Improving Seasonal Land Cover Maps of Poyang Lake Area in China by Taking into Account Logical Transitions
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Materials
3.2. Voting Scenario
3.3. Hierarchical Classification Strategy
3.4. Post-Classification Refinement
3.4.1. Four-Digit Codes for Seasonal Transitions of Land Cover Types
3.4.2. Rules for Seasonal Land Cover Mapping
- (1)
- If the transformational codes of the land cover type A to B is “2222” (such as water body-artificial cover), the transition from A to B is unlikely to happen within one year. As a result, if a certain pixel is predicted as either A or B in all seasons, labels for the land cover types have to be unified by voting scheme between different seasons. If they have the same votes, the label with the higher average user’s accuracy will be selected.
- (2)
- The four-digit codes initially reflect the logical transitions between two land cover types. The codes should be composited if the initial class labels for a pixel location in four seasons have more than two kinds of land covers. For instance, the codes for a pixel initially labeled as “terranora-terranora-dry river/lake bed-bare soil” for four seasons is “1211” according to Table 3. The codes are empty if the transitions between Level-2 classes are beyond superclass, for example “paddy-bare soil”. In addition, labels of these pixels should not be modified beyond superclass in any case.
- (3)
- The user’s accuracy is taken into account at the occurrence of consecutive contradiction. If consecutive contradiction encounters, such as “1221”, then the user’s accuracy of the pixel in the second and fourth season should be compared. The computation and modification procedure run from the side of higher accuracy.
3.4.3. Modified Hierarchical Mapping Strategy According to Logical Transitions
4. Results and Discussion
4.1. Land Cover Maps for Different Seasons
4.2. Accuracy Evaluation
4.2.1. Overall Classification Accuracy
4.2.2. Land Cover Change Accuracy
4.3. Discussion
4.3.1. Statistics and Comparison
4.3.2. Influence on Spatial Relationship
4.3.3. Dealing with Wrongly-Labeled Samples
4.3.4. Boundedness and Unsolved Problems
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Roy, P.S.; Roy, A.; Joshi, P.K.; Kale, M.P.; Srivastava, V.K.; Srivastava, S.K.; Dwevidi, R.S.; Joshi, C.; Behera, M.D.; Meiyappan, P.; et al. Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sens. 2015, 7, 2401–2430. [Google Scholar] [CrossRef]
- Treitz, P.; Rogan, J. Remote sensing for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 267–279. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. Globcover the most detailed portrait of Earth. ESA Bull. Eur. Space Agency 2008, 136, 24–31. [Google Scholar]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Bicheron, P.; Leroy, M. Bidirectional reflectance distribution function signatures of major biomes observed from space. J. Geophys. Res. Atmos. 2000, 105, 26669–26681. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Wu, W.; Shibasaki, R.; Yang, P.; Ongaro, L.; Zhou, Q.; Tang, H. Validation and comparison of 1 km global land cover products in china. Int. J. Remote Sens. 2008, 29, 3769–3785. [Google Scholar] [CrossRef]
- Peres, L.F.; DaCamara, C.C. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1834–1844. [Google Scholar] [CrossRef]
- Broxton, P.D.; Zeng, X.B.; Sulla-Menashe, D.; Troch, P.A. A global land cover climatology using MODIS data. J. Appl. Meteorol. Climatol. 2014, 53, 1593–1605. [Google Scholar] [CrossRef]
- Wilting, A.; Cord, A.; Hearn, A.J.; Hesse, D.; Mohamed, A.; Traeholdt, C.; Cheyne, S.M.; Sunarto, S.; Jayasilan, M.A.; Ross, J.; et al. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid. PLoS ONE 2010, 5, e9612. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.C.; Zhong, L.H.; Chen, Y.L.; Gong, P. FROM-GC: 30 m Global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Sauri, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Dewan, A.M.; Corner, R.J. The impact of land use and land cover changes on land surface temperature in a rapidly urbanizing megacity. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Liu, Y. Validation of land cover maps in China using a sampling-based labeling approach. Remote Sens. 2015, 7, 10589–10606. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.L.; Reed, B. A comparative analysis of the global land cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Van Oort, P.A.J. Improving land cover change estimates by accounting for classification errors. Int. J. Remote Sens. 2005, 26, 3009–3024. [Google Scholar] [CrossRef]
