gazulis, N. Diffusion and coalescence of the Houston Metropolitan Area: Evidence supporting a new urban theory. Environ. Plan. B Plan. Des. 2005, 32, 231–246. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- McConnell, V.; Wiley, K. Infill development: Perspectives and evidence from economics and planning. In The Oxford Handbook of Urban Economics and Planning; Brooks, N., Donaghy, K., Knaap, G., Eds.; Oxford University Press: New York, NY, USA, 2011; pp. 473–502. [Google Scholar]
- Houck, M.C. In livable cities is preservation of the wild. In The Routledge Handbook of Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: London, UK, 2010; pp. 48–62. [Google Scholar]
- Rahimi, A. A methodological approach to urban land-use change modeling using infill development pattern—A case study in Tabriz, Iran. Ecol. Process. 2016, 5, 1. [Google Scholar] [CrossRef]
- Dewan, A.M.; Kabir, M.H.; Nahar, K.; Rahman, M.Z. Urbanization and environmental degradation in Dhaka metropolitan area of Bangladesh. Int. J. Environ. Sustain. Dev. 2012, 11, 118–147. [Google Scholar] [CrossRef]
- The World Bank, Sri Lanka: Reshaping Economic Geography, Connecting People to Prosperity, 2004. Available online: http://www.worldbank.org/en/news/feature/2012/05/16/reshaping-economic-geography (accessed on 8 September 2016).
Representative Factors | Descriptions |
---|---|
Distance to major roads | Represents access to transport facilities. The road map (1995) includes only A and B types (major roads). |
Distance to schools | Represents access to educational services. The map shows the spatial distribution of primary and secondary schools as of 2000. |
Distance to growth nodes | Represents access to urban facilities and locations of export processing zones (EPZ). Includes emerging urban centers identified in 1996 by Sri Lanka’s urban development authority (UDA). |
Distance to administrative centers | Represents access to administrative services. Includes local and national government administrative-service offices (1999). |
Metropolitan Area | Years | Annual ULC Rate (% of Landscape) | APGR (%) |
---|---|---|---|
Dhaka (Bangladesh) [61,62] | 1999–2005 | 2.43 | 4.08 |
Mumbai (India) [63,64] | 1991–2011 | 0.94 | 2.15 |
Hyderabad (India) [65] | 1971–2005 | 0.58 | 2.96 |
Kathmandu (Nepal) [66] | 1978–2000 | 0.55 | 4.10 |
Colombo (Sri Lanka) * | 1992–2014 | 0.47 | 0.41 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inf. 2016, 5, 197. https://doi.org/10.3390/ijgi5110197
Subasinghe S, Estoque RC, Murayama Y. Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS International Journal of Geo-Information. 2016; 5(11):197. https://doi.org/10.3390/ijgi5110197
Chicago/Turabian StyleSubasinghe, Shyamantha, Ronald C. Estoque, and Yuji Murayama. 2016. "Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka" ISPRS International Journal of Geo-Information 5, no. 11: 197. https://doi.org/10.3390/ijgi5110197
APA StyleSubasinghe, S., Estoque, R. C., & Murayama, Y. (2016). Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS International Journal of Geo-Information, 5(11), 197. https://doi.org/10.3390/ijgi5110197