- Cai, S.S.; Liu, D.S. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 2015, 7, 8705–8727. [Google Scholar] [CrossRef]
- Cai, S.S.; Liu, D.S.; Sulla-Menashe, D.; Friedl, M.A. Enhancing MODIS land cover product with a spatial-temporal modeling algorithm. Remote Sens. Environ. 2014, 147, 243–255. [Google Scholar] [CrossRef]
- Liu, D.S.; Chun, Y.W. The effects of different classification models on error propagation in land cover change detection. Int. J. Remote Sens. 2009, 30, 5345–5364. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q. Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison. Int. J. Remote Sens. 2004, 25, 1037–1050. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Liang, D.; Zuo, Y.; Huang, L.S.; Zhao, J.L.; Teng, L.; Yang, F. Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m globeland30 datasets: A case study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens. 2015, 103, 38–47. [Google Scholar] [CrossRef]
- Wehmann, A.; Liu, D. A spatial-temporal contextual Markovian kernel method for multi-temporal land cover mapping. ISPRS J. Photogramm. Remote Sens. 2015, 107, 77–89. [Google Scholar] [CrossRef]
- Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Pu, R.L.; Bell, S. A protocol for improving mapping and assessing of seagrass abundance along the West Central Coast of Florida using Landsat TM and EO-1 ALI/Hyperion images. ISPRS J. Photogramm. Remote Sens. 2013, 83, 116–129. [Google Scholar] [CrossRef]
- Lin, Y.P.; Chu, H.J.; Huang, Y.L.; Tang, C.H.; Rouhani, S. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation. Environ. Monit. Assess. 2011, 177, 353–373. [Google Scholar] [CrossRef] [PubMed]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Chapelle, O.; Haffner, P.; Vapnik, V.N. Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 1999, 10, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Drucker, H.; Wu, D.H.; Vapnik, V.N. Support vector machines for spam categorization. IEEE Trans. Neural Netw. 1999, 10, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Voisin, A.; Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. Supervised classification of multisensor and multiresolution remote sensing images with a hierarchical copula-based approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3346–3358. [Google Scholar] [CrossRef]
- LaFrance, M.; King, J.W.; Oakley, B.A.; Pratt, S. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development. Cont. Shelf Res. 2014, 83, 24–44. [Google Scholar] [CrossRef]
- Bai, S.; Matsumoto, T.; Takeuchi, Y.; Kudo, H.; Ohnishi, N. Informative patches sampling for image classification by utilizing bottom-up and top-down information. Mach. Vis. Appl. 2013, 24, 959–970. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Schepaschenko, D.; See, L.; Lesiv, M.; McCallum, I.; Fritz, S.; Salk, C.; Moltchanova, E.; Perger, C.; Shchepashchenko, M.; Shvidenko, A.; et al. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sens. Environ. 2015, 162, 208–220. [Google Scholar] [CrossRef]
- Kinoshita, T.; Iwao, K.; Yamagata, Y. Creation of a global land cover and a probability map through a new map integration method. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 70–77. [Google Scholar] [CrossRef]
- Vuolo, F.; Atzberger, C. Improving land cover maps in areas of disagreement of existing products using NDVI time series of MODIS—Example for Europe. Photogramm. Fernerkund. Geoinf. 2014, 5, 393–407. [Google Scholar] [CrossRef]
- Malossini, A.; Blanzieri, E.; Ng, R.T. Detecting potential labeling errors in microarrays by data perturbation. Bioinformatics 2006, 22, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.Y.; Chang, C.Q.; Hung, Y.S. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data. PLoS ONE 2012, 7, e46700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Level-1 Classes | Level-2 Classes |
---|---|
Cropland | Paddy |
Oilseed rape | |
Other crops | |
Forest land | Broad-leaved forest |
Coniferous forest | |
Water body | Lakes |
Rivers | |
Bare land | Terranora |
Dry river/lake bed | |
Bare soil | |
Artificial cover | |
Clouds |
Class label | Cropland | Forest Land | Water Body | Bare Land | Artificial Cover | Clouds |
---|---|---|---|---|---|---|
Cropland | 1111 | 1221 | 2222 | 1111 | 2222 | 1111 |
Forest land | 1111 | 1111 | 2222 | 1111 | 2222 | 1111 |
Water body | 1111 | 2222 | 1111 | 1111 | 2222 | 1111 |
Bare land | 1111 | 1221 | 1111 | 1111 | 1111 | 1111 |
Artificial cover | 2222 | 2222 | 2222 | 1111 | 1111 | 1111 |
Clouds | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 |
Level-1 | Cropland | Forest Land | Bare Land | Water Body | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Level-2 | PD 1 | OR 2 | OC 3 | BL 4 | CF 5 | TN 6 | DR 7 | BS 8 | LK 9 | RV 10 |
PD | 2112 | 2211 | 2211 | |||||||
OR | 1122 | 1221 | 1122 | |||||||
OC | 1122 | 2211 | 1111 | |||||||
BL | 1111 | 2222 | ||||||||
CF | 2222 | 1111 | ||||||||
TN | 1111 | 2222 | 1111 | |||||||
DR | 2222 | 1111 | 1111 | |||||||
BS | 1111 | 2222 | 1111 | |||||||
LK | 1111 | 2222 | ||||||||
RV | 2222 | 1111 |
Class | Reference Pixels | Initial | Modified | ||
---|---|---|---|---|---|
Correct | PA 1 | Correct | PA | ||
Cropland | 1000 | 872 | 0.872 | 916 | 0.916 |
Paddy | 332 | 224 | 0.675 | 272 | 0.819 |
Oilseed rape | 337 | 226 | 0.671 | 278 | 0.825 |
Other crops | 331 | 241 | 0.728 | 245 | 0.74 |
Forest | 1000 | 907 | 0.907 | 980 | 0.980 |
Broad-leaved forest | 528 | 415 | 0.786 | 444 | 0.841 |
Coniferous forest | 472 | 351 | 0.744 | 420 | 0.89 |
Water body | 1000 | 938 | 0.938 | 990 | 0.990 |
Lakes | 484 | 441 | 0.911 | 456 | 0.942 |
Rivers | 516 | 417 | 0.808 | 479 | 0.928 |
Bare land | 1000 | 660 | 0.66 | 821 | 0.821 |
Terranora | 343 | 210 | 0.612 | 217 | 0.633 |
Dry river/lake bed | 308 | 151 | 0.49 | 246 | 0.799 |
Bare soil | 349 | 222 | 0.636 | 232 | 0.665 |
Level-1 | 4000 | 3377 | OA 2 = 0.844 | 3707 | OA = 0.927 |
Level-2 | 4000 | 2898 | OA = 0.725 | 3289 | OA = 0.822 |
Seasons | Initial | Modified | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | |
1–2 | 5 | 170 | 35 | 790 | 29 | 29 | 11 | 931 |
2–3 | 97 | 143 | 56 | 704 | 118 | 90 | 35 | 757 |
3–4 | 75 | 186 | 49 | 690 | 80 | 106 | 44 | 770 |
4–1 | 5 | 160 | 40 | 795 | 25 | 40 | 20 | 915 |
Seasons | Initial | Modified | ||
---|---|---|---|---|
U1 (%) | U2 (%) | U1 (%) | U2 (%) | |
1–2 | 2.86 | 95.76 | 50.00 | 98.83 |
2–3 | 40.42 | 92.63 | 56.73 | 95.58 |
3–4 | 28.74 | 93.37 | 43.10 | 94.59 |
4–1 | 3.03 | 95.21 | 38.46 | 97.86 |
Seasons | Inconsistent Pixels | Inconsistent Rate | Illogical Pixels | Illogical Rate |
---|---|---|---|---|
1–2 | 85,820,425 | 65.59% | 46,926,473 | 35.86% |
2–3 | 91,262,718 | 69.75% | 69,584,679 | 53.18% |
3–4 | 82,361,668 | 62.75% | 64,566,765 | 49.35% |
4–1 | 68,209,669 | 52.13% | 38,203,436 | 29.20% |
Seasons | Inconsistent Pixels | Inconsistent Rate | Illogical Pixels | Illogical Rate |
---|---|---|---|---|
1–2 | 48,668,565 | 37.20% | 15,142,276 | 11.58% |
2–3 | 62,264,436 | 47.59% | 24,638,692 | 18.83% |
3–4 | 60,632,812 | 46.34% | 36,109,713 | 27.60% |
4–1 | 44,831,920 | 34.26% | 21,048,549 | 16.09% |
Seasons | Cropland | Forest Land | Water Body | Bare Land |
---|---|---|---|---|
1–2 | 35,315,244 | 22,981,725 | 2,437,095 | 447,586 |
2–3 | 54,640,786 | 46,294,331 | 1,938,652 | 327,609 |
3–4 | 47,026,937 | 38,635,981 | 2,154,171 | 835,130 |
4–1 | 20,192,017 | 18,062,564 | 1,953,331 | 535,948 |
Seasons | Cropland | Forest Land | Water Body | Bare Land |
---|---|---|---|---|
1–2 | 14,226,399 | 4,053,919 | 747,012 | 334,750 |
2–3 | 21,835,662 | 13,148,839 | 979,944 | 189,659 |
3–4 | 31,482,895 | 10,606,269 | 1,085,992 | 427,656 |
4–1 | 19,374,686 | 1,370,286 | 1,027,245 | 294,721 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Fang, S.; Dian, Y.; Bi, C. Improving Seasonal Land Cover Maps of Poyang Lake Area in China by Taking into Account Logical Transitions. ISPRS Int. J. Geo-Inf. 2016, 5, 165. https://doi.org/10.3390/ijgi5090165
Yang G, Fang S, Dian Y, Bi C. Improving Seasonal Land Cover Maps of Poyang Lake Area in China by Taking into Account Logical Transitions. ISPRS International Journal of Geo-Information. 2016; 5(9):165. https://doi.org/10.3390/ijgi5090165
Chicago/Turabian StyleYang, Guang, Shenghui Fang, Yuanyong Dian, and Chuang Bi. 2016. "Improving Seasonal Land Cover Maps of Poyang Lake Area in China by Taking into Account Logical Transitions" ISPRS International Journal of Geo-Information 5, no. 9: 165. https://doi.org/10.3390/ijgi5090165
APA StyleYang, G., Fang, S., Dian, Y., & Bi, C. (2016). Improving Seasonal Land Cover Maps of Poyang Lake Area in China by Taking into Account Logical Transitions. ISPRS International Journal of Geo-Information, 5(9), 165. https://doi.org/10.3390/ijgi5090